
EECS 495: Randomized Algorithms Lecture 1
Logistics, Overview, Application: Sorting

Reading: Text: chapter 1, Paper: An intro-
duction to randomized algorithms, Karp 1991.

Logistics

The essentials:

• Website: linked to from my homepage

• Office Hours: by appointment

• Project: due at end of quarter

• Problem Sets: two problem sets, due in
class

• Readings: from Randomized Algo-
rithms, current research papers

The prereqs:

• discrete math: graph theory, big-
oh notation, basic probability (random
variables, expectation, variance, basic
bounds)

• algorithms: run-time analysis, dynamic
programming, LP-based algorithms, ba-
sic NP-hardness

Overview

A randomized algorithm takes:

• input

• string of random bits[[
For now, assume endless supply of truly
random bits

]]
Note: same input may produce different out-
puts.

Advantages:

• reduced execution time/space require-
ments, simple to analyze/implement

• reduces det alg with bad worst-case be-
havior to alg that performs well on every
input with high probability

Techniques:

• foiling the adversary:

Example: Playing the lottery:

– always pick the same number→ ad-
versary can guarantee you always
lose

– pick a random number → you win
sometimes

Idea:

– An algorithm is a zero-sum game
between

∗ an adversary providing the in-
puts and

∗ the algorithm designer provid-
ing alg

1

∗ with adversary payoff being
running time of alg

– a randomized alg is a mixed strat-
egy in the game

– mixed strategies can guarantee
higher payoffs.

• random sampling:

Example: Sensitivity analysis:

– given complicated system
f(x1, . . . , xn) (boolean function),
how sensitive system is to failure of
i’th component xi

– sample inputs x ∈ {0, 1}n with xi =
0 and test for what fraction does
f = 0

Idea: random sample from population is
representative of population as a whole

• abundance of witnesses:

Example: Primality testing:

– a factor p of a number n is a witness
that n is composite

– test random numbers to see if they
are factors

Idea: Witnesses

– hard to find deterministically

– if abundant enough, can sample and
get one whp.

• fingerprinting and hasing:

Example: Testing membership:

– want to maintain set of objects

– to implement “add”, must test if
object is already in set

– map objects to small set of buckets
based on “fingerprints”

– compare new object to those in its
bucket

Idea:

– represent a long string by a short
fingerprint

– use fingerprint to reduce search
space/input size, or to test equality

• random re-ordering:

Example: Binary search trees:

– arrange input data into binary
search tree

– given order may create very unbal-
anced tree with naive alg

– a random re-ordering is likely to
give balanced tree with naive alg

Idea: after re-ordering, input is unlikely
to be pathological for naive algorithm

• load balancing

Example: Machine scheduling:

– send n printing jobs to n printers

– pick arbitrary printer – worst-case
load n

– pick random printer – balls and
bins, expected load log n

Idea:

– randomization spreads load among
resources

– good for distributed environments

• markov chains

Example: PageRank:

– want to calculate probability ran-
dom surfer lands at given page

2

– simulate random walk for “long
enough” and count fraction of time
spent at given page

Idea:

– many walks are rapidly mixing

– can use walks to efficiently samply
from subspace

– useful for counting problems

Application: Sorting

Problem: Given

• a set S of n numbers

Output

• a list of members of S in ascending order

Algorithm:

• find pivot element y ∈ S s.t. half of S is
smaller than y

• partition S \ {y} into S1 and S2 s.t.

– S1 is elts in S smaller than y

– S2 is elts in S larger than y

• recursively sort S1 and S2

Analysis: T (n) is running time on input size
n

• time to find y: cn for constant c

• time to partition: (n− 1) (compare each
elt to y)

so
T (n) ≤ 2T (n/2) + (c + 1)n

which has solution T (n) = c′n log n.

Question: How to find y?

Idea:

• running time good so long as S1 and S2

are approximately same size

Example: if aim for partition such that
|S1| ≤ 3n/4 and |S2| ≤ 3n/4, then

– T (n) ≤ 2T (3n/4) + (c + 1)n has so-
lution T (n) = O(n log n)

– there are n/2 pivots y
whose partitions are like this[[

To see this, imagine sorted array of elts
and observe that middle half have this
property.

]]

• choose a random pivot element y uni-
formly from S and hope to get lucky of-
ten enough

Analysis: (randomized alg):

Question: How many comparisons in expec-
tation?

Def: For 1 ≤ i ≤ n, let S(i) denote the ele-
ment of rank i (the i’th smallest element) in
S.

• S(1) is smallest elt of S

• S(n) is largest elt of S

Def: Let Xij be indicator random variable
that S(i) and S(j) are compared by alg.

• Xij = 1 means S(i) and S(j) were com-
pared, sorted directly

• Xij = 0 means S(i) and S(j) were not
compared, sorted implicitly

3

Then total number of comparisons is

n∑
i=1

∑
j>i

Xij

and expectation number is

E[
n∑

i=1

∑
j>i

Xij] =
n∑

i=1

∑
j>i

E[Xij].

Def: Let pij be probability S(i) and S(j) are
compared by alg. Then

E[Xij] = 1× pij + 0× (1− pij) = pij.

Think of steps performed by alg. in a tree
of pivots (DRAW TREE) and consider level-
order traversal.

• there is a comparison between S(i) and
S(j) iff S(i) or S(j) is chosen as pivot before
any elt of rank between i and j

• consider permutation defined by order in
which elts were chosen as pivots and note
any elt in {S(i), . . . , S(j)} equally likely to
be first one chosen as pivot

Thus,

pij =
2

j − i + 1
.

Is permutation defined above a uni-
formly random one? No, e.g., perm
S(3)S(1)S(2)S(4)S(5) can’t happen. Prob
only uniform over 1st elt.

To conclude,

E =
n∑

i=1

n∑
j=i+1

pij

=
n∑

i=1

n∑
j=i+1

2

j − i + 1

=
n∑

i=1

n−i+1∑
k=2

2

k

≤ 2
n∑

i=1

n∑
k=1

1

k

= O(n log n)

Note:

• expected running time
holds for every input[[

realization of running time depends only
on random choices made by alg, not on
input itself

]]

• we bounded expected running time, but
can make stronger statement that run-
ning time is close to expectation with
very high probability (for every input)

• choosing random pivot required log |S|
random bits; sometimes not so easy

– picking random real number from
[0, 1]

– simulating coin flip with bias p 6=
2−k

4

