
The Unsplittable Stable Marriage Problem

Brian C. Dean, Michel X. Goemans, and Nicole Immorlica

1 Department of Computer Science, Clemson University. bcdean@cs.clemson.edu
2 Department of Mathematics, M.I.T. goemans@math.mit.edu

3 Microsoft Research. nickle@microsoft.com

Abstract. The Gale-Shapley “propose/reject” algorithm is a well-
known procedure for solving the classical stable marriage problem. In
this paper we study this algorithm in the context of the many-to-many
stable marriage problem, also known as the stable allocation or ordinal
transportation problem. We present an integral variant of the Gale-
Shapley algorithm that provides a direct analog, in the context of “or-
dinal” assignment problems, of a well-known bicriteria approximation
algorithm of Shmoys and Tardos for scheduling on unrelated parallel
machines with costs. If we are assigning, say, jobs to machines, our
algorithm finds an unsplit (non-preemptive) stable assignment where
every job is assigned at least as well as it could be in any fractional
stable assignment, and where each machine is congested by at most the
processing time of the largest job.

1 Introduction

In the United States, a medical school graduate is required to complete a res-
idency program at a hospital before entering the workforce as a doctor. Since
the 1950s, the medical field has turned to a centralized mechanism, called the
National Residency Matching Program (NRMP), to aid this marketplace [12].
In this program, final-year medical students and hospitals each submit prefer-
ences over possible matches, and an algorithm determines which matches will
take place. In order for the system to be successful, it is essential that the com-
puted matches be stable. That is, there should be no (student, hospital) pair
that both prefer each-other to their assigned partners — such a pair would have
an incentive to withdraw from the centralized matching system and to make
its own plans on the side. Computing a stable matching is a classic problem in
economics and computer science, and can be solved in polynomial time by the
deferred acceptance algorithm of Gale and Shapley [4].1

For many years the NRMP proved to be quite successful. However, in the
late 1990s it was observed that many matches were being formed outside the
NRMP [13]. The problem stemmed from the fact that many medical students
were getting married to one another during medical school, and so had com-
plicated preferences that were ignored by the NRMP. In particular, married
1 For a discussion of this problem and related questions, see the books by Gusfield

and Irving [5] and Roth and Sotomayor [15], or the lecture notes by Knuth [9].



2 Brian C. Dean, Michel X. Goemans, and Nicole Immorlica

students had strong preferences for hospitals in similar geographical locations.
The NRMP was redesigned to accommodate such preferences [14]; currently,
the NRMP permits married students to submit a joint preference list over pairs
of hospitals and guarantees that, if they are matched, they will be matched to
a pair in their list. Unfortunately, in a matching market with couples like the
NRMP, a stable matching might not exist [12] and determining whether one
exists is computationally difficult, in fact NP-hard [10].

Motivated by the issue of couples in the NRMP, we study a marketplace in
which agents on one side of the market have non-uniform demands and agents
on the other side have non-uniform quotas, or capacities. Demanding agents
have a preference list over capacitated agents and prefer to be satisfied by a
lexicographically maximal set of these agents. This problem is known as the
stable allocation or ordinal transportation problem, and is a many-to-many gen-
eralization of the classical stable marriage problem, introduced originally by
Baiou and Balinski [1]. It surfaces naturally in scheduling or load balancing set-
tings where only “ordinal” information (ranked preference lists) is known. When
demands are all 1 or 2 and capacities are integral, as in the student/hospital
setting, this restricted preference domain becomes a special case of weakly re-
sponsive preferences studied by Klaus and Klijn [7]. In such cases, Klaus and
Klijn [7] proved that a stable matching always exists. Instances of this prob-
lem with generalized demands/capacities include the assignment of teaching
assistants (TAs) to courses in academic departments: TAs rank courses, course
instructors rank TAs, each course requires a certain number of TA hours, and
different TAs are responsible for working different numbers of hours. Another
example is the assignment of load to servers in a network – clients prefer servers
geographically nearby and servers prefer clients with higher service types. Baiou
and Balinski [1] study these generalized settings and prove that even in this case
a stable allocation always exists.

For many settings, a stable allocation in which the demand of a single agent
is satisfied fractionally is undesirable. Although a couple may prefer hospital
a to b and thus a pair of placements (a, b) to a pair of placements (b, b), such
an arrangement imposes strain on the matching. As often happens in labor
markets with two-body problems, the couple may negotiate with hospital a
to create an extra position, beyond the quota, for the extra member of the
couple. In some sense, a fractional stable assignment is not stable. Thus, we
seek a stable matching in which all the demand of a single agent is satisfied
integrally. Clearly, such a matching may not exist, and so we relax our feasibility
constraints and allow capacitated agents to be over-capacitated by at most
the maximum demand. With a correspondingly appropriate modification of
the definition of stability, we prove that a stable matching always exists, and
give a modification of the Gale-Shapley algorithm to find it. Applied to the
NRMP setting, our results compute a student-optimal (or hospital-optimal)
stable matching where the number of students assigned to each hospital exceeds
its quota by at most one position.



The Unsplittable Stable Marriage Problem 3

A close relative of the stable allocation problem is the well-studied trans-
portation problem, where there are linear costs associated with every possible
pairing and our objective is to compute a fractional assignment of minimum cost
rather than a stable assignment. The stable allocation problem is also known as
the ordinal transportation problem since it differs only in that we express the
desirability of an assignment in an ”ordinal” fashion using ranked preference
lists. Unsplittable variants of the transportation problem have been previously
considered in the literature, and a celebrated result of Shmoys and Tardos [16]
states that from a fractional assignment (where all agents are fully assigned),
we can construct an unsplit assignment of no greater cost where each agent is
over-capacitated (or congested) by at most the maximum demand. Our results
can viewed as a direct analog of this result for the ordinal case.

2 The Model

Consider assigning a set [n] := {1, 2, . . . , n} of items to a set [m] of bins. To be
somewhat more concrete, let us employ scheduling terminology and assume we
are assigning “jobs” to “machines”. Job i requires pi units of processing time,
machine j has a capacity of cj units, and at most uij units of job i can be
assigned to machine j. If uij = pi for all (i, j), we follow the terminology of
Baiou and Balinski [1] and say our problem is unconstrained. All problem data
is assumed to be integral.

2.1 Fractional Assignment

We first define a fractional setting where a job may be processed on multiple
machines. A fractional assignment x is feasible if it satisfies∑

j∈[m]

xij ≤ pi ∀i ∈ [n]∑
i∈[n]

xij ≤ cj ∀j ∈ [m]

0 ≤ xij ≤ uij ∀(i, j) ∈ [n]× [m].

(1)

In the traditional transportation problem (a many-to-many generalization
of the bipartite assignment problem), we designate a cost cij for assigning one
unit of job i to machine j, then minimize

∑
cijxij over (1) using linear pro-

gramming or network flow techniques. In the stable allocation problem, however,
we indicate the desirability of an assignment in an “ordinal” fashion by having
each job (machine) submit a ranked preference list over all machines (jobs).

Thus, each job i ∈ [n] has a strict, transitive, and complete preference
relation π(i) over the set [m]∪∅ where {∅} indicates a preference for remaining
unmatched. If π(i) = (j1, . . . , jk−1, ∅ = jk, jk+1, . . . , jm+1), then i prefers ja

to jb for any a < b < k, and prefers being unassigned to any machine jc

for c > k. If job i prefers machine j to machine j′, we write j >i j′. Job i



4 Brian C. Dean, Michel X. Goemans, and Nicole Immorlica

prefers a fractional assignment x to another fractional assignment x′ if x is
lexicographically larger according to π(i); that is, if xij > x′ij for the earliest
machine j in π(i) such that xij 6= x′ij . In this case, we write x >i x′. Similarly,
each machine j ∈ [m] has a strict, transitive, and complete preference relation
π(j) over the set [n]∪∅ where ∅ indicates a preference for being under-utilized.
If π(j) = (i1, . . . , ik−1, ∅ = ik, ik+1, . . . , in+1), then j prefers to accept load from
job ia to ib for any a < b < k, and is unwilling to process load from any job ic
with c > k. We write i >j i′ if machine j prefers job i to job i′, and we write
x >j x′ if machine j prefers assignment x to assignment x′; again, this means
that xij > x′ij for the first job i in π(j) where xij 6= x′ij .

A blocking pair is a familiar feature that is forbidden in any stable assign-
ment: it is a pair (i, j) where xij < uij and both i and j prefer each-other to
at least some of their current assignments. In this case, job i and machine j
would be “unhappy” with the current assignment and would prefer to increase
xij . That is,

Definition 1. Job i and machine j form a blocking pair if there is some job i′

and machine j′ such that xij < uij, xij′ > 0, xi′j > 0, and we have i >j i′ and
j >i j′.

A job i is saturated if all its load is assigned. Similarly, a machine is saturated
if all its capacity is utilized.

Definition 2. A job i is saturated if
∑

j xij ≥ pj. A machine j is saturated if∑
i xij ≥ cj.

Finally, a job i is said to be popular in an assignment if there is some machine
j to which i is not assigned, but where j prefers i to at least some of the jobs
currently assigned to it. We define a popular machine similarly.

Definition 3. In an assignment x, we say job i is popular if there exists a
machine j with j >i ∅ and xij < uij such that i >j i′ for some job i′ with
xi′j > 0. Likewise, we say machine j is popular if there exists a job i with
i >j ∅ and xij < uij such that j >i j′ for some machine j′ with xij′ > 0.

If job i is popular due to machine j and i is not saturated, then our as-
signment is not stable since both i and j would be more satisfied if xij were
increased.

Definition 4. An assignment x is stable if (i) it admits no blocking pairs, and
(ii) all popular jobs and machines are saturated.

A feasible stable assignment x is said to be job-optimal if every job prefers
x to any other feasible stable assignment x′, i.e. ∀ i ∈ [n], x >i x′ (a machine-
optimal assignment is defined analogously). In a job-optimal assignment, each
job simultaneously receives at least as much of an allocation of its first-choice
machine as it could in any feasible stable assignment, and it also receives at



The Unsplittable Stable Marriage Problem 5

least as much of an allocation of its second-choice machine as it could in any
feasible stable assignment with the same first-choice allocation, and so on. It is
always possible to find a job-optimal feasible stable assignment for any problem
instance using a strongly-polynomial algorithm of Baiou and Balinski [1].

2.2 Unsplit Assignment

We now consider the “unsplittable” unconstrained stable allocation problem
where each job must be entirely assigned to a single machine. Thus the feasible
assignments x are precisely the integral solutions to (1) where either xij = 0 or
xij = pi for all (i, j). As the following simple example shows, an integral stable
assignment may not exist.

Example 1. Suppose there are two jobs i1 and i2 with demands 1 and 2 re-
spectively, and two machines j1 and j2, both with capacity 2. Let π(i1) =
π(i2) = (j1, j2) and π(j1) = π(j2) = (i1, i2). Then the only stable assignment is
xi1j1 = 1, xi2j1 = 1, and xi1j2 = 1, but this is not an unsplit assignment.

We therefore consider a relaxation that is directly analogous to a result of
Shmoys and Tardos [16] for the bipartite assignment problem with costs. As-
suming existence of a feasible fractional assignment of cost C with all jobs fully
assigned, Shmoys and Tardos show how to round this solution in polynomial
time to obtain an unsplit solution of cost no more than C where each machine
is congested (filled beyond its capacity) by at most pmax = maxi pi. Similar
results have been achieved in literature on unsplittable flows (see [8, 2, 17] for
more background), where our goal is generally to take a fractional solution to a
network flow problem and round it to an unsplit flow (where the flow for each
commodity follows a single path) without significantly raising the cost of the
flow, and without causing excessive congestion on edges.

Definition 5. An assignment x is minimally congested if for every machine j,
removal of the least-preferred job (to j) currently assigned to j results in j being
utilized at or below its capacity.

Note that in a minimally congested assignment, each machine is over-
capacitated by at most pmax. We show how a modified version of the GS
algorithm can find, in polynomial time, a stable unsplit assignment that is
job-optimal among all minimally congested stable unsplit assignments. Sup-
pose x is a job-optimal feasible stable fractional assignment. We prove that in
a job-optimal unsplit assignment, each job is assigned to at least the best of
its fractional assignments in x (our analog of the condition that cost does not
increase).

Our unsplit assignment is stable in that (i) it admits no blocking pairs and
(ii) all popular machines are saturated. Note that one must take some care
here with the definition of condition (ii). We define machine j to be saturated
with respect to its original capacity, cj , and not the inflated capacity cj + pmax



6 Brian C. Dean, Michel X. Goemans, and Nicole Immorlica

according to which our unsplit solution is feasible, i.e. machine j is saturated if∑
i xij ≥ cj . Otherwise, it might be impossible to satisfy (ii) by ensuring popular

machines are saturated — for example, if cj is odd but all pi’s are even. This
definition makes intuitive sense because a machine beyond its capacity will not
want any new jobs assigned to it.

3 The Gale-Shapley Algorithm

Gale and Shapley [4] devised a simple intuitive algorithm, now quite well known,
for solving the classical “one-to-one” stable marriage problem. The algorithm is
usually described in terms of men being assigned to women, although we con-
tinue to use job/machine terminology since it is less awkward once we advance
to many-to-many matchings. The Gale-Shapley (GS) algorithm has each job i
issue “proposals” to machines in the order of i’s preference list. Each machine j
tentatively accepts the best proposal received so far. If machine j is tentatively
matched with job i and receives a more favorable proposal, it tentatively accepts
the new proposal and rejects i, which then continues to propose to machines
further down on its preference list. Remarkably, it can be shown that regardless
of the order in which jobs propose, the GS algorithm always terminates with a
job-optimal and machine-pessimal stable matching. Each job receives the most
preferred partner it could receive in any stable matching, and each machine
receives the least preferred partner it could receive in any stable matching. By
symmetry, the reverse is true if the machines do the proposing.

Baiou and Balinski [1] mention that the GS algorithm can be generalized to
solve the many-to-many stable allocation problem, although its running time
in this case is only pseudo-polynomial. The generalized GS algorithm issues
“aggregate” proposals: in each iteration a job i that is not fully assigned issues
a proposal to the next machine j in its preference list and proposes all of
its unassigned processing time (up to uij). Machine j accepts only as much as
allowed by its capacity, current allocation, and preference list, possibly rejecting
(fractionally) some of the jobs already assigned to it if they are less preferred
than job i. Whenever a job is “split” due to a fractional acceptance or rejection,
it remains split into two “virtual jobs” for the remainder of the algorithm,
each of which carries out independent sequences of proposals. Just as with the
classical unit stable matching problem, one can show that order of proposals
and rejections does not matter — we always obtain a job-optimal feasible stable
assignment. A similarly defined algorithm with machine proposals always finds
the machine optimal assignment.

Theorem 1. For any order of proposals, the job-proposing GS algorithm com-
putes the job-optimal fractional stable assignment.

This theorem follows immediately from the fact that we can interpret the
extended GS algorithm for the many-to-many stable allocation problem as noth-
ing more than the standard ”one-to-one” GS algorithm applied to an expanded



The Unsplittable Stable Marriage Problem 7

instance where each job i is replaced with pi unit-sized jobs (each with the same
preference list) and each machine j is replaced by cj unit-sized machines (each
with the same preference list). The many-to-many algorithm is sped up by is-
suing proposals in batches, but it inherets from the one-to-one algorithm the
property that the final solution must be job-optimal irrespective of the order of
proposals. As an interesting remark, if problem data is irrational, then not only
does this reduction to the one-to-one case fail, but it is also not known whether
the GS algorithm terminates after a finite number of iterations. We comment
on this issue further in the conclusion section.

4 Computing Unsplittable Stable Allocations

In this section we discuss our “ordinal” analog for the stable allocation problem
of the result of Shmoys and Tardos for the minimum-cost bipartite assignment
problem. Since the constraints xij ≤ uij do not make sense for an unsplit-
table stable allocation problem, we henceforth assume we are dealing with an
unconstrained stable allocation problem.

Let us modify the GS algorithm as follows. Jobs issue proposals in sequence
according to their preference lists, and in each iteration an arbitrary unassigned
job i issues a proposal to the next machine j on its preference list. In this case,
however, all proposals and rejections are “integral” in that either an entire job
is accepted or rejected. Machine j accepts i’s proposal, but then proceeds to
reject in sequence the least favored jobs assigned to it (possibly including i)
until j is at most over-congested by the processing time of a single job — that
is, until rejecting the next job would leave the machine being utilized strictly
below cj units of load. Note that such an algorithm results in an assignment
where each machine is congested by at most the maximum processing time of
a job.

If each machine stores its accepted jobs in a heap based on preference list
ranking, this integral variant of the GS algorithm runs in O(mn log n) time.
We now prove some desirable properties of the algorithm. First we show that
the assignment output by our algorithm is stable and job-optimal. The proof of
the following theorem is similar to the traditional proof for the correctness and
optimality of the one-to-one GS algorithm.

Theorem 2. The integral job-proposing GS algorithm computes the job-optimal
stable unsplit assignment among all minimally congested unsplit stable assign-
ments.

Proof. Let x∗ be the solution output by the GS algorithm. Clearly, x∗ is an
unsplit assignment that congests each machine by at most pmax. Let x∗(i) be
the machine to which job i is assigned in x∗ and x∗(j) be the set of jobs to
which machine j is assigned in x∗ (i.e. x∗(j) = {i : x∗ij > 0}). We also extend
the preference notation such that for a set S, S >j i means i′ >j i for all i′ ∈ S
with i′ 6= i.



8 Brian C. Dean, Michel X. Goemans, and Nicole Immorlica

We first show that x∗ is stable. Suppose not. First note that once a machine
is saturated, it never again becomes unsaturated. Thus, every popular machine
j must be saturated since if j is popular due to i, then i must have proposed to
j at some point and been rejected. This means that the instability in x∗ must
be caused by a blocking pair. Let (i, j) be a blocking pair. There are two cases.
If i never proposed to j, then, since jobs propose in decreasing order of their
preference list, x∗(i) >i j which contradictions the assumption that (i, j) is a
blocking pair. On the other hand, if i proposed to j and was rejected, then let
x∗(j) >j i since machines only ever improve the set of jobs assigned to them.

We now show that x∗ is job-optimal. Suppose not and let i be the first job
rejected by one of its stable machines (i.e. a machine assigned to i in some
minimally congested stable unsplit assignment), and let j be the first stable
machine to reject i. Call the minimally congested unsplit stable assignment
in which i and j are matched x. When j rejected i, in the current tentative
assignment x′, x′(j) >j i and

∑
i′∈x′(j) pi′ ≥ cj . We now know that there must

be some i′ ∈ x′(j)\x(j); if this were not the case and x′(j) ⊆ x(j), then x
could not have been minimally congested (removal of job i and all other jobs j
prefers less than i would still leave machine j saturated). Since i′ has not yet
been rejected by a stable machine, and since jobs propose in decreasing order
of their preference list, j >i′ x(i′). But then (i′, j) form a blocking pair in x,
and so j could not have been a stable machine for i.

We now observe that this solution computed by the integral variant of the
GS algorithm assigns each job to at least the best of its fractional assignments in
the job-optimal fractional assignment. Thus, the jobs weakly prefer the solution
output by the integral variant to the solution output by the fractional variant
– i.e. the solution is both integral and lexicographically larger. Our proof uses
the fact that the order of proposals does not affect the outcome of the GS
algorithm. Thus, we can run the fractional variant of the GS algorithm using
the order of proposals induced by the integral variant. During this process, we
observe that jobs are assigned to the same machines in both variants. However,
the fractional variant may have additional proposals to make after the integral
variant completes. As jobs always propose to machines in decreasing order of
their preference list, and as the fractional (integral) variant computes the job-
optimal fractional (unsplit) stable solution, this coupling of the two algorithms
shows that the unsplit solution must be preferred to the fractional solution by
each job.

Let x(i) be the set of machines to which i is partially assigned in assignment
x, i.e. x(i) = {j : xij > 0}.

Theorem 3. Consider any feasible fractional stable assignment xfrac and the
job-optimal minimally congested unsplit stable assignment xint. Then for all
jobs i, xint(i) >i xfrac(i).

Proof. The proof follows from Theorem 1 and the fact that jobs propose in
decreasing order of their preference list (and so as the algorithm runs the jobs’



The Unsplittable Stable Marriage Problem 9

situations worsen). More formally, consider the sequence of proposals defined
by the integral GS algorithm. Call this sequence (i1, i2, . . . , il) (note this list
includes repetitions and l may be greater than n). Run the fractional GS algo-
rithm with the same order of proposals. We prove by induction that after the
proposal of ik, the current assignment x in the integral variant and x′ in the
fractional variant satisfy x(j) = x′(j) for all j and a machine is saturated in x
if and only if it is in x′. This is clearly true after the proposal of i1. Assume
this is the case after the proposal of ik−1 and let j be the machine to which ik
proposes. By inductive assumption, j must be the same machine in both the
integral and fractional variants of the algorithm. If j rejects ik in the integral
variant, then it must be that x(j) >j ik and

∑
i∈x(j) pi+ ≥ cj . Thus, in the

fractional variant,
∑

i∈x′(j) x′ij = cj and x′(j) >j ik so all of ik’s load is re-
jected. A similar argument holds if j rejects ik in the fractional variant, and so
the inductive hypothesis holds.

Therefore, after the l’th proposal in the integral variant, the final solution
xint of the integral variant is at least as preferable as the current solution x′ of
the fractional variant for each job. Furthermore, as jobs propose in decreasing
order of their preference list, the final solution xfrac of the fractional variant
cannot be preferred to the current solution x′ by any job. This completes the
proof.

We remark that all the theorems in this paper hold if we instead seek the
machine-optimal solution. We merely need to run the Gale-Shapley algorithm
with machine-proposals – a machine proposes to the next job on its preference
list if it is currently under-utilized (it’s load is currently less than its capacity).
A job (fractionally) accepts a proposal if it is (fractionally) unassigned or if it
prefers the proposing job to (some of) its current machine(s), in which case it
rejects (some of) its current machine(s).

5 Conclusion

In this paper, we studied a natural integral variant of the stable allocation
problem in which every job was unsplittably assigned and every machine was
not excessively congested. Our results have implications for many economic
settings where varying sized agents must be matched to each other. Our work
leaves open a number of interesting questions:

Termination of Gale-Shapley: The algorithm we present used a variant of the
GS algorithm to compute a job-optimal integral assignment. In our analysis,
we compared our algorithm to a fractional variant, first observed by Baiou and
Balinsky [1]. However, it is unknown whether this fractional variant terminates
in finite time when demands and capacities are irrational (this is why we as-
sume integral data in this paper). Many algorithms similar algorithms like the
augmenting path algorithm of Ford and Fulkerson [3] can fail to terminate un-
der such conditions (see, for example [18]), and so it would be quite interesting



10 Brian C. Dean, Michel X. Goemans, and Nicole Immorlica

if the Gale-Shapley algorithm provably terminates, as some of our preliminary
results suggest.

Rural hospitals: It is well known that in one-to-one matching, the set of singles
remains the same in every stable matching. Roth [11] extended this theorem and
showed that in one-to-many matching, an agent not fully utilized in a stable
matching always receives the exact same assignment in every matching.2 It
seems likely that similar statements might hold in a many-to-many matching as
well. It would be interesting to learn whether the same machines are congested in
every stable unpslit matching, and if so whether these machines are congested by
the same amount in every stable unsplit matching, and/or that the uncongested
machines have the same assignment in every stable unsplit matching.

Incentives: Centralized matching algorithms like the one proposed in this paper
are often used in economic settings where agents are self-interested and might
alter their submitted preference list in order to improve their match. It is known
that no stable mechanism can be incentive-compatible for both jobs and ma-
chines. In a job-optimal mechanism, for example, machines have an incentive to
lie. However, Immorlica and Mahdian [6] showed that, in a one-to-many match-
ing, if preference lists of jobs are short and preferences are drawn uniformly at
random, then each agent has a unique stable partner with high probability, and
thus has no incentive to lie. It would be interesting to prove a similar statement
in the many-to-many setting studied here.

References

1. Mourad Baiou and Michel Balinski. Erratum: The stable allocation (or ordinal
transportation) problem. Mathematics of Operations Research, 27(4):662–680,
2002.

2. Yefim Dinitz, Naveen Garg, and Michel X. Goemans. On the single-source un-
splittable flow problem. Combinatorica, 19:17–41, 1999.

3. L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Can. Journal
of Math., 8:339–404, 1956.

4. David Gale and Lloyd S. Shapley. College admissions and the stability of marriage.
American Mathematical Monthly, 69(1):9–14, 1962.

5. Dan Gusfield and Robert Irving. The Stable Marriage Problem: Structure and
Algorithms. MIT Press, 1989.

6. N. Immorlica and M. Mahdian. Marriage, honesty, and stability. In Proceedings
of 16th ACM Symposium on Discrete Algorithms, pages 53–62, 2005.

7. B. Klaus and F. Klijn. Stable matchings and preferences of couples. Journal of
Economic Theory, 121:75–106, 2005.

8. Jon M. Kleinberg. Approximation algorithms for disjoint paths problems. PhD
thesis, M.I.T., 1996.

2 This is known as the rural hospital theorem as it explains why rural hospitals, typi-
cally unpopular among students in the NRMP, always receive the same assignment
in every stable matching.



The Unsplittable Stable Marriage Problem 11

9. D.E. Knuth. Stable marriage and its relation to other combinatorial problems.
In CRM Proceedings and Lecture Notes, vol. 10, American Mathematical Soci-
ety, Providence, RI. (English translation of Marriages Stables, Les Presses de
L’Université de Montréal, 1976), 1997.

10. E. Ronn. Np-complete stable matching problems. Journal of Algorithms, 11:285–
304, 1990.

11. A. E. Roth. On the allocation of residents to rural hospitals: a general property
of two-sided matching markets. Econometrica, 54:425–427, 1986.

12. A.E. Roth. The evolution of the labor market for medical interns and residents:
a case study in game theory. Journal of Political Economy, 92:991–1016, 1984.

13. A.E. Roth. The national residency matching program as a labor market. Journal
of the American Medical Association, 275(13):1054–1056, 1996.

14. A.E. Roth and E. Peranson. The redesign of the matching market for american
physicians: Some engineering aspects of economic design. American Economic
Review, 89:748–780, 1999.

15. A.E. Roth and M. Sotomayor. Two-Sided Matching: A Study in Game-Theoretic
Modeling and Analysis. Cambridge University Press, 1990.

16. David B. Shmoys and Éva Tardos. Scheduling unrelated machines with costs.
In Proceedings of the 4th annual ACM-SIAM Symposium on Discrete algorithms
(SODA), pages 448–454, 1993.

17. Martin Skutella. Approximating the single source unsplittable min-cost flow prob-
lem. In Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (FOCS), pages 136–145, 2000.

18. Uri Zwick. The smallest networks on which the ford-fulkerson maximum flow
procedure may fail to terminate. Theoretical Computer Science, 148:165–170,
1995.


