EECS 495 Homework1: Max-flow Min-Cut Through LP Duality

Hang Zhou, Jiang Xu

February 1, 2010

Let G = (V, E) be the graph with source s and sink t, and positive edge/arc capacities c.

1 (a)

By the hint, a fictitious arc is introduced from t to s, so that flow conservation constraint holds for every vertex in V. Then the max s-t flow problem can be formulated as the following LP. Let $f_{ij} \geq 0$ be the flow from vertex i to vertex j for all arc (i,j)

$$(LP_p) \qquad \max_{\{f_{ij}\}} \quad f_{ts}$$

$$\text{s.t.} \quad f_{ij} \leq c_{ij} \qquad \qquad \forall (i,j) \in E \qquad (x_{ij})$$

$$\sum_{\{j:(i,j)\in E\}} f_{ji} - \sum_{\{j':(j',i)\in E\}} f_{ij'} = 0 \qquad \qquad \forall i \in V \qquad (y_i)$$

$$f_{ij} \geq 0 \qquad \qquad \forall (i,j) \in E$$

2 (b)

The dual of the above problem can be written as

$$(LP_d) \qquad \min_{\{x_{ij}\},\{y_i\}} \quad \sum_{(i,j)\in E} c_{ij} x_{ij}$$

$$\text{s.t.} \quad -y_i + y_j + x_{ij} \geq 0 \qquad \qquad \forall (i,j) \in E$$

$$y_s - y_t = 1$$

$$x_{ij} \geq 0 \qquad \qquad \forall (i,j) \in E$$

$$y_i \ unrestriced$$

3 (c)

The integral version LP_d is

$$(IP_d) \qquad \min_{\{x_{ij}\}, \{y_i\}} \quad \sum_{(i,j) \in E} c_{ij} x_{ij}$$
 s.t. $-y_i + y_j + x_{ij} \ge 0$ $\forall (i,j) \in E$ $y_s - y_t = 1$ $x_{ij} \in \{0,1\}$ $\forall (i,j) \in E$ $y_i \in \{0,1\}$ $\forall (i,j) \in E$

 IP_d has an interpretation as a min s-t problem. Let (X_1, X_2) be a s-t cut of G where $s \in X_1$ and $t \in X_2$. Let $y_i = 1$ if vertex $i \in X_1$; $y_i = 0$ if $i \in X_2$. (It is easy to see that $y_s = 1$ and $y_t = 0$.) Then $x_{ij} = 1$ only when $(i, j) \in X_1 \times X_2$. Therefore, the objective in IP_d is exactly the capacities of a s-t cut. The solution to this problem must be a min s-t cut.

Since it is easy to see that both LP_p and LP_d are feasible and bounded, we have $LP_p = LP_d$ by Strong Duality. On the other hand, we have $IP_d \geq LP_d$ due to integrality gap. Therefore, we have $IP_d \geq LP_d = LP_p$, i.e. the max s-t flow lower bounds the min s-t cut.

4 (d)

Without loss of generalities, we add the constraint of $y_i \ge 0$ to LP_d . This is okay since it is only the difference between y_i and y_j matters in LP_d . Let the resulting problem be LP'_d .

$$(LP'_d) \qquad \min_{\{x_{ij}\}, \{y_i\}} \quad \sum_{(i,j) \in E} c_{ij} x_{ij}$$

$$\text{s.t.} \quad -y_i + y_j + x_{ij} \ge 0 \qquad \qquad \forall (i,j) \in E$$

$$y_s - y_t = 1$$

$$x_{ij} \ge 0 \qquad \qquad \forall (i,j) \in E$$

$$y_i \ge 0 \qquad \qquad \forall i \in V$$

We need to show that LP'_d is integral, i.e. the polytope is integral. We will show this by showing that its constraint matrix is *totally unimodular* (TUM).

The constraint matrix of LP'_d can be written in the form of [X,Y], where X corresponds to columns of x_{ij} variables and Y corresponds to columns of y_i variables. It is easy to see that X is an identity matrix and Y is the incidence matrix of a directed graph, which is know to be totally unimodular. Furthermore, the concatenation of a TUM matrix and an identity matrix is TUM. Therefore, the constraint matrix of LP'_d is TUM. Thus, LP'_d is integral, and LP_d is also integral. This concludes that max s-t flow equals the min s-t cut.