
EECS 495: Randomized Algorithms Lecture 14
Random Walks

Reading: Motwani-Raghavan Chapter 6[[
Powerful tool for sampling complicated
distributions since use only local moves
to explore state space.

]]

2SAT

Given 2SAT formula,

• Fix satisfying assignment A

• Pick random unsatisfied clause, and flip
one of its vars at random

• Let f(k) be expected time to get all n
variables to match A if k currently match

– f(n) = 0, f(0) = 1 + f(1)

– f(k) = 1 + 1
2
(f(k + 1) + f(k − 1))

– Rewrite: f(0)−f(1) = 1 and f(k)−
f(k + 1) = 2 + f(k − 1)− f(k)

– Conclude: f(k)− f(k+ 1) = 2k+ 1
so f(0) =

∑n−1
k=0(f(k)− f(k+ 1)) =

1 + 3 + . . .+ (2n− 1) = n2

[[recall geometric argument ]]

• Find with probability 1/2 in time 2n2 by
Markov

• Find whp in O(n2 log n) time

[[Intrepret as walk on a line. ]]

Markov Chain

Given:

• state space S

• initial distribution of states

• matrix P of transition probabilities pij

for i, j ∈ S as prob. transition from i to
j[[

Interpret as directed graph. Compare to
2SAT example.

]]
Note: Properties:

•
∑

j pij = 1

• memoryless:

Pr[Xt+1 = j|X0 = i0, . . . , Xt−1 = it−1, Xt = i] = Pr[Xt+1 = j|Xt = i] = pij

where Xt is rand var of state at time t

• If Xt has dist q (qi is prob of state i),
then Xt+1 has dist qP

• Pr[Xt+r = j|Xt = i] = P r
ij

Def: The stationary distribution is a π s.t.
πP = π (i.e., left eigenvector with eigenvalue
1).


Stationary distribution is sample from
state space, so to sample from a set of
objects, define chain with correct station-
ary dist. When does this work?




Question: Stationary distributions for
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• 2-cycle? no stationary dist.

• disconnected graph? multiple stationary
dist.

Def: A Markov chain is irreducible if any
state can reach any other state. I.e.,

• path between any two states

• single strong component

Persistent/Transient states:

• rt
ij is prob. first hit j at t given start in

state i

• fij is prob. eventually reach j from i, so∑
t r

t
ij

• expected time is hitting time

hij =

{ ∑
t tr

t
ij : fij = 1

∞ : fij < 1

Def: If fii < 1, state i is transient, else per-
sistent. If hii = ∞, null persistent, else non-
null persistent.

Note: In finite irreducible chain, all states
non-null persistent.

Periodicity:

• max T s.t. state only has non-zero prob.
at times a+ Ti for integer i

• chain aperiodic if no state has periodicity
more than 1

Example: bipartite graph periodic, graph
with self loops aperiodic

Def: A state is ergodic if it is aperiodic and
non-null persistent.[[

Chance of being in state at any suffi-
ciently far future time.

]]

Claim: Fundamental theorem of Markov
chains: Any irreducible, finite, aperiodic
Markov chain satisfies:

• All states ergodic

Since finite irreducible implies non-null
persistent.

• unique stationary distribution π with
πi > 0 for all i

• fii = 1 and hii = 1/πi for all i

Since hit every 1/hii steps on average.

• number of times visit i in t steps ap-
proaches tπi in limit of t

From linearity of expectation.

Random Walks

Markov chains on (connected, non-bipartite)
undirected graphs:

• states are vertices {u} with degrees d(u)

• move to uniformly chosen neighbor so
puv = 1/d(u) for every neighbor v of u

Claim: unique stationary dist.: πv =
d(v)/2m

Proof: System of equations:

πv =
∑

u

πuPuv

and ∑
u

πu = 1

has soln as stated, unique by fundamental
theorem of markov chains.

Claim: hvv = 1/πv = 2m/d(v)
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Def: Commute time is huv + hvu.

Def: Cover time is maxuCu(G) where Cu(G)
is expected length of random walk that starts
at u and ends after visiting each vertex once.

Question: What do you expect to have big-
ger commute/cover times?

• clique, line, lollipop

Note for clique, like coupon collector, com-
mute O(n), cover O(n log n).

Note: Adding edges can increase cover time
though improves connectivity!

Claim: For edge (u, v), huv + hvu ≤ 2m.

Proof: Define new MC:

• 2m states: pair of edge, direction – edge
most recently traversed, direction tra-
versed in

• transitions Q(u,v),(v,w) = Pvw = 1/d(v)

Note Q is doubly stochastic:

• col/row sums are 1 since d(v) edges tran-
sit to (v, w) each with prob. 1/d(v)

so uniform stationary dist πe = 1/2m, so
hee = 2m. Hence in original chain:

• if arrived via (u, v), will traverse (u, v)
again in 2m steps

• conditioned on arrival edge, commute
time 2m

• memoryless, so can remove conditioning

Note: Bound is for an edge of chain.

Claim: Cover time O(mn).

Proof: Consider dfs of spanning tree:

• gives order on vertices

• time for two adj. vertices to be visited in
this order O(m) by bound on commute
times

• total time O(mn)

Claim: Tighter analysis Cuv = 2mRuv where
Ruv is effective resistance in electrical net-
work of graph with 1 unit of resistance on
each edge.

Claim: Kirchhoff’s Law: conservation of
current

Claim: Ohm’s Law: voltage across resis-
tance equals product of resistance and cur-
rent

Def: Effective resistance between u and v is
voltage diff when one ampere injected into u
and removed from v.

Proof: (of claim):

• put d(x) amperes into every x, remove
2m from v

• φuv voltage at u w.r.t. v

• Ohm: current from u to neighbor w is
φuv − φwv

• Kirchoff: d(u) =
∑

w∈N(u) φuv − φwv =

d(u)φuv −
∑
φwv

• Also huv =
∑

(1/d(u))(1 + hwv) so
d(u)huv = d(u) +

∑
w hwv so φuv = huv

• hvu = φvu when insert 2m at u and re-
move d(x) from every x

• huv + hvu is voltage diff. when insert 2m
at u and remove at v

Result follows from Ohm’s law.

3



Corollary 0.1 Effective resistance at most
shortest path, so Cuv ≤ n3 for any connected
graph.[[

A drunk man gets home visiting every
bar in town in time n3.

]]
Example:

• line graph: h0n = hn0 and h0n + hn0 =
2mR0n = 2n2, so h0n = n2.

• lollipop: huv + hvu = 2Θ(n2)Θ(n) =
Θ(n3) and from line, huv = Θ(n2) so
hvu = Θ(n3) (so extra factor n is “la-
tency” getting started on line).

Hitting/cover times not monotonic w.r.t.
adding edges: line to lollipop to clique.

Applications

Randomized st-connectivity

In log-space

• walk randomly for O(n3) steps

• need to store, current vertex, destination
vertex, number of steps

Note: In deterministic log-space by Reingold
(STOC’05)! Uses ideas from derandomiza-
tion, e.g., expanders.Same year, best student paper of

Vladimir Trifonov did deterministic
O(log n log log n) space, now at UIC.



Card shuffling

Random transposition: Pick two cards i and
j and switch.

• irreducible? yes, any perm is product of
transpositions

• aperiodic? yes, self loops

• also reversible, i.e., Pxy = Pyx so doubly
stochastic so stationary dist. is uniform

shuffle cards if repeat enough.

Top-to-random: Take top card, insert at ran-
dom place.

• irreducible and aperiodic

• not reversible, but each perm has in-
degree n and out-degree n so doubly
stochastic and π is uniform

shuffle cards if repeat enough.

Riffle shuffle:

• split deck into two parts using binomial
dist.

• drop cards in sequence where card comes
from left hand w/prob. |L|

|L|+|R| (random

interleave)

Also has stationary dist.

Key issue is mixing time (time to get close to
stationary dist from any starting state):

• top-to-random has O(n log n) mixing
time

• riffle has O(log n) mixing time – seven
shuffles theorem

Technique coupling: particles move on chain
and if ever appear together, then get joined
forevermore

• pair of processes (Xt, Yt)
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• each of (Xt, ·) and (·, Yt) look like MC
(Pr[Xt+1 = j|Xt = i] = Pij)

• if Xt = Yt then Xt+1 = Yt+1

Mixing time is related to time to couple:

• max dist to stationary at time t is ∆(t)

• max dist between dist starting at x and y
is ||pt

x − pt
y||

• this is at most prob. Xt and Yt haven’t
coupled given start at x and y

Example: top-in-at-random:

Define reverse chain:

pick card c uniformly at random and move
to top

same mixing time.

Coupling: Xt and Yt pick same c (which may
be at different positions)

Fact: Once card chosen in coupling, always
in same position in both decks.

So coupling/mixing time O(n log n) by coupon
collector.

Sampling colorings

Markov chain: pick vertex and color at ran-
dom and recolor if legal.

• symmetric, aperiodic, irreducible if at
least ∆ + 2 colors

Important conjectures:

1. Random sampling polytime whenever
q ≥ ∆ + 1

2. Above chain mixing time O(n log n)
whenever at least ∆ + 2 colors

Claim: Mixing time O(n log n) if at least
4∆ + 1 colors.

Proof: Coupling is both chains pick same
vertex v and color c. Let dt be number of
vertices where disagree, q be number colors.

• Good moves: color of v disagrees, c legal
in both graphs. at least dt(q − 2∆) good
moves.

• Bad moves: chosen vertex doesn’t dis-
agree, but neighbors disagreeing vertex v′

and color c is color of v′ in one of graphs
and not other. at most 2dt∆ bad moves

• Neutral moves: everything else

Diff between good and bad at least dt(q−4∆),
so expect distance to decrease when q ≥ 4∆+
1.

Counting perfect matchings
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