Reading: Motwani-Raghavan Chapter 6

 $\begin{bmatrix} Powerful \ tool \ for \ sampling \ complicated \\ distributions \ since \ use \ only \ local \ moves \\ to \ explore \ state \ space. \end{bmatrix} \mathbf{C}$

2SAT

Given 2SAT formula,

- Fix satisfying assignment A
- Pick random unsatisfied clause, and flip one of its vars at random
- Let f(k) be expected time to get all n variables to match A if k currently match
 - f(n) = 0, f(0) = 1 + f(1)- $f(k) = 1 + \frac{1}{2}(f(k+1) + f(k-1))$
 - Rewrite: f(0) f(1) = 1 and f(k) f(k+1) = 2 + f(k-1) f(k)
 - Conclude: f(k) f(k+1) = 2k+1so $f(0) = \sum_{k=0}^{n-1} (f(k) - f(k+1)) =$ $1 + 3 + \dots + (2n-1) = n^2$ [[recall geometric argument]
- Find with probability 1/2 in time $2n^2$ by Markov
- Find whp in $O(n^2 \log n)$ time

[Intrepret as walk on a line.

Markov Chain

Given:

- state space S
- initial distribution of states
- matrix P of transition probabilities p_{ij} for $i, j \in S$ as prob. transition from i to j

[Interpret as directed graph. Compare to] 2SAT example.

Note: Properties:

- $\sum_{j} p_{ij} = 1$
- memoryless:

 $\Pr[X_{t+1} = j | X_0 = i_0, \dots, X_{t-1} = i_{t-1}, X_t = i] = \Pr[X_{t+1} = i_{t-1}, X_t = i]$

where X_t is rand var of state at time t

- If X_t has dist q (q_i is prob of state i), then X_{t+1} has dist qP
- $\Pr[X_{t+r} = j | X_t = i] = P_{ij}^r$

Def:]] The stationary distribution is a π s.t. $\pi P = \pi$ (i.e., left eigenvector with eigenvalue 1).

Stationary distribution is sample from state space, so to sample from a set of objects, define chain with correct stationary dist. When does this work?

Question: Stationary distributions for

11

- 2-cycle? no stationary dist.
- disconnected graph? multiple stationary dist.

Def: A Markov chain is *irreducible* if any state can reach any other state. I.e.,

- path between any two states
- single strong component

Persistent/Transient states:

- r_{ij}^t is prob. first hit j at t given start in state i
- f_{ij} is prob. eventually reach j from i, so $\sum_t r_{ij}^t$
- expected time is hitting time

$$h_{ij} = \begin{cases} \sum_t tr_{ij}^t & : f_{ij} = 1\\ \infty & : f_{ij} < 1 \end{cases}$$

Def: If $f_{ii} < 1$, state *i* is *transient*, else *per*sistent. If $h_{ii} = \infty$, null persistent, else nonnull persistent.

Note: In finite irreducible chain, all states non-null persistent.

Periodicity:

- max T s.t. state only has non-zero prob. at times a + Ti for integer i
- chain *aperiodic* if no state has periodicity more than 1

Example: bipartite graph periodic, graph and with self loops aperiodic

Def: A state is *ergodic* if it is aperiodic and non-null persistent.

 $\left[\begin{bmatrix} Chance & of & being & in & state & at & any & sufficiently for future & time. \end{bmatrix} \right]$

Claim: Fundamental theorem of Markov Any irreducible, finite, aperiodic chains: Markov chain satisfies:

• All states ergodic

Since finite irreducible implies non-null persistent.

- unique stationary distribution π with $\pi_i > 0$ for all i
- $f_{ii} = 1$ and $h_{ii} = 1/\pi_i$ for all iSince hit every $1/h_{ii}$ steps on average.
- number of times visit i in t steps approaches $t\pi_i$ in limit of t From linearity of expectation.

Random Walks

Markov chains on (connected, non-bipartite) undirected graphs:

- states are vertices $\{u\}$ with degrees d(u)
- move to uniformly chosen neighbor so $p_{uv} = 1/d(u)$ for every neighbor v of u

Claim: unique stationary dist.: π_v = d(v)/2m

Proof: System of equations:

$$\pi_v = \sum_u \pi_u P_{uv}$$

$$\sum_{u} \pi_{u} = 1$$

has soln as stated, unique by fundamental theorem of markov chains.

Claim: $h_{vv} = 1/\pi_v = 2m/d(v)$

Def: Commute time is $h_{uv} + h_{vu}$.

Def: Cover time is $\max_u C_u(G)$ where $C_u(G)$ is expected length of random walk that starts at u and ends after visiting each vertex once.

Question: What do you expect to have bigger commute/cover times?

• clique, line, lollipop

Note for clique, like coupon collector, commute O(n), cover $O(n \log n)$.

Note: Adding edges can increase cover time though improves connectivity!

Claim: For edge (u, v), $h_{uv} + h_{vu} \le 2m$.

Proof: Define new MC:

- 2*m* states: pair of edge, direction edge most recently traversed, direction traversed in
- transitions $Q_{(u,v),(v,w)} = P_{vw} = 1/d(v)$

Note Q is doubly stochastic:

• col/row sums are 1 since d(v) edges transit to (v, w) each with prob. 1/d(v)

so uniform stationary dist $\pi_e = 1/2m$, so $h_{ee} = 2m$. Hence in original chain:

- if arrived via (u, v), will traverse (u, v) again in 2m steps
- conditioned on arrival edge, commute time 2m
- memoryless, so can remove conditioning

Note: Bound is for an *edge* of chain.

Claim: Cover time O(mn).

Proof: Consider dfs of spanning tree:

- gives order on vertices
- time for two adj. vertices to be visited in this order O(m) by bound on commute times
- total time O(mn)

Claim: Tighter analysis $C_{uv} = 2mR_{uv}$ where R_{uv} is effective resistance in electrical network of graph with 1 unit of resistance on each edge.

Claim: Kirchhoff's Law: conservation of current

Claim: Ohm's Law: voltage across resistance equals product of resistance and current

Def: Effective resistance between u and v is voltage diff when one ampere injected into u and removed from v.

Proof: (of claim):

- put d(x) amperes into every x, remove 2m from v
- ϕ_{uv} voltage at u w.r.t. v
- Ohm: current from u to neighbor w is $\phi_{uv} \phi_{wv}$
- Kirchoff: $d(u) = \sum_{w \in N(u)} \phi_{uv} \phi_{wv} = d(u)\phi_{uv} \sum \phi_{wv}$
- Also $h_{uv} = \sum (1/d(u))(1 + h_{wv})$ so $d(u)h_{uv} = d(u) + \sum_w h_{wv}$ so $\phi_{uv} = h_{uv}$
- $h_{vu} = \phi_{vu}$ when insert 2m at u and remove d(x) from every x
- $h_{uv} + h_{vu}$ is voltage diff. when insert 2m at u and remove at v

Result follows from Ohm's law.

Corollary 0.1 Effective resistance at most shortest path, so $C_{uv} \leq n^3$ for any connected graph.

 $\begin{bmatrix} A & drunk & man & gets & home & visiting & every \\ bar & in & town & in & time & n^3. \end{bmatrix}$ Example:

- line graph: $h_{0n} = h_{n0}$ and $h_{0n} + h_{n0} = 2mR_{0n} = 2n^2$, so $h_{0n} = n^2$.
- lollipop: $h_{uv} + h_{vu} = 2\Theta(n^2)\Theta(n) = \Theta(n^3)$ and from line, $h_{uv} = \Theta(n^2)$ so $h_{vu} = \Theta(n^3)$ (so extra factor n is "latency" getting started on line).

Hitting/cover times not monotonic w.r.t. adding edges: line to lollipop to clique.

Applications

Randomized st-connectivity

In log-space

- walk randomly for $O(n^3)$ steps
- need to store, current vertex, destination vertex, number of steps

Note: In deterministic log-space by Reingold (STOC'05)! Uses ideas from derandomization, e.g., expanders.

Same year, best student paper of Vladimir Trifonov did deterministic $O(\log n \log \log n)$ space, now at UIC.

Card shuffling

Random transposition: Pick two cards i and j and switch.

- *irreducible?* yes, any perm is product of transpositions
- aperiodic? yes, self loops
- also reversible, i.e., $P_{xy} = P_{yx}$ so doubly stochastic so stationary dist. is uniform

shuffle cards if repeat enough.

Top-to-random: Take top card, insert at random place.

- irreducible and aperiodic
- not reversible, but each perm has indegree n and out-degree n so doubly stochastic and π is uniform

shuffle cards if repeat enough. Riffle shuffle:

- split deck into two parts using binomial dist.
- drop cards in sequence where card comes from left hand $w/\text{prob.} \frac{|L|}{|L|+|R|}$ (random interleave)

Also has stationary dist.

Key issue is mixing time (time to get close to stationary dist from any starting state):

- top-to-random has $O(n \log n)$ mixing time
- riffle has $O(\log n)$ mixing time seven shuffles theorem

Technique coupling: particles move on chain and if ever appear together, then get joined forevermore

• pair of processes (X_t, Y_t)

- each of (X_t, \cdot) and (\cdot, Y_t) look like MC $(\Pr[X_{t+1} = j | X_t = i] = P_{ij})$
- if $X_t = Y_t$ then $X_{t+1} = Y_{t+1}$

Mixing time is related to time to couple:

- max dist to stationary at time t is $\Delta(t)$
- max dist between dist starting at x and y is $||p_x^t - p_y^t||$
- this is at most prob. X_t and Y_t haven't coupled given start at x and y

Example: top-in-at-random:

Define reverse chain:

pick card c uniformly at random and move to top

same mixing time.

Coupling: X_t and Y_t pick same c (which may be at different positions)

Fact: Once card chosen in coupling, always in same position in both decks.

So coupling/mixing time $O(n \log n)$ by coupon collector.

Sampling colorings

Markov chain: pick vertex and color at random and recolor if legal.

• symmetric, aperiodic, irreducible if at least $\Delta + 2$ colors

Important conjectures:

1. Random sampling polytime whenever $q \ge \Delta + 1$

2. Above chain mixing time $O(n \log n)$ whenever at least $\Delta + 2$ colors

Claim: Mixing time $O(n \log n)$ if at least $4\Delta + 1$ colors.

Proof: Coupling is both chains pick same vertex v and color c. Let d_t be number of vertices where disagree, q be number colors.

- Good moves: color of v disagrees, c legal in both graphs. at least $d_t(q - 2\Delta)$ good moves.
- Bad moves: chosen vertex doesn't disagree, but neighbors disagreeing vertex v' and color c is color of v' in one of graphs and not other. at most 2dt∆ bad moves
- Neutral moves: everything else

Diff between good and bad at least $d_t(q-4\Delta)$, so expect distance to decrease when $q \ge 4\Delta + 1$.

Fact: Once card chosen in coupling, always Counting perfect matchings