
EECS 495: Randomized Algorithms Lecture 8
Hashing

Reading: Text:

Hashing

Symbol-table problem

Set S holding n elements:

x pointer to element containing

• key(x) ∈ U = {1, . . . , N}

• satellite data

Operations on S

• insert(S, x) : S ← S ∪ {x}

• delete(S, x) : S ← S − {x}

• search(S, k) : returns x if ∃x ∈
S, key(x) = k, otherwise nil

Question: How to store S?

• array: operations O(1), space O(N)

• hash table

Def: hash function h : U → {0, . . . , b − 1},
b = poly(n) << N

• if well-distributed, get constant opera-
tions, near-linear space

• if h(k1) = h(k2), collision, increase time
for operations
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Deterministic function, then adversary
can pick keys s.t. all data maps to same
bucket, so want to choose function at
random from some set; choosing from
all functions uniformly at random is bad
however, because function must be easy
to compute. Solution is to use a small
family of functions that are easy to com-
pute and then choose from that family
randomly.
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Question: how to resolve collisions?

• chaining: store collided data in a linked
list

– worst-case O(n) operations

– average case O(1) using b = O(n)

– average worst-case
O(log n/ log log n) using b = O(n)
and “random” function (balls and
bins)

• perfect hashing, i.e., constant operations
worst-case, for static sets: store collided
data in secondary hash table

Claim: b = O(n) size suffices!

Proof: Let Bi be # elts. in bin i:

E[
∑

i

(Bi)
2] = n + E[#colliding pairs]

= n + n2/b
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= O(n)

So secondary hash tables in sum use also
linear space.

• linear probing: if h(k) occupied, try
h(k) + 1 etc.[[

Key advantage, good for cache misses due
to sequential access.

]]
• cuckoo hashing: use two hash functions,

if h(k) occupied, kick resident elt to
bucket in g(.) recursively

[[Advantages mostly theoretical. ]]

Linear Probing

[[
See STOC’07 paper of Pagh, Pagh,
Ruzic.

]]
Note: Analysis for b = 3n to ease notation.

Consider binary tree spanning array of buck-
ets:

• leaves level 0

• node at level k has 2k array positions un-
der it

• expect node of level k to have (1/3)2k

items hashed to buckets under it[[
In sense of original location h(x), not
h(x) + 1, h(x) + 2, etc.

]]
Def: A node of level k is dangerous if more
than (2/3)2k elts hash under it.

To bound operation time, must bound size of
contiguous run of elts. containing h(q):

Claim: If 2k ≤ size of run ≤ 2k+1, either
(k− 2)-ancestor of h(q) or a nearby sibling is
dangerous.

Proof: Consider (k−2)-level nodes that span
run. Given size, there are at least 4 of them.
Claim at most 3 can be good:

• 1st good → contributes at most
(2/3)2k−2 to run

• 2nd, 3rd good→ have each 2k−2/3 empty
slots

• so next two soak up excess from 1st stop-
ping run

• 4th good means get at most (2/3)2k−2

extras

Total # elts. in run at most 2k−2 + 2k−2 +
(2/3)2k−2 < 4× 2k−2 = 2k.

Let Ek be event a level-k node is dangerous.
Expected operation time:∑

k

O(2k) Pr[2krun(h(q)) ≤ 2k+1] ≤
∑

k

O(2k) Pr[Ek−2].
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