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Abstract

How does the design of a marketplace affect the flow and acquisition of information in the

market? We explore this question in a model of college admissions that formally accounts for

students’ information acquisition costs in forming their preferences. In this model students

may rationally choose to remain partially uninformed, and we extend the notion of stability to

this partial information setting. Our main question is whether the market can reach a stable

matching while facilitating efficient information acquisition by all students. To this end, we

define an outcome to be regret-free stable if, in addition to reaching a stable matching, no

student could improve by waiting to see how the market resolves before acquiring information.

To understand information flows, we recast matching mechanisms as price-discovery pro-

cesses. We first derive an equivalence between regret-free stable outcomes and appropriately

defined market-clearing cutoffs. This implies that regret-free stable outcomes exist, and mech-

anisms can be seen as engaging in price-discovery by guiding student information acquisition.

However, information deadlocks can arise, in which the mechanism does not have enough in-

formation to efficiently guide students. Thus, the mechanism must force students to acquire

information suboptimally, implying that no mechanism guarantees a regret-free stable outcome.

Our analysis suggests alternative approaches for facilitating efficient price-discovery. For exam-

ple, one can estimate cutoffs by leveraging additional sources of information such as historical

market information, or bootstrapping information from market subsamples. To complement

our theoretical analysis, we also conduct a survey of university admission systems, finding that

many systems use similar mechanisms to the ones suggested by our theory.
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1 Introduction

In matching settings such as school choice and college admissions it is common for applicants

to spend a significant amount of effort investigating potential placements before forming their

preferences. This has motivated several informational interventions (Corcoran, Jennings, Cohodes,

and Sattin-Bajaj, 2018; Dynarski, Libassi, Michelmore, and Owen, 2018; Grenet, He, and Kübler,

2019), and raises the question of how the design of the marketplace facilitates the acquisition and

flow of information in the market.

We present a model of many-to-one matching with costly information acquisition. In our model

college priorities are common knowledge. Students have independent private values, but only know

the distribution of these values. They can acquire signals at a cost that refine these distributions.

One example is the Pandora’s Box model (Weitzman, 1979), where each student has a prior over

their values and can pay a college-specific cost to learn their value at a selected college. Since the

set of colleges available to a student depends on the decisions of other students, the information

acquisition decisions of different students are interlinked.

Our model captures important features of matching markets with costly information acquisition.

Market outcomes consist of an assignment as well as the information acquired. Student utilities

depend on their values for their assigned partners as well as their information acquisition costs.

Students can rationally choose to remain partially informed, or delay decision-making even when

they have multiple offers of admission.

We focus on stable outcomes, where ex-post no agent can benefit by changing the outcome.

Under full information, stability requires that after the outcome is revealed no agents can form a

blocking pair, that is, there is no pair of agents who prefer each other to their assigned partners.

In our setting, we define an outcome to be stable if, after observing the entire match and forming

preferences based on the information they collected, no student can form a blocking pair with a

college, or wishes to collect more information.

Our main question is whether the market can reach a stable outcome while facilitating efficient

information acquisition by all students. Not every stable outcome is informationally efficient: for

example, if students collect all information and are matched as in a full-information stable matching,

the outcome is stable, but students incur unnecessary information acquisition costs. To motivate

our definition of efficient information acquisition, consider a student who delays her information

acquisition until after she sees the market outcome. Such a “last to market” student can use

all market information to guide her information acquisition. Because students have independent

private values, the only market information that is relevant for this student’s information acquisition

is her budget set : the set of colleges at which she has sufficiently high priority to be admitted.

Motivated by this, we define an outcome to be regret-free stable if every student has acquired

information as if she knew her budget set in advance. We ask whether an appropriately designed

market can facilitate efficient information acquisition in the sense that it achieves regret-free stable

2



outcomes.

To answer this question, we provide an alternative and more tractable formulation of regret-

free stability in terms of demand and cutoffs. Given an outcome, the corresponding cutoff of each

college is equal to the lowest priority of a student assigned to that college. Cutoffs specify a budget

set for each student, equal to the set of colleges where her priority for the college is above the

college’s cutoff. A student’s demand given cutoffs is defined as the outcome of the process where

the student first optimally acquires information given the budget set specified by the cutoffs, and

then selects her most preferred college in her budget set under the resulting preferences. Our

formulation abstracts away from the details of each student’s information acquisition process by

encoding it in their demand.

We show that cutoffs that clear the market under this demand are equivalent to regret-free

stable outcomes. Market-clearing cutoffs guide the allocation and facilitate optimal information

acquisition. Cutoffs function like prices, summarizing all the market information a student needs

to decide what information to acquire. The market-clearing condition ensures stability since the

resulting aggregate demand is consistent with the cutoffs. Together, this implies that regret-free

stable outcomes are fully determined by aggregate demand.

Focusing on cutoffs and aggregate demand allows us to directly apply results from the theory

of stable matching under full information, which significantly simplifies our analysis. We focus on

economies where student demand satisfies the weak axiom of revealed preferences (WARP), such

as the Pandora’s Box model. Aggregate demand in such an economy is identical to the aggregate

demand of a related full-information economy. This implies that for such economies a regret-free

stable outcome always exists, and that the set of regret-free stable outcomes forms a non-empty

lattice. There exists a student-optimal regret-free stable outcome which gives all students the

highest ex-ante expected utility. Additionally, this perspective allows us to show that generically

there is a unique regret-free stable outcome.

Given the existence of regret-free stable outcomes, we ask which market mechanisms imple-

ment regret-free stable outcomes. To answer this question, we recast market mechanisms as price-

discovery tools. Communication processes give a description of the price-discovery process under

a market mechanism, specifying its initial information, its information flows and information ac-

quisition processes, and the resulting outcome. The information provided by the mechanism to

students guides their information acquisition, and the market will reach a regret-free stable out-

come if the mechanism is able to guide students’ information acquisition to learn market-clearing

cutoffs without incurring unnecessary costs. For example, for certain economies iterative imple-

mentations of college-proposing deferred acceptance can implement regret-free stable outcomes by

sequentially obtaining information from students whose budget sets are fully known. In contrast,

the standard one-shot implementation of student-proposing deferred acceptance asks students to

acquire information and report their preferences without guidance from the mechanism, which can
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result in outcomes that are not regret-free stable.

Our main result is that essentially no mechanism is regret-free stable for general economies. In

other words, price discovery is costly. We show this by demonstrating that general economies can

exhibit information deadlocks that prevent mechanisms from reaching regret-free stable outcomes.

Information deadlocks arise when there is a cycle of students in which each student’s budget set and

information acquisition decisions depend on the demand of the others. While there exist cutoffs

that yield a regret-free stable matching, in order to learn these cutoffs some student in the cycle

must acquire information first, and hence that student may acquire information suboptimally. We

emphasize that this impossibility result holds despite the guaranteed existence of a regret-free stable

outcome. In addition, it is not driven by student or college incentives, and continues to hold even if

students are assumed to follow the instructions of the mechanisms in their information acquisition

without strategizing. Rather, the challenge stems from the fact that students need information to

know which information they should gather.

Despite this impossibility result, our theory provides guidance for designing mechanisms that

better account for information acquisition costs. The cutoff structure of regret-free stable outcomes

suggests a natural design approach for such a mechanism. In a first stage the mechanism learns

market-clearing cutoffs. In a second stage, it publishes the cutoffs, lets students acquire information

using the implied budget sets, and then computes the assignment. In other words, the mechanism

first engages in price discovery and then publishes prices that guide students’ information acquisition

and clear the market.

We give a few approaches for how the mechanism can discover cutoffs in the first stage. One

option is to leverage external information such as historical cutoffs. In many settings cutoffs are

stable over time, and price discovery can be performed using information across years rather than

within a given year. Another option is to calculate cutoffs using a demand estimation approach.

The mechanism can estimate demand from a sub-sample of students. Randomly sampled students

will bear additional information acquisition costs for the benefit of others, resulting in an approxi-

mately regret-free outcome. Alternatively, the mechanism may estimate demand by targeting “free

information” students who can acquire information optimally. Such students will in general com-

prise a non-representative sub-sample, but under structural assumptions their demand can be used

to estimate aggregate demand. While such approaches in general may only give a noisy estimate of

the cutoffs, we show that in the second stage we can post these noisy cutoffs and absorb the noise

with flexible capacities.

To supplement our theoretical analysis, we surveyed college admission systems across the world.

Our theoretical results highlight the importance of providing applicants with information about

their admission chances. In our survey, we find that many admission systems make an effort to

provide applicants with an estimate of their admission chances before they apply, and this infor-

mation is more readily accessible in many cases than information about the matching algorithm

4



itself. In particular, many systems provide score calculators and/or post historical admission cut-

offs. Two prominent examples are Australia and Israel: both post admission cutoffs for students,

estimated using historical data. Universities in Australia commit to the posted cutoffs and absorb

extra demand by perturbing capacities. Israel does not have a centralized admission clearinghouse,

and relies on posted cutoffs to coordinate admissions. Overall, our survey and theoretical results

suggest market designers should pay careful attention to information flows in marketplaces, both

in determining market-clearing cutoffs and in communicating that information to students.

1.1 Related Work

A large body of empirical work emphasizes the importance of information and its availability in

determining educational choices. Hoxby and Avery (2012) find that the majority of low-income,

high-achieving students do not apply to selective colleges, even though these colleges are likely to

offer them higher quality at a lower cost, and argue this is driven by the lack of proper information.

Evidence from multiple field experiments in many settings shows that access to information on

educational options affects has significant impacts on student choices and educational outcomes

(Hastings and Weinstein (2008), Hoxby and Turner (2015), Andrabi, Das, and Khwaja (2017),

Dynarski, Libassi, Michelmore, and Owen (2018), Corcoran, Jennings, Cohodes, and Sattin-Bajaj

(2018), Neilson, Allende, and Gallego (2019)). Abdulkadiroğlu, Pathak, Schellenberg, and Walters

(2017) finds that parents’ preferences for schools are mainly driven by peer quality, and suggest

this finding can be explained by parent’s difficulty to collect other measures of school effectiveness.

There is also growing empirical evidence of the importance of information in matching mecha-

nisms for school choice and college admissions. Kapor, Neilson, and Zimmerman (2016) provides

empirical evidence that many students participating in a school choice mechanism are not well

informed, and make mistakes when reporting their preferences. Grenet, He, and Kübler (2019) an-

alyze how students respond to admission offers in a dynamic university admission process and argue

it is consistent with students undergoing costly information acquisition. Luflade (2017) analyzes

Tunisian application data and estimates that students who were provided more information on

their attainable option obtained higher utility. Narita (2016) estimates that informational frictions

lead to significant welfare losses.

Many assignment systems used in practice incorporate iterative or multi-round processes that

provide information to applicants. Bo and Hakimov (2017) document and evaluate the SISU mech-

anism used in Brazil in which students can participate in simulated assignment rounds before

submitting their preferences. Dur, Hammond, and Morrill (2015) empirically study the public

school assignment Wake County that uses an iterative mechanism which provides feedback to stu-

dents, and provides evidence that different parents exert different levels of efforts in learning about

school choice. Gong and Liang (2016) theoretically and empirically consider a college admissions

system in Inner Mongolia that implements an iterative version of deferred acceptance. Coles, Caw-
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ley, Levine, Niederle, Roth, and Siegfried (2010), Coles, Kushnir, and Niederle (2013), and Lee

and Niederle (2015) theoretically and experimentally evaluate signaling in the job market for new

economists and dating markets. Che and Koh (2016) considers colleges that face over-capacity risk,

and comment that such risk could be eliminated by a sequential centralized mechanism. We show

that such iterative processes may be beneficial in reducing information acquisition costs.

Several papers provide models of stability with partially informed agents. Chakraborty, Citanna,

and Ostrovsky (2010); Liu, Mailath, Postlewaite, and Samuelson (2014); Liu (Forthcoming); Chen

and Hu (2019); Bikhchandani (2017); Kloosterman and Troyan (2018) suggest notions of stability

under asymmetric information where agents may update their preferences after seeing the matching

or a potential blocking pair. Ehlers and Massó (2015) show a connection between ordinal Bayesian

Nash equilibria under incomplete information and stable outcomes under complete information.

Our model differs from this literature in that it assumes students have independent private values,

and thus avoids adverse selection considerations.

To obtain a tractable model of information acquisition in school choice, our work builds on the

adaptive search framework of Pandora’s box consumer search as introduced by Weitzman (1979).

This model assumes that the agent knows the set of available items1 and must inspect the item

she selects, and obtains a closed form for the optimal policy. Doval (2018) argues that without the

assumption that the agent inspects the selected item the problem is not generally tractable, but

derives optimal policies under sufficient parametric conditions, and Beyhaghi and Kleinberg (2019)

provide approximately optimal policies under non-obligatory inspections.

Several other approaches to modeling information acquisition have also been suggested in the

literature. The rational inattention framework pioneered by Sims (2003) is one such approach;

Matějka and McKay (2015) shows that in that framework agent’s choices can be formulated as a

generalized multinomial logit, and Steiner, Stewart, and Matějka (2017) give a tractable formulation

for the choices of agents with endogenous information acquisition in a dynamic setting.

A number of papers also emphasize the importance of accounting for the information available

to students when interpreting student’s reported preferences. Hassidim, Marciano-Romm, Romm,

and Shorrer (2015); Shorrer and Sóvágó (2018) find evidence that students in Mexico, Israel, and

Hungary misreport their preferences under strategy-proof mechanisms. Artemov, Che, and He

(2017); Fack, Grenet, and He (2019) argue that many such misreports can be explained by advanced

knowledge of admission chances, and give empirical methods that account for this.

Our work contributes to a growing body of work exploring different aspects of informational

efficiency in matching mechanisms. Segal (2007) studies the communication complexity of social

choice rules. Gonczarowski, Nisan, Ostrovsky, and Rosenbaum (2015) consider the communication

1In general, the problem is no longer tractable if availability of items is uncertain. Chade and Smith (2006) give a
solution to the problem of simultaneously applying to a set of schools when applications are costly and each admission
decisions are probabilistic and independent. Shorrer (2019) analyzes the optimal simultaneous application problem
when admissions decisions are correlated.
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complexity of finding a stable matching and show that it requires Ω
(
n2
)

boolean queries. Ashlagi,

Braverman, Kanoria, and Shi (2018) find that the communication complexity of finding a stable

matching can be low under assumptions on the structure of the economy if the mechanism can use

a Bayesian prior. The analysis in the previous two papers differs from ours in that they assume

agent know their full preferences (for example, can report their first choice) and only consider the

cost of communicating that information to the mechanism.

A number of papers, including Aziz, Biró, Gaspers, de Haan, Mattei, and Rastegari (2016);

Rastegari, Condon, Immorlica, and Leyton-Brown (2013); Rastegari, Condon, Immorlica, Irving,

and Leyton-Brown (2014), analyze a matching model where agents have ordinal preferences that

are revealed through interviews. They analyze algorithms aimed to find a stable matching with a

minimal number of interviews. Under a tiered structure, the solution is an iterative version of DA.

Drummond and Boutilier (2013, 2014) consider more general algorithms and provide approximation

results. Our finding that a sequential version of DA implements a regret-free stable matchings when

agents are willing to inspect all colleges they can attend is a particular case of this result where

the preferences of one side are known. Kanoria and Saban (2017) study a market with search

frictions and also find that the party facing less risk should be proposing. Lee and Schwarz (2009);

Kadam (2015) analyze how interviews affect market outcomes, and find that information sharing

can improve welfare. Information acquisition can be seen as investment in match quality, which

is studied by Hatfield, Kojima, and Kominers (2014); Nöldeke and Samuelson (2015); Dizdar and

Moldovanu (2016); Dizdar (2018).

Some papers on informational efficiency in matching markets capture that uncertainty of admis-

sion options harms students. Bade (2015) shows that serial dictatorship is the unique mechanism

that is Pareto-optimal, strategy-proof and nonbossy under endogenous information acquisition.

Harless and Manjunath (2015) consider an allocation problem with common values and informa-

tion acquisition. Ashlagi and Gonczarowski (2015) show that no stable matching is obviously

strategy-proof (Li, 2017). This finding is reflected by our negative results on regret-free stable

communication protocols.

Chen and He (2017) experimentally study student incentives to acquire ordinal and cardi-

nal preference information and information about other’s preferences under the DA and Boston

mechanisms. Chen and He (2019) provides the corresponding theory. Niederle and Yariv (2009),

Echenique, Wilson, and Yariv (2016) and Klijn, Pais, and Vorsatz (2013) experimentally study

matching mechanisms and find they often fail to reach stable outcomes. Bó and Hakimov (Forth-

coming) experimentally test an iterative version of DA and find that it is more likely than DA to

reach a stable outcome.

Finally, our paper contributes to the broader literature on information acquisition in mechanism

design. Bergemann and Välimäki (2002); Golrezaei and Nazerzadeh (2017) analyze optimal auction

design when agents can acquire information, and Kleinberg, Waggoner, and Weyl (2016) shows that
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descending price auction create optimal incentives for value discovery. Doval and Ely (2016) study

mechanism design with sequential information revelation.

2 A Model for Matching with Costly Information Acquisition

We present a model where colleges priorities are known and students learn their preferences through

costly information acquisition. The set of colleges is denoted by C = {1, . . . , n}, and each college

i ∈ C has capacity to admit qi > 0 students. We use φ to denote being unmatched and write

Cφ = C ∪ {φ}.
Under full information, a student is given by (r, v)∈R×V = [0, 1]C×RC , where ri is the student’s

priority or rank at college i ∈ C, and vi is the student’s value for attending college i ∈ C. College i

prefers student (r, v) over student (r′, v′) if and only if ri > r′i.

We set up a model where students are partially informed about their independent private

values for colleges, and can adaptively acquire costly signals to refine their information. At any

given moment, each student is associated with a tuple ω ∈ Ω that encodes the student’s beliefs,

the information she can acquire or has acquired, and her realized values. We write

ω =
(
rω, Fω,Πω, cω, χω, {π (vω)}π∈χω ; vω

)
∈ Ω

where rω is the student’s priority, Fω is her prior over her private values V, Πω is a finite set of

possible signals that can be acquired, cω : Πω → R≥0 is the cost to student ω of acquiring signals,

and vω ∈ V is the realization of the student’s values. Each signal π ∈ Πω is a partition of V into

Fω-measurable sets,2 and we denote its realization by π (vω) ⊂ V. χω ⊂ Πω denotes the set of

signals the student has acquired so far, and {π (vω)}π∈χω are the signal realizations observed by

the student. We write Ω for the set of all such tuples ω.

Each tuple ω consists of three parts: the information initially available to the student, the

student’s realized values (which are initially unobserved), and the information acquired by the

student through signals. It will be helpful to introduce notation for different subsets of this tuple.

We say that student ω has a state θ = θ(ω) given by

θ (ω) =
(
rω, Fω,Πω, cω, χω, {π (vω)}π∈χω

)
∈ Θ.

We refer to θ as a student’s information state because θ encodes all information available to a

student at a given moment. That is, the student knows rω, Fω,Πω, cω and observes the realizations

of acquired signals {π (vω)}π∈χω but does not know her realized values vω beyond those signals.

Denote the set of all information states by Θ. We will sometimes abuse notation and associate θ

with the set of all ω such that θ(ω) = θ. Such ω ∈ θ can differ only on their realized values vω, so

2Implicitly we are restricting attention to signals that are deterministic given v ∈ V; this is for clarity of notation.
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we will often write rθ to represent the unique rω for all ω ∈ θ and similarly for F θ, Πθ, etc.

The type of a student consists of all information initially observable to the student. We assume

that initially students have not acquired any signals. Thus, the set of types is the set of initial

information states Θ0 ⊂ Θ, where θ0 ∈ Θ0 precisely if χθ0 = ∅. The initial value realization ω0 of a

student consists of all the information included in their type θ0 as well as their realized values vω.

We write Ω0 ⊂ Ω to denote the set of possible realizations.

Given a state θ ∈ Θ, let F |θ denote the posterior distribution over V given the information

available to θ. Overloading notation, we will consider F |θ also as a posterior distribution over

ω ∈ θ. Let v̂θ = Ev∼F |θ [v] denote the corresponding expected values. We will let v̂ω = v̂θ(ω) denote

the perceived expected value of a student ω.

Definition 1. A continuum economy with information acquisition is specified by E =

(C,Ω, η, q), where q = {qi}i∈C is the vector of quotas at each college, and η is a measure over

the set Ω0 of initial value realizations.

Note that η specifies the joint distribution over student types and value realizations; note also

that students initially do not know these realized preferences.

We make the following assumptions. The distribution of value realizations is consistent with

the student priors. That is, there exists a measure ν over Θ0 such that for any sets A ⊂ Θ0 and

V ⊂ V we have that

η ({ω = (θ, v) | θ ∈ A, v ∈ V }) =

∫
θ∈A

F θ (V ) dν (θ) .

All students and colleges are acceptable. The rank rsi is normalized to be the student’s percentile,

college priorities are strict, and there is an excess of students.3 For ease of exposition, we also assume

that student preferences are strict, by imposing that for any θ ∈ Θ we have that F θ ({v | vi = vj}) =

0 for all i 6= j ∈ C, and assuming that any remaining indifferences are resolved in favor of the college

with lower index.4 The posterior F |θ and expected values v̂θ are well-defined for any θ.

An outcome specifies both an assignment of students to colleges, as well as the information

acquired by each student.

Definition 2. An outcome (µ, χ) consists of an assignment µ and acquired information χ. An

assignment µ is an η-measurable mapping µ : Ω0 → Cφ specifying the assignment of ω0 ∈ Ω0. Ac-

quired information χ is an η-measurable mapping specifying the information χ (ω0) ⊆ Πω0 acquired

by ω0 ∈ Ω0.5

3That is, for any i ∈ C and x ∈ [0, 1], we have that η ({ω ∈ Ω0| rωi ≤ x}) = x, as well as η ({ω ∈ Ω0| rωi = x}) = 0,
and we also have that

∑
i∈C qi < η (Ω) = 1.

4To simplify notation for resolving such indifferences, if zi and zj are quantities related to colleges i and j
respectively (e.g. vsi and vsj for some student s), we abuse notation and let zi > zj denote that either zi > zj or
zi = zj and i < j.

5Implicitly, we assume that information acquisition and assignment is deterministic given a student’s initial value
realization.
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Overloading notation, for college i ∈ C let µ (i) denote the set µ−1 (i) ⊆ Ω0 of initial value

realizations of students assigned to college i. We denote the set of students with positive measure

under an outcome (µ, χ) by Ωχ = {ω ∈ Ω | χ (ω) = χω}, and abuse notation and write χ (ω) , µ (ω)

for ω ∈ Ω to mean χ (ω0) , µ (ω0) correspondingly where ω0 is the initial realization associated with

student ω. Given (µ, χ), the utility of a student ω is vωµ(ω) − c
ω (χω).

We now consider feasibility of an outcome. One natural condition is that the assignment at each

college does not exceed the quotas, η (µ(i)) ≤ qi. In addition, acquiring sufficient information may

be necessary for assignment to a college. Let Ψ (θ) ⊂ Cφ denote the subset of colleges a student

with state θ can be assigned to given inspections χθ, and let Ψ (ω) = Ψ (θ (ω)). An outcome (µ, χ)

is feasible if for each college i ∈ C we have that µ(i) is η-measurable, η (µ (i)) ≤ qi, and for all ω we

have µ (ω) ∈ Ψ (ω).

2.1 Stability with Information Acquisition

We extend the standard definition of stable matchings to economies with information acquisition.

Intuitively, an outcome is stable if every student who observes the outcome (µ, χ) does not form

a blocking pair with some college, and does not want to acquire more information. That is, the

outcome is both allocatively stable and informationally stable.

There are multiple equivalent formulations of allocative stability. We will express stability

conditions in terms of demand and budget sets. This formulation will be convenient as it allows us

to encode the information acquisition process within our notion of demand. Given an assignment

µ, student ω has sufficient priority to be admitted to the set of colleges Bω (µ), given by

Bω (µ) =
{
i ∈ Cφ | rωi ≥ inf

{
rω
′

i | ω′ ∈ µ (i)
}

or η (µ (i)) < qi

}
.

We refer to Bω (µ) as the student’s budget set. Note that Bω (µ) depends only on rω, and we can

write Bω (µ) = Bθ(ω) (µ) = Bω0 (µ) where ω0 is the initial value realization associated with student

ω. Any college i ∈ Bω (µ) is willing to block with ω. Thus, student ω would like to form a blocking

pair if there is a college i ∈ Bω (µ) ∩Ψ (ω) (which is a feasible match, given inspections) such that

v̂ωi > v̂ωµ(θ). This mimics the stability constraint in the full information model.

Additional stability concerns arise from the possibility of further information acquisition. Hav-

ing observed an outcome (µ, χ), a student ω may want to acquire additional information. In

particular, after learning her budget set Bω (µ) the student may wish to acquire additional infor-

mation to better inform her selection from that budget set. Because students have independent

private values, learning the outcome provides no further information beyond Bω (µ). Therefore, we

can capture the choice of subsequent information acquisition for a student who knows the outcome

(µ, χ) by an inspection rule that specifies the information acquired by a student ω given her initial

knowledge θ (ω) as well as the knowledge that Bω (µ) = B ⊂ C.
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To formally define an optimal inspection rule χ∗, consider a sequential inspection rule ϕ :

Θ×2C → Π∪{φ} that specifies for each possible state θ and budget set B ⊂ C whether the student

should acquire another signal π ∈ Πθ \ χθ or stop (denoted by φ). We will sometimes refer to the

acquisition of a signal as an inspection. Each inspection in the sequence of inspections can depend

on value realizations, but only through the information revealed by prior inspections.

Given a sequential inspection rule ϕ, consider a student ω whose budget set is B ⊂ C. Let

θϕ (ω) denote the state reached by sequential applications of ϕ until it terminates (which it must,

because Πθ is finite). Define χϕ (ω,B) ⊂ Πω to be the set of all signals acquired by θϕ (ω). Define

the demand of ω given B and ϕ to be Dω,ϕ (B) = arg max
{
v̂
θϕ(ω)
i | i ∈ B ∩Ψ (θϕ (ω))

}
∈ B, which

is the most preferred college in B for a student in state θϕ (ω). Note that the effects of information

acquisition are captured within the definition of Dω,ϕ (·), as we assume that student ω acquires

information according to the information acquisition strategy ϕ and available information θ(ω), B.

For each inspection type θ ∈ Θ, we also define the demand of θ under information acquisition

strategy ϕ to be Dθ,ϕ
i (B) = F |θ ({ω ∈ θ : Dω,ϕ (B) = i}). Note that the college demanded by a

student ω ∈ Ω is a deterministic function of ω (since the inspection strategy and values are fixed),

but the college demanded by a type θ ∈ Θ is probabilistic.

The optimal information acquisition strategy is the result of the utility-maximizing sequential

inspection rule, defined as follows. For a student ω with budget set B, her utility after applying the

sequential information acquisition rule ϕ will be vωDω,ϕ(B)− c
ω(χϕ(ω,B)). The expected utility of a

student ω in state θ = θ(ω) with budget set B is the expectation of this quantity over realizations

drawn from F |θ. We let ϕ∗(ω) denote the sequential rule that maximizes this expected utility over

all choices of ϕ.6 For notational convenience we will write χ∗ (ω,B) = χϕ
∗

(ω,B) for the outcome

of the optimal information acquisition rule and θ∗(ω,B) for the resulting state.

The demand of student ω given budget set B is defined to be the student’s most preferred

college from B given the optimally acquired information χ∗(ω,B),

Dω (B) = arg max
{
v̂
θ∗(ω,B)
i | i ∈ B ∩Ψ (θ∗ (ω,B))

}
.

We write

Dθ
i (B) = F |θ ({ω ∈ θ : Dω (B) = i})

for the stochastic demand of a student in state θ. The expected utility of a student in state θ and

budget set B is given by

Eω∼F |θ
[
vωDω(B) − c

ω (χ∗ (ω,B))
]
.

We are now ready to define our notion of stability.

Definition 3. An outcome (µ, χ) is stable if it satisfies:

6Note that this maximum is obtained as there are only finitely many signals to acquire from each state.
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1. For any ω ∈ Ωχ, the assignment is optimal given current information:

µ (ω) = arg max{v̂θ(ω)
i | i ∈ Bω(µ) ∩Ψ(θ(ω))}.

2. For any ω ∈ Ωχ, student ω would not like to acquire more information:

χω = χ∗ (ω,Bω (µ)) .

Note that conditions 1 and 2 together imply that µ(ω) = Dω (Bω (µ)) for each student ω ∈ Ωχ.

An immediate observation is that a stable outcome exists for any E = (C,Ω, η, q). For example,

if all students acquire all possible information (that is, for all students χ (ω) = Πω), the resulting

economy has a stable outcome if and only if the induced full information economy has a stable

matching (and since preferences are strict it does have a stable matching). However, such an

outcome requires students to pay large information acquisition costs and may be wasteful.

We refine the set of stable outcomes to ask that students acquire the appropriate information

given what they can learn from the market. To motivate the refinement, consider a student who

waits to see the market outcome before acquiring any information. Such a student ω0 ∈ Ω0 will know

her budget set Bω0 (µ), and will optimally acquire the information χ∗ (ω0, B
ω0 (µ)). In contrast, a

student ω′ ∈ Ωχ with initial value realization ω′0 who has acquired information before knowing her

budget set Bω′ (µ) = Bω′0 (µ) may have acquired χω
′ 6= χ∗

(
ω′, Bω′ (µ)

)
. Such a student regrets not

waiting to learn Bω′ (µ) before inspecting. The following definition of regret-free stable outcomes

requires that all students acquire information optimally, as if they were provided all the information

that is eventually available in the market.

Definition 4. An outcome (µ, χ) is regret-free stable if it is stable, and for every ω ∈ Ωχ with

corresponding initial value realization ω0 we have that

χω = χ∗ (ω0, B
ω (µ)) .

Stability ensures that the student has not under-inspected, and regret-free stability addition-

ally ensures that the student has not over-inspected given knowledge of her budget set (see also

Example 2). If χω 6= χ∗ (ω0, B
ω (µ)) we say that the student acquired information suboptimally.

We make a few technical remarks about the definition of regret-free stable outcomes. First,

while the definition of regret-free stability is stated in terms of each student’s realized type ω, it

only requires that students conduct the optimal inspections given their observable information θ

and the budget set Bω (µ) = Bθ (µ). In particular, following χ∗ can only be optimal in expectation

(since even a student that knows (µ, χ) still faces uncertainty about their values for uninspected

colleges), and may lead to an ex-post suboptimal outcome for some realized types ω. Second, an

outcome (µ, χ) can be verified to be regret-free stable based on the revealed information θ (ω) for
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any ω ∈ Ωχ.

2.2 Tractable expressions via Pandora’s Box

We utilize the Pandora’s box model of Weitzman (1979) to illustrate our definitions, and to give a

tractable information acquisition framework with closed form solutions. In this specification, values

of colleges are independently distributed according to known priors, and the student can inspect a

college and learn its value. The model assumes that in a feasible outcome a student can only be

assigned to a college they have inspected.

More formally, the Pandora’s box model (equivalently, Pandora’s box economy) is an

economy (C,Ω, η, q) with students ω ∈ Ω whose prior Fω is the product of marginal distributions

{Fωi }i∈C , and whose signals Πω = {πi}i∈C specify the value vωi of student ω at college i, i.e.,

πi (vω) = {v | vi = vωi }. Furthermore, students can only be assigned to colleges they inspect, i.e.,

Ψ (θ) =
{
i | πi ∈ χθ

}
. The Pandora’s box domain is the set of all Pandora’s box economies.

With slight abuse of notation, we refer to a signal by the college it inspects (i.e., πi = i), the

outcome of signal i with the value of college i (i.e., πi(v) = vi), and the cost of signal i with

ci ≥ 0 (i.e., c(πi) = ci). We likewise identify each acquired signal χω with the corresponding set of

inspected colleges.

In the Pandora’s box model, a student who can choose a college out of a set of colleges B ⊂ C
aims to adaptively acquire information χω to maximize

max
i
{vωi | i ∈ B ∩ χω} −

∑
i∈χω

cωi .

The student’s optimal information acquisition policy is given by the following known result.

Lemma 1. (Weitzman 1979) Consider a student in state θ who can choose a college from B ⊂ C.

For each college i ∈ B, define the index vθi to be the unique solution to

E
vi∼F

|θ
i

[
max{0, vi − vθi }

]
= cθi .

The student’s optimal adaptive information acquisition is to sequentially inspect colleges in decreas-

ing order of their indices vθi , and stop if the maximal realized value max
{
vωi | i ∈ χθ

}
is higher than

the index of any remaining uninspected college in B.

Lemma 1 fully characterizes the optimal inspection policy χ∗ (ω,B), and implies this corollary.

Corollary 1. In the Pandora’s box model, an outcome (µ, χ) is stable if for each ω ∈ Ωχ with state

θ = θ(ω) and each i ∈ Bθ (µ) \ {µ (θ)} we have that either:

• i ∈ χθ and vθµ(θ) > vi; or
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• i /∈ χθ and Evi∼F θi
[
max{vθµ(θ), vi}

]
− cθi < vθµ(θ).

Student ω can potentially block with any college i in her budget set. The matching is stable if

each such college that student ω has inspected is less preferred than her assigned college µ (θ), and

each such college that student ω has not inspected is not worth inspecting.

In a matching market setting, a student’s budget set may depend on the preferences of other

students. We give an example showing that in a Pandora’s box economy students benefit by not

inspecting before they know their budget set.

Example 1. Suppose that C = {1, 2, 3}, and consider a student with v1 ∼ F1 = [8; 1/2], v2 ∼
F2 = [6; 1/2] and v3 ∼ F3 = [7; 1/3], where [x; p] denotes the probability distribution which assigns

probability p to the value x and 1 − p to 0. Suppose the student’s inspection costs are c1 = c2 =

c3 = 2. This implies v1 = 4, v2 = 2, v3 = 1.

If B = {1, 2, 3} the optimal inspection strategy is to first inspect college 1, then inspect college

2 only if v1 = 0, and then inspect college 3 only if v2 = v1 = 0. If instead B = {2, 3} the optimal

inspection strategy is to first inspect college 2, and then inspect college 3 only if v2 = 0. In particular

if B = {2, 3} the student will not inspect college 1, and if v2 = 6 the student will not inspect 3.

Example 1 shows that it is valuable for a student to know the set of colleges B in her budget

set. If the student does not know her budget set B, her inspection strategy may be sub-optimal in

two ways. First, the student may inspect college 1 when it is not in her budget set, wasting the

cost c1. Second, the student may inspect college 2 (3) when she is able to attend college 1 (1 or 2).

This is likely to waste the cost c2 (c3), since if college 1 is in her budget set it is optimal to first

inspect college 1, and so with 50% chance v1 = 8 and the student’s optimal inspection strategy

is to only inspect college 1.7 It follows that a student who is uncertain whether B = {1, 2, 3} or

B = {2, 3} would prefer to wait to learn her exact budget set before inspecting.

We build on Example 1 to illustrate the difference between stability and regret-free stability.

Example 2. Consider an economy E = (C,Ω, η, q) in which C = {1, 2, 3}, q1 = q2 = q3 = 1/6, all

colleges have identical priority ranking over students, and all students have priors and signals as

described in Example 1. With slight abuse of notation we let rω be the common priority for student

ω at all colleges. In this economy there is a stable outcome (µIA, χIA) in which students inspect all

schools, i.e., χIA(ω) ≡ C and the matching is given by

µIA(1) = {ω ∈ Ω0 | rω ≥ 2/3, vω1 = 8},

µIA(2) = {ω ∈ Ω0 | rω ≥ 1/3, vω2 = 6, vω1 = vω3 = 0},

µIA(3) = {ω ∈ Ω0 | rω ≥ 1/3, vω1 = 0, vω3 = 7}.
7If B = {1, 2, 3} then inspecting college 1 first yields expected utility 2.58, but first inspecting one of colleges 2 or

3 yields a lower expected utility of at most 2.08.
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The outcome χIA is not regret-free stable: for example, students in µIA(2) with rω < 2/3 have

wasted c1 (as 1 is not in their budget set) and have also wasted c3 (as given vω2 = 6 the expected

benefit of inspecting 3 is not worth the cost).

This economy has a unique regret-free stable outcome (µ†, χ†) 6= (µIA, χIA). Here µ† is given by

µ†(1) = {ω ∈ Ω0 | rω ≥ 2/3, vω1 = 8},

µ†(2) = {ω ∈ Ω0 | rω ≥ 1/2, vω2 = 6} \ µ†(1),

µ†(3) = {ω ∈ Ω0 | rω ≥ 1/6, vω3 = 7} \
(
µ†(1) ∪ µ†(2)

)
.

The matching µ† determines a budget set for each student. Given that assignment of budget sets,

χ† is such that students have inspected as in Example 1.

3 The Cutoff Structure of Regret-Free Stable Outcomes

In this section we provide several results about the structure of regret-free stable outcomes. We

show the somewhat surprising result that regret-free stable outcomes always exist, and form a

non-empty lattice. We prove these results by giving a concise characterization of regret-free stable

outcomes in terms of market-clearing cutoffs. The cutoffs provide a sufficient statistic for de-

scribing both components of a regret-free stable outcome, namely the matching and the optimal

information acquisition process, and allow the interconnected information acquisition problems to

be disaggregated across different students. These results allow us to shed light on the challenges in

implementing such outcomes. In section 5 we leverage these results to construct mechanisms.

3.1 Equivalence of market-clearing outcomes and regret-free stable outcomes

Cutoffs P = {Pi}i∈C ∈ RC are admission thresholds for each college, admitting a budget set Bω(P )

for each student ω ∈ Ω equal to the set of colleges where their priority is above the college’s cutoff,

Bω (P ) = {i ∈ C | rωi ≥ Pi} .

The demand Dω (P ) of student ω given cutoffs P is the college selected by ω from budget set

B = Bω (P ) where the student first optimally acquires the information χ∗ (ω,Bω (P )), and then

selects her most preferred college given the revealed information,

Dω (P ) = Dω (Bω (P )) .

Finally, aggregate demand for college i given cutoffs P in economy E is defined to be the measure

of initial student realizations that demand college i,
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Di (P | η) = η ({ω0 ∈ Ω0|Dω0 (P ) = i}) .

We write Di (P ) when η is clear from context, and denote overall demand by D (P ) = (Di (P ))i∈C .

Next, we define market-clearing cutoffs (as in Azevedo and Leshno (2016)) and show there is a

one-to-one correspondence between market-clearing cutoffs and regret-free stable outcomes.

Definition 5. A vector of cutoffs P is market-clearing if it matches supply and demand for all

colleges with non-zero cutoffs:

Di (P ) ≤ qi for all i and Di (P ) = qi if Pi > 0.

Theorem 1. An outcome (µ, χ) is regret-free stable if and only if there exist market-clearing cutoffs

P such that for all ω ∈ Ωχ with corresponding initial value realization ω0, we have

µ (ω) = Dω0 (P )

and

χ (ω) = χ∗ (ω0, B
ω (P )) .

Proof. It is immediate to verify that if P is market-clearing then (µ, χ), for µ (ω) = Dω0 (P ) and

χω = χ∗ (ω0, B
ω (P )), is a regret-free stable outcome. For the opposite direction, given a regret-free

stable outcome (µ, χ), define Pi = inf
{
rω
′

i | ω′ ∈ µ (i)
}

for any college i such that η (µ (i)) = qi,

and Pi = 0 for any college i such that η (µ (i)) < qi. Then we have that Bω (µ) = Bω (P ) for all

ω ∈ Ω. Regret-free stability of (µ, χ) implies that χω = χ∗ (ω0, B
ω (P )) for all ω ∈ Ωχ and stability

thus implies that µ (ω) = Dω0 (P ) for all ω ∈ Ωχ. Therefore, P are market-clearing cutoffs.

Theorem 1 shows an equivalence between market clearing cutoffs and regret-free stable out-

comes. Thus, existence of a regret-free stable outcome is equivalent to the existence of cutoffs P

that clear the demand D (·).

3.2 Existence and uniqueness of regret-free stable outcomes in the Pandora’s

Box model

We first demonstrate that market-clearing cutoffs exist in the Pandora’s Box model, and so regret-

free stable outcomes exist in the Pandora’s Box model. We focus on the Pandora’s box model

as this tractable setting allows us to explicitly construct regret-free stable outcomes and provide

intuition for differences from complete-information settings. Notably, unlike the standard proof

of existence in complete-information settings, the construction in our proof does not provide an

algorithm that reaches a regret-free stable outcome.

To prove the existence of market-clearing cutoffs, we note that the demand Dω0 (B) in the

Pandora’s Box model can be rationalized by a strict ordering over colleges which is independent of
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the student’s budget set. Namely, given ω0 ∈ Ω0 we construct a full information preference ordering

�ω0 such that for any budget set B the demand Dω0 (B) is identical to the demand of a student

with preferences �ω0 in a corresponding full information economy (despite the dependence of χ∗

on the budget set B).8 It follows that all structural results about the set of stable outcomes in a

full information economy can be directly carried over to the Pandora’s Box model.

Proposition 1 (Reduction to demand from complete information). Let ω0 ∈ Ω0 be an initial value

realization in the Pandora Box model. Let �ω0 be an ordering of C defined by

i �ω0 j ⇔ min {vω0
i , v

ω0
i } > min

{
vω0
j , v

ω0
j

}
.

Then for all B ⊂ C we have that
Dω0 (B) = max

�ω0
(B) .

The proof of Proposition 1 follows similar arguments in Kleinberg, Waggoner, and Weyl (2016),

and is provided in the appendix.

Note that Proposition 1 implies that even though the set of colleges B in a student’s budget

set will affect her inspection decisions, her final demand is the same as if she chose according to

the ordering �ω0 . In particular, to determine the demanded college Dω0 (B) it suffices to consider

the relationship between the n values min {vω0
i , v

ω0
i } without considering the effects of the set B

on how information is acquired. It is worth nothing, however, that the preferences �ω0 depend on

the realized values vω0 . Hence any student ω0 who only has initial information θ = θ (ω0) does not

a priori know their corresponding preferences �ω0 , and so a mechanism cannot rely on students

reporting �ω0 in order to implement a regret-free stable outcome.9

By Proposition 1, for any Pandora’s Box economy E we can construct a full information economy

Ẽ (as in Azevedo and Leshno (2016)) that has the same demand for any cutoffs.

Corollary 2. Let E = (C,Ω, η, q) be a Pandora’s Box economy. There exists a full information

economy Ẽ = (C, η̃, q) such that for any cutoffs P we have

D (P | η) = D (P | η̃)

Proof. Define the measure η̃ over [0, 1]C × L (C) by10

8In a full information economy, the demand of a student ω = (r, v) with ordinal preferences �ω (as induced by
her values v) is Dω(B) = max�ω (B).

9Furthermore, the demand of a student ω0 (equivalently, the corresponding preferences �ω0) may not correspond
to the preference ordering of a student who acquires all signals. For example, suppose there are two colleges at which
student ω0 has Pandora’s Box indices v1 = 4 and v2 = 3 and realized values v1 = 4 and v2 = 5. Then the student
will inspect the first college and stop, demanding the first college. Also, as required by Proposition 1, the preference
ordering �ω0 ranks college one first and then college two. However, the preference ordering of a student who has
acquired all signals is to rank college 2 first and then college 1 second.

10We use L (C) to denote all strict orderings over C
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η̃ (A) = η
({
ω0 ∈ Ω0 |

(
rθ,�ω0

)
∈ A

})
.

The result follows from the definition of demand and Proposition 1.

From Corollary 2, the demandD (·) given any Pandora’s box economy E = (C,Ω, η, q) is identical

to the demand of a full information economy. Since the same market-clearing condition characterizes

stable matching in full information economies, it follows that the regret-free stable outcomes of a

Pandora’s box economy E have the same attractive structural properties as the stable outcomes of

a full information economy.

Proposition 2. For every Pandora’s box economy E there exists a regret-free stable outcome and

the set of regret-free stable outcomes is a non-empty lattice.

Proof of Proposition 2. The set of market cutoffs for the full information economy Ẽ constructed

in Corollary 2 is a non empty lattice (Blair (1988) and Azevedo and Leshno (2016)). Since demand

under E and Ẽ is identical, the set of market clearing cutoffs for E is also a non-empty lattice.

Therefore, regret-free stable outcomes exist and form a lattice defined as follows. Let (µ, χ) , (µ′, χ′)

be regret-free stable outcomes and let P ,P ′ be the corresponding market clearing cutoffs. Define

the order B over outcomes by (µ, χ) B (µ′, χ′) if and only if Pi ≥ P ′i for all i.

Remark 1. Note that the proof of Proposition 2 does not require that E is a continuum economy. If

E is a discrete economy, we can construct a full information discrete economy Ẽ that has identical

demand. Since market clearing cutoffs for Ẽ form a non-empty lattice, the set of regret-free stable

outcomes of E forms a non-empty lattice.

One consequence is that there is a unique regret-free stable matching that is ex-ante optimal

for all students.

Proposition 3. For every Pandora’s box economy E there exists a unique student-optimal regret-

free stable outcome
(
µ†, χ†

)
that achieves the highest ex ante expected utility for each student type

out of all regret-free stable outcomes, that is, for any θ0 ∈ Θ0

Eω∼F θ0
[
vωµ†(ω) − c

ω
(
χ† (ω)

)]
≥ Eω∼F θ0

[
vωµ(ω) − c

ω (χ (ω))
]

for any regret-free stable outcomes (µ, χ).

The proof of Proposition 3 can be found in the appendix.

3.3 Existence and uniqueness of regret-free stable outcomes under WARP

In this section, we show that our results on the existence and structure of market-clearing cutoffs

extend beyond the Pandora’s Box model. Specifically, regret-free stable outcomes exist and form
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a non-empty lattice in any economy where student demand satisfies the weak axiom of revealed

preferences (WARP). This is somewhat surprising, given the strong requirement that in a regret-free

stable outcome each student has acquired information optimally, as if she were last to market.

Definition 6. Demand Dω(·) for a student ω satisfies the weak axiom of revealed preferences

(WARP) if Dω(B) 6= i⇒ Dω(B′) 6= i for all budget sets B ( B′ and colleges i ∈ B. We say that

E is an economy where demand satisfies WARP if Dω0(·) satisfies WARP for all ω0 ∈ Ω0.

In other words, a student’s demand satisfies WARP if, whenever colleges are added to the

student’s budget set, the student either demands the same college or one of the added colleges. An

immediate corollary of Proposition 1 is that demand always satisfies WARP in the Pandora’s Box

model. Beyond the Pandora’s Box model, the condition that demand satisfies WARP is not without

loss of generality. Indeed, WARP may be violated when there are informational complementarities

between colleges. For example, a student may have a signal (visiting a city) that is informative

about both colleges i1, i2 (both in the same city), but the signal is costly and only worth acquiring

if {i1, i2} ⊂ B. For such a student ω, it may be that Dω({i1, j}) = j but Dω({i1, i2, j}) = i1.

Theorem 2. For any economy E where demand satisfies WARP, the set of regret-free stable out-

comes forms a non-empty lattice.

Theorem 2 can be proved analogously to the proof of Proposition 2 by constructing a full-

information economy where each student has the same demand as in E ; the existence of such

an economy is guaranteed by WARP. Alternatively, Theorem 2 can be proved by replicating the

proof of Azevedo and Leshno (2016), which uses the weaker condition that aggregate student

demand satisfies weak gross substitutes. As it turns out, all the results in this subsection would

continue to hold if we relaxed the assumption that individual demands satisfy WARP and required

only that aggregate student demand satisfies weak gross substitutes. Moreover, while this gross

substitutes property is necessary for our theoretical result, we suspect that existence of a regret-free

stable outcome is likely to hold more generally in practice, similarly to the case of matching with

couples (Ashlagi, Braverman, and Hassidim, 2014; Kojima, Pathak, and Roth, 2013).

The equivalence between full-information economies and economies where demand satisfies

WARP also allows us to carry over sufficient conditions for the uniqueness of regret-free stable

outcomes. Intuitively, this equivalence requires the implied aggregate demand given the distribu-

tion of students η to be sufficiently smooth, as captured in the following definition.

Definition 7. (Azevedo and Leshno, 2016) A measure η is regular if the image under D (· | η) of

the closure of the set{
P ∈ (0, 1)C |D (·|η) is not continuously differentiable at P

}
has Lebesgue measure 0.

19



For example, any measure that has a piecewise continuous density satisfies regularity.

Corollary 3. Suppose η is a regular measure. Then for almost every q with
∑

i qi < 1, if demand

in the economy E = (C,Ω, η, q) satisfies WARP then E has a unique regret-free stable outcome.

Corollary 3 is a direct analog of Theorem 1 in Azevedo and Leshno (2016), and we omit the proof.11

4 Communication Processes and Information Deadlocks

In this section we show it is impossible for a clearinghouse to guarantee a regret-free stable outcome.

To formalize this impossibility, we define communication processes, which capture how information

is collected from and provided to students by a mechanism. The language of communication pro-

cesses also allows us to compare the information provided to students under different mechanisms.

4.1 Communication Processes

We first define communication processes. Our notation is meant to explicitly capture what the

mechanism knows; in particular we will not necessarily assume the mechanism has access to a

prior. Formally, a communication process is given by P = (θR, σ; ι, a,m). The reporting function

θR and information acquisition strategy σ describe students’ behavior. The initial information ι,

allocation function a and message function m describe the mechanism. Possible student reports

are given by the set ΘR, and possible mechanism messages are given by the setM. In each period

t, the students acquire signals as dictated by their information acquisition strategy and then send

a report to the mechanism; the mechanism in turn observes these reports and either chooses an

allocation or sends a message back to the students.

We first describe student behavior. The reporting function θR : Θ → ΘR specifies the report

θR (θ) a student sends to the mechanism when her inspection type is θ. Throughout, we assume

that θR (θ) correctly reports the publicly available priorities rθ, and further incorporates all the

information the mechanism has about student θ.12 We sometimes consider θR (θ) as an equivalence

class of Θ. The information acquisition strategy σ : Ω ×M → Ω specifies how students acquire

information, where σ (ω,m) ⊂ Πω is the set of all signals acquired by a student ω who receives

message m. We assume any information the student has about the economy E is provided through

the communication process. To capture this, we let m0 ∈ M denote the empty message, and let

σ (ω0,m0) denote the information acquired by a student ω0 ∈ Ω0 in the first period before the

student receives any messages from the mechanism.

11We note that while the model in (Azevedo and Leshno, 2016) is not precisely the same as the one considered
here, their argument is more general than stated and indeed their proof follows without change when applied to our
model.

12That is, we implicitly assume that θR (θ) also incorporates any relevant information that was disclosed in previous
reports. This is for notational convenience; we could alternatively record the history in the mechanism’s state space.
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We now describe the mechanism. The initial information available to the mechanism is given

by ι. We say that the mechanism has no initial information if ι = (q). The mechanism proceeds in

discrete time periods indexed by t ≥ 1. At each time t the mechanism learns the distribution ηtR
over student reports ΘR; we denote this distribution by ηR = ηtR when t is clear from context.13

The allocation function a takes the information ηR, ι, t and either decides to continue the process,

which we denote by a (ηR, ι, t) = “continue”, or decides to terminate and compute an allocation

a (ηR, ι, t) = µ. To capture that the mechanism can only distinguish between students θ, θ′ if

θR (θ) 6= θR (θ′), we require that the outputted assignment is given by µ : ΘR → Cφ.14 If the

mechanism decides to continue, the next round starts with a message from the mechanism to

students. The message function m (ηR, ι, t+ 1) ∈ MΘR sends to each student who in round t

reported θR ∈ ΘR a message in M; i.e. we allow the mechanism to send individual messages to

students based on their reports. We use m (θR; ηR, ι, t+ 1) ∈M to denote the message received in

round t+ 1 by a student whose report in round t is θR.

We say that economy E = (C,Ω, η, q) is compatible with communication process P = (θR, σ; ι, a,m)

if the reporting function θR : Θ → ΘR is defined for the type space Θ that corresponds to Ω. We

restrict attention to communication processes that terminate with an allocation for any compatible

economy, i.e., where student behavior and mechanism computation and communication is such that

for any economy E there exists a period t = t (P, E) at which the mechanism decides to terminate.15

We let P (E) = (µ, χ) denote the allocation µ suggested by the terminal message and the informa-

tion χ that has been acquired by students by the terminal time t, and call P (E) the outcome of P
on E .

Definition 8. Let P = (θR, σ; ι, a,m) be a communication process. We say that P is regret-free-

stable if for any compatible economy E we have that P (E) = (µ, χ) is a regret-free stable outcome

for E.

4.2 Examples of common communication processes and their properties

Our definition of a communication process is general enough to capture many common mecha-

nisms. For example, the one-shot college-proposing deferred acceptance mechanism (Gale and

Shapley, 1962) asks students (and colleges) to submit ordinal preference lists and then runs an

algorithm to determine the allocation. In canonical descriptions, the mechanism does not provide

any information to students to aid them in forming preference lists. Translating this to our lan-

guage, the corresponding communication process sends the empty message m0, students inspect

13With slight abuse of notation, the mechanism also learns the marginal density of ηtR conditional on any possible
rank r.

14That is, the assignment of a student θ whose most recent report is θR (θ) is µ (θR (θ)).
15One technical issue is that in continuum economies the standard DA algorithm may not terminate in finite time,

but rather converge to a stable matching. To avoid this complication, we allow for the communication process to
terminate at transfinite time.
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colleges according to some information acquisition process (defining σ) and send a message con-

taining their ordinal preference lists and college priorities (defining θR). The mechanism runs the

DA algorithm on reported preferences and priorities (captured by ηR), and outputs the resulting

assignment (a(ηR, q, 1) = µ).

The lack of information provision by one-shot DA can lead to very inefficient information ac-

quisition. Since students acquire information before learning their budget sets, it is straightforward

to see that under any student information acquisition strategy σ, the resulting communication pro-

cess can either lead to a non-stable outcome (e.g., if students only inspect one college), or to an

outcome where students regret their inspection decisions (e.g., if students inspect all signals). In

Appendix A we provide examples of economies in which any one-shot communication process leads

to regret for an arbitrarily large fraction of the students.

Some clearinghouses have recognized the importance of providing information to students, and

so have implemented versions of DA that incorporate information provision. For example, the

SISU mechanism used in Brazil (Bo and Hakimov, 2017) and the assignment mechanism used in

Inner Mongolia (Chen and Pereyra, 2015) aim to provide applicants with better information by

running several simulation rounds in which students participate in non-binding DA before running

a final and binding round of DA. The SISU mechanism gives a communication process with T

periods. In each period: (1) students acquire signals and (2) report a preference list; and (3)

the mechanism runs DA on the submitted preferences and sends each student their assignment

under the computed student-optimal stable matching. The periods 1, . . . , T − 1 serve as practice

rounds, and the assignment is entirely determined by the students’ final reports in the T th period.

Translating this mechanism to our language requires us to specify students’ information acquisition

strategies σ and report functions θR. Two immediate concerns arise. First, reports sent by students

in periods 1, . . . , T −1 are “cheap talk”, and thus messages sent by the mechanism in these periods

may not be informative.16 Second, if messages are informative, students may want to observe these

messages before acquiring information, and so may want to delay their information acquisition to

later periods. In other words, messages may not be informative, and if they are informative then

this may incentivize students to delay acquiring the information required to make them informative.

An iterative implementation of the college-proposing deferred acceptance mechanism (ICPDA)

circumvents these issues by taking advantage of the fact that colleges know their ranking of students.

We prove that this mechanism outputs regret-free stable outcomes for a class of economies. For

expository convenience, we focus attention on the Pandora’s Box model. We define the ICPDA

process PICPDA = (θR, σ; ι, a,m) using our language of communication processes. The reports θR ∈
ΘR label each college as “tentatively accepted”, “rejected”.17 The messages m ∈M correspond to

16For example, some students may change their reported preferences from period to period as they acquire new
information, which could lead other students to make inaccurate inferences about their budget sets. Bo and Hakimov
(2017) analyze whether students may want to misreport their preferences in cheap-talk rounds in a full information
environment. Theorem 3 will imply an impossibility result regardless of whether students are truthful or not.

17The reports also contain the college priorities of a student; we suppress that in this notation.
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subsets of colleges. The information acquisition strategy σ(ω,m) acquires signals from all colleges

i ∈ m. The mechanism has no initial information (i.e., ι = (q)).

ICPDA proceeds over a number of periods, where colleges propose to students and students

acquire more information, accept at most one proposal and reject the rest. Students inspect nothing

and report nothing in period t = 1.18 In every period t ≥ 1, colleges propose to the top ranked

students who have not yet rejected them; i.e., college i proposes to all students ω for whom there are

at most qi students with higher rank than ω at i who have not yet rejected i. This is implemented

by sending the message mt = m (θR (ω) ; ηR, ι, t) ⊂ C consisting of the set of colleges that propose

to student ω in period t. In periods t > 1, students follow the all-inspecting strategy σ (ω,m) =

{i ∈ ∪t′≤tmt′}, where they collect signals from all colleges that have proposed to them. They then

report a message which tentatively accepts the single college they most prefer out of ∪t′≤tmt′ and

rejects all other colleges in ∪t′≤tmt′ . The mechanism stops and outputs the current assignment as

specified by the tentative acceptances when there are no further proposals.

The following proposition shows that the information provided by the iterative process can help

facilitate more efficient information acquisition, albeit in a restrictive setting where students wish

to inspect any college that is interested in admitting them.19

Proposition 4. Let E = (C,Ω, η, q) be a Pandora’s Box economy. Suppose that students wish

to inspect any college in their budget set, that is, for any ω ∈ Ω and budget set B, we have that

χ∗ (ω,B) = B. Then PICPDA (E) is a regret-free stable outcome.

The proof uses the fact that when χ∗ (ω,B) = B, in a regret-free stable outcome students collect

signals exactly from all colleges in their budget set. Under ICPDA, a student receives offers exactly

from all the colleges in their budget set. In particular, students are provided enough information

to ensure that every inspection is part of the optimal information acquisition, and student reports

allow the mechanism to make sufficient progress.

When colleges have identical rankings over students, there is a different version of ICPDA,

often called iterative serial dictatorship (ISD), that results in regret-free stable outcomes. The

ISD communication process identifies students whose budget sets are fully determined, and asks

only those students to acquire information and report their demand. It does so by tracking the

remaining capacity qtc for each college c and period t. At period t the budget set for the top

minc:qtc>0 q
t
c students who have not yet inspected is fully determined and equal to {c : qtc > 0}.

The process sends a message m = {c : qtc > 0} to these top remaining students, and messages all

other remaining students they should wait. Students optimally inspect χ∗ (ω,B) immediately after

learning their budget set B = m, and the process updates remaining capacities according to their

18That is, σ (ω,m0) = φ and θR (θ) = φ for any θ ∈ Θ0.
19The informational benefits of ICPDA have been identified previously in the literature, e.g. Rastegari, Condon,

Immorlica, Irving, and Leyton-Brown (2014) showed that ICPDA minimizes interview costs, and that having the
informed side move first improves informational efficiency.
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reported demands. Intuitively, this results in a regret-free stable outcome because students only

perform inspections once their entire budget set is revealed to them.

While both our initial descriptions of ICPDA and ISD can be thought of as iterative college-

proposing DA, they take very different approaches to guiding students’ information acquisition.

This can be seen in their different messaging and information acquisition functions: ICPDA sends

a message to a student whenever a college is guaranteed to be in their budget set about a given

college as soon as it is in their budget set; ISD sends a message to a student only once their budget

set is fully determined. The two mechanisms exploit different special features of the economy: The

success of ICPDA (Proposition 4) relies on the fact that students find it optimal to inspect a college

given knowledge that it is in their budget set (which is not the case for the student in Example

1). The success of ISD relies on the fact that it can always fully determine budget sets for some

remaining students. It is clear that neither process will be regret-free stable without these special

assumptions. In the next section we explore whether a communication process can reach regret-free

stable outcomes in general settings.

4.3 Information Deadlocks and an Impossibility Result

Given that regret-free stable outcomes exist, a natural question is whether it is always possible to

find them without causing regret. We focus on a class of communication processes that do not use

initial information beyond the college capacities (i.e., ι = (q)). This class includes many standard

implementations of common mechanisms (including ICPDA, DA, and SISU etc.). We find that no

process from this class can guarantee a regret-free stable outcome on general markets. In other

words, price-discovery is costly: these processes cannot find the market clearing cutoffs without

imposing some regret on some students.

The impossibility stems from the existence of information deadlocks, where the communication

process cannot uncover sufficient information to safely collect more information. In particular, the

impossibility result holds even if the mechanism could dictate how students should inspect (i.e.,

the impossibility holds even ignoring any incentive constraints).

Example 1 provides some intuition for why information deadlocks can arise. The student in

Example 1 has partial knowledge of her budget, but this knowledge is insufficient to determine which

signal to acquire (in particular, the information provided by ICPDA is insufficient). A student’s

budget set may depend on other students’ signal realizations. An information deadlock arises when

all students are simultaneously in this situation: each student requires more information about

their budget set in order to proceed, but this depends on the signal realizations of other students

who are likewise waiting for more information before obtaining additional signals.

We now formalize the notion that a student may wish to delay information acquisition until she

has obtained more information about her budget set.

Definition 9. A student of type θ0 ∈ Θ0 is stagnant given budget sets B,B′ if χ∗ (ω0, B) 6= φ and
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χ∗ (ω0, B
′) 6= φ for all ω0 ∈ θ0, but

∩ω0∈θ0
(
χ∗ (ω0, B) ∩ χ∗

(
ω0, B

′)) = φ .

A student is stagnant given B,B′ if she finds it optimal to acquire more signals if her budget

set is either B or B′, but any signal she acquires would lead to suboptimal information acquisition

under one of B or B′. In other words, if a student is uncertain whether her budget set is B or

B′, no signal she acquires guarantees optimal information acquisition. Note that a student is never

stagnant given B = B′, as by the definition of χ∗ the first signal the student acquires depends only

on the observable state θ and the budget set B.

There will always exist stagnant students for any sufficiently rich student state space. Formally,

the following lemma shows that for any two budget sets B,B′ the Pandora’s box model contains

student types that are stagnant given B,B′.

Lemma 2. For any two distinct budget sets B 6= B′ ⊆ C the Pandora’s box model includes a

student type θ0 that is stagnant given B,B′.

In a discrete economy, aggregate demand is uncertain even if the mechanism collects all of the

initial information available to students. In a continuum economy there is no aggregate uncertainty,

as the demand of a mass of students with known types can be perfectly predicted. To prevent the

process from “abusing” the continuum model, we require that the reporting function satisfies the

following mild assumption. This assumption ensures the process faces uncertainty about aggregate

demand even after receiving initial reports from all students.

Definition 10. A reporting function θR : Θ → ΘR maintains aggregate uncertainty if for every

θ0 ∈ Θ0 and budget sets B,B′ such that θ0 is stagnant on B,B′, and every ε > 0 and i ∈ B, there

exists θ′0 ∈ Θ0 such that θR(θ′0) = θR(θ0), θ′0 is stagnant on B,B′, and D
θ′0
i (B) > 1− ε.

Formally, the definition asks that given the information reported by a mass of students together

with the information that these students are stagnant given B,B′ is insufficient to rule out that

almost the entirety of this mass of students will demand any college from B. This assumption

will be violated if students fully report their types (which requires students to report their prior

distributions). This assumption is satisfied in discrete economies. We show that it is also satisfied

for a natural reporting function for the Pandora’s box model, in which students report both their

strategies for acquiring information as well as all signals they have acquired.

Lemma 3. Consider the Pandora’s box model and the reporting function θR where students report

all their acquired signals and their indices. That is,

θR (θ) =
(
rθ,Πθ, cθ, χθ, {π (v)}π∈χθ ; vθ

)
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where vθ is the vector of the student’s inspection indices (as defined in Lemma 1). Then θR main-

tains aggregate uncertainty.

We are now ready to state our main impossibility result: for domains that are at least as general

as the Pandora Box domain, no communication process can guarantee a regret-free stable outcome.

Theorem 3. Let P = (θR, σ; ι, a,m) be a communication process defined over Θ. Suppose that Θ

includes all the Pandora’s box types, θR maintains aggregate uncertainty, and the process has no

prior information (i.e., ι = q). Then P is not regret-free stable. Moreover, there is a constant β > 0

(independent of P) such that there exists an economy where at least a β fraction of the students

acquire information suboptimally under P.

Theorem 3 together with Theorem 2 shows that the difficulty lies in discovering regret-free stable

outcomes without incurring additional costs, rather than guaranteeing their existence. Previous

impossibility results for matching under incomplete information found that a stable matching may

not exist. In contrast, in our model when demand satisfies WARP a regret-free stable outcome

is guaranteed to exist. The challenge stems from the fact that even given the knowledge that a

regret-free stable outcome exists, the communication process still needs to collect information from

students to find such an outcome. Theorem 3 shows that collecting the required information to

find a regret-free stable outcome necessitates making a positive fraction of all students acquire

information suboptimally and incur regret.

The following example provides some intuition for the proof of Theorem 3. It describes a

Pandora’s Box economy in which each student’s budget set can be one of two possibilities. The

student is stagnant given the two possible budget sets, and her actual budget set depends on other

students’ signal realizations. These dependencies form a cycle that constitutes an information

deadlock.

Example 3. We construct a collection of Pandora’s box economies with three groups of students

X,Y, Z each of mass 1/3, and three colleges {1, 2, 3} each with capacity 2/3.20 Students in X and

Y are top-ranked at college 3; students in Y and Z are top-ranked at college 1; and students in Z

and X are top-ranked at college 2. As students in X are top-ranked at colleges 2 and 3, and bottom-

ranked at college 1, they either have the budget set B = {1, 2, 3} or B′ = {2, 3}, depending on the

demand of students in Y and Z. We can construct Pandora types for students in X (similarly to

Example 1) such that all students in X are stagnant given B,B′ (and symmetrically for Y, Z).

Consider a communication process that aims to learn the actual budget sets by having the stu-

dents acquire information. Students in X need to know the decisions of students in Y ∪Z to know

their budget sets, and likewise for students in Y,Z. Thus, any students who are the first to inspect

may acquire information suboptimally and the outcome of the process may not be regret-free stable.

20Strictly speaking, our model requires that total capacity exceed the mass of students; this can be satisfied in any
economy by adding dummy students with low priority at every college.
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This example can be formalized to show that any communication process which maintains

aggregate uncertainty must ask some stagnant student to acquire information. The formal con-

struction creates a collection of economies that cannot be distinguished based on reports before

students have acquired information. For each possible choice of a first student to inspect and each

of her possible inspections, there exists an economy in the collection where this inspection leads to

suboptimal information acquisition.

Theorem 3 applies to common implementations of assignment mechanisms, including ICPDA,

Probabilistic Serial, and the one-shot Boston mechanism, and implies that they are not regret-free

stable. That is, under commonly-used mechanisms, students can benefit from delaying their infor-

mation acquisition until after the market resolves. Practical implementations of these mechanisms

therefore impose deadlines, “exploding offers,” or other activity rules to force students to collect

information early and make decisions before the rest of the market resolves. Theorem 3 implies that

these approaches must necessarily impose additional price-discovery costs on students. But even

though some price-discovery costs are unavoidable, it is not clear that the costs imposed by these

commonly-used mechanisms are anywhere near the minimal possible costs. In the next section we

employ an alternative design approach to better inform students and reduce price-discovery costs.

5 Implementing Regret-Free Stable Outcomes

Our results highlight the role of matching markets in facilitating price discovery. Section 3 showed

that regret-free stable outcomes exist, and are equivalent to market-clearing cutoffs. Section 4 high-

lights that the challenge in implementing a regret-free stable matching is in efficiently discovering

such market-clearing cutoffs, without incurring excessive price-discovery costs.

These results suggest a two-stage approach to designing matching mechanisms that differs from

the prevalent matching mechanism design paradigm. In a first stage, the mechanism engages in

price discovery to learn market-clearing cutoffs. In a second stage, the mechanism publishes the

learned cutoffs, thereby determining the allocation and guiding student information acquisition.

While such a two-stage approach differs from the mechanisms typically suggested in the matching

literature, such mechanisms are common practice in combinatorial auctions (Ausubel and Baranov,

2014; Levin and Skrzypacz, 2016). Since Theorem 3 shows that no mechanism can guarantee a

regret-free stable outcome without prior information, any such mechanism will either have to exploit

some prior information, or only obtain approximate regret-free stability.

We address challenges with this approach by discussing several implementations of two-step

mechanisms. One challenge is that learned cutoffs may be noisy, and will not exactly clear the

market. Section 5.1 models the approximation error when are cutoffs estimated from external

historical data, and shows that a second stage with flexible capacities can address approximation

errors. Another challenge is that, absent external information sources, the first stage needs to learn

the cutoffs at minimal cost to students. Section 5.2 considers two possible first-stage methods of
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learning cutoffs by estimating demand from a sample of students.

5.1 Price-discovery from historical information: Handling estimation errors

Many admission systems operate year after year, and many real life mechanisms exploit the infor-

mation revealed by admission in previous years (see Section 6). We model the annual variations

in the economy from year to year by modeling each year as a finite sample of students from the

same continuous population distribution. This allows us to assess the resulting estimation error for

a mechanism that uses historical data to learn approximate market clearing cutoffs, and suggest

how the mechanism can address this challenge.

Formally, a finite economy21 is given by E = (C,Ω, S, q), where S ⊂ Ω0 is a finite set of

students and q ∈ NC is the number of seats at each college. We interpret such an economy as

being equivalent to a continuum economy
(
C,Ω, ηS , q

)
where ηS has |S| equally sized atoms on

S, with three changes. First, the distribution of realized values does not need to be consistent

with students’ priors. Second, the total mass of students is scaled to be |S|, rather than 1. Third,

indifference curves contain at most one student.22

Given population E = (C,Ω, η, q), we let Ek =
(
C,Ω, Sk, qk

)
denote a finite economy of k

randomly sampled students, where Sk is a set of k students drawn independently from η and the

scaled capacities are qk = bqkc.
Consider a mechanism that operates over many years, and each year faces a sampled economy

Ek from the same population E . Over the years the mechanism can learn the population E , while

each year Ek is unknown until students report their preferences. We thus consider the following

communication process which has oracle access to the market clearing cutoffs of the population E .

Definition 11. The Historical Cutoff Process PH = (θR, σ; ιH , a,m) is defined for k sampled

economies Ek. The process knows the market-clearing cutoffs P ∗ of the population E through the

oracle ιH = (q,P ∗). The process posts P ∗ and assigns each student ω ∈ Ω to µ(ω) = Dω(P ∗).

While historical data will only provide an approximation to market-clearing cutoffs, the follow-

ing proposition shows that the noisy estimates are sufficient if it is possible to perturb capacities

(see Section 6), allowing PH to produce an approximately regret-free stable outcome.

Proposition 5. Given any population E and ε > 0 there exists K such that for any k > K the

outcome of the process PH on economy Ek sampled from E is regret-free stable for the perturbed

college capacities q̂k where P
(
‖q̂k − qk‖1 > k · ε

)
< ε.

21We note that the definitions of stability and regret-free stability ignore the effect of a student on her budget set,
and there are examples of finite economies where our definition of Bω (µ) does not properly capture the set of colleges
a student ω can be admitted to (see Appendix E). However, previous theoretical results (Azevedo and Leshno, 2016;
Menzel, 2015) show that such issues arise only in knife-edge cases.

22That is, we generally have that ηS ({ω = (θ, v) | θ ∈ A, v ∈ V }) 6=
∫
θ∈A F

θ (V ) dν (θ), for any x we ask that

ηS ({ω ∈ Ω0| rωi = x}) ∈ {0, 1}, and the total mass of students is ηS(Ω0) = k. In addition, feasible outcomes must be
integral (i.e., assign the same information and college to each atom of students).
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The historical cutoff process engages in price discovery over many years, rather than fully dis-

covering market clearing cutoffs in a single year. If the mechanism does not have access to the

population cutoffs, similar arguments can be used to show that posting the market-clearing cutoffs

from a previous year (i.e. another randomly sampled economy Ẽk from the same underlying distri-

bution) will result in an outcome that is regret-free stable with respect to slightly more perturbed

capacities (see Appendix D for further details.). Also note that this approach does not require any

additional knowledge beyond historical market-clearing cutoffs, and its second stage can be a very

simple assignment mechanism.

5.2 Price-discovery by sampling students

When historical information is not available, the mechanism must engage students for price dis-

covery. Fortunately, the cutoff structure pinpoints the information that the mechanism needs to

obtain. In particular, it is sufficient for the mechanism to learn aggregate demand, which can be

readily learned from a subsample of students. Thus, a natural approach is for the mechanism to

survey a subset of students in a first stage, obtain an estimate of demand, and calculate the cutoffs.

In the second stage the mechanism posts the cutoffs, and deals with approximation errors with

perturbed capacities, as in Section 5.1.

We consider two versions of this natural sampling approach. The first, random sampling, can be

applied to general economies, but requires surveyed students to inefficiently acquire information.

The second targets specific students to minimize price discovery costs, but requires structural

assumptions.

5.2.1 Random sub-sampling

A natural approach to price discovery is to estimate demand by surveying a random sample of

students.23 For any cutoffs P we can identify the demand D(P ) from samples of student demand

Dω(P ), ω ∼ η. However, note that a sampled student ω needs to acquire the signals χ∗ (ω,Bω(P ))

and report what would be her most preferred college if she only acquired these signals.

To illustrate why a naive approach that asks students to report their preferences (given their

current information) will fail to correctly identify demand, consider sampling a population of stu-

dents θ with preferences as defined in Example 1. Suppose that we are interested in estimating

Dθ(P ) such that the student’s budget set is Bθ(P ) = {2, 3}. If χθ = {1}, i.e., the student only

knows her value at college 1, and she determines her preferences by comparing expected values

given current information, she will report the preferences 2 � 3, as her perceived expected values

are v̂θ2 = 3 > v̂θ3 = 7/3 . If the student has collected all signals according to inspection rule ϕ, i.e.,

23A line of literature within optimal auction design leverages samples from valuation profiles, for example using
samples to set optimal reserves (Cole and Roughgarden, 2014; Elkind, 2007; Medina and Mohri, 2014; Morgenstern
and Roughgarden, 2015).
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χθ = χϕ(ω,B) = {1, 2, 3}, then Dθ,ϕ(Bθ(P )) = (0, 1/3, 1/3). If the student acquires information

optimally given Bθ(P ), because of the endogenous information acquisition Dθ(P ) = (0, 1/2, 1/6).

The mechanism can identify the entire demand function D(·) by randomly sampling students

from Ω according to the measure η, and asking each sampled student to report their demand Dω (B)

for each possible budget set B ⊂ C. This requires each sampled student ω to acquire the set of

signals ∪B χ∗ (ω,B) and incur the costs associated with doing so.

Definition 12. The random sampling communication process PRS,` has two periods. In the first

period the mechanism learns demand by randomly sampling a set S of ` students and asking them to

report their demand from each possible budget set. In the second period the mechanism publishes a

market clearing cutoff P̂ for the estimated demand. Students ω ∈ Ω \S optimally acquire informa-

tion given P̂ , and all students ω ∈ Ω are assigned to µ (ω) = arg max{v̂θ(ω)
i | i ∈ Bω(P̂ )∩Ψ(θ(ω))}.

We show this random sampling mechanism yields an outcome that is approximately regret-

free in the sense that only sampled students S have not acquired information optimally. As in

Section 5.1, we can absorb the noise due to sampling error by perturbing college capacities. We

leave further study of the estimation process for future work.

Corollary 4. For any economy E = (C,Ω, η, q) and ε > 0 there exists K such that for any ` > K

the communication process PRS,` on economy E produces an outcome that is stable with respect to

capacities q̂, where P (‖q̂ − q‖1 > ε) < ε. Moreover, all students in Ω \S have acquired information

optimally and so have no regret.

The random sampling communication process does not guarantee a regret-free stable outcome

(as implied by Theorem 3) because it makes the sampled students bear the cost of price discovery.24

The students sampled in the first period provide a public good. By performing additional informa-

tion acquisition they facilitate price-discovery, allowing the mechanism to learn the market-clearing

cutoffs and reducing the information acquisition costs for all other students. However, sampled

students would prefer others to bear this cost, giving rise to a situation akin to the Grossman and

Stiglitz (1980) paradox, where no agent wants to be surveyed and bear the cost of price-discovery.

5.2.2 Targeted sampling

Instead of randomly sampling students, the mechanism may try to collect preference information

from students who can optimally acquire information optimally without any input from the mech-

anism. A student θ with rθi ≥ 1− qi is guaranteed to have college i in her budget set, regardless of

the preferences of other students. Similarly, when all students find all colleges acceptable, student

θ with rθi < 1−
∑

j qj is guaranteed to not have college i in her budget set. Thus, a student θ such

24It also requires a perturbation to capacities that can be made arbitrary small with high probability by increasing
the sample size.
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that rθi 6∈ [1 −
∑

j qj , 1 − qi] for all ∈ C knows her budget set. Such students can be identified by

their priorities. By asking these students to acquire information optimally in the first period, the

mechanism can access their demand as ”free information”.

Because such students are a selected sample, an additional assumption is necessary to allow

the mechanism to identify demand from sampled students (as it is possible that demand of these

students systematically differs from the demand of other student groups). As an illustration, we

present a natural structural assumption that allows the mechanism to allows the mechanism to

estimate demand and discover market clearing cutoffs from free information.

Definition 13. A Pandora’s box Multinomial Logit (MNL) economy E(Γ) = (C,Ω, η, q) is a Pan-

dora’s Box economy parametrized by Γ = (δ1, . . . , δn, c1, . . . , cn). For any student θ ∈ Θ, the cost

of each signal is cθi = ci and the prior distribution F θ over values vωi is given by vωi = δi + ε where

δi is common to all students and ε ∼ EV [0, 1] is an i.i.d. extreme value draw (McFadden, 1973).

All students prefer all colleges over being unassigned.

Note that the index vi is a strictly monotonic function of ci (Lemma 1), and therefore we can

equivalently parameterize the economy by Γ = (δ1, . . . , δn, v1, . . . , vn). We say that the economy is

ordered if colleges are labeled in order as their indexes, i.e., v1 ≥ v2 ≥ · · · ≥ vn.

Observing demand Dθ(C) of students with budget set B = C is insufficient for identifying all

2n parameters Γ = (δ1, . . . , δn, c1, . . . , cn). For instance, demand Dθ
i (C) may be low because the

cost of inspection ci is high, or because the expected value δi is low. We show that it is possible to

identify all 2n parameters by observing demand given just two budget sets.

Proposition 6. Let E(Γ) be an ordered Pandora’s box MNL economy. Then Γ is identified from

Dθ(C) and Dθ(C \ {n}).

The proof of Proposition 6 is constructive, and relies on closed-form expressions for demand in

a Pandora’s box MNL economy, which may be of independent interest (see Appendix F).

We say that an economy has free information if both sets of students {θ ∈ Θ | rθi > 1−qi ∀i} and

{θ ∈ Θ | rθi > 1− qi ∀i 6= n, rθn < 1−
∑

j qj} have positive mass. We abstract away from estimation

error, and assume in free information economies the mechanism can ask students in these sets to

optimally acquire information given budget sets C, C\{n} and perfectly learn Dθ(C) and Dθ(C\{n})
from observed demand. The following communication process exploits the identification result of

Proposition 6 to discover the market-clearing cutoffs from free information.

Definition 14. The MNL targeted sampling communication process PMNL−TS is defined for or-

dered MNL economies with free information. In the first stage, the process identifies a set of

students S with free information, and asks these students to acquire information according to their

optimal information acquisition strategy, and report back their demanded college. From Proposition

6, learning the demand of these students allows the process to identify Γ, and thus also learn the
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demand distribution, and its market-clearing cutoff P . In the second period the mechanism pub-

lishes P . Students ω ∈ Ω \ S optimally acquire information, and all students ω ∈ Ω are assigned

to µ (ω) = Dω(P ).

Students in S have acquired information optimally, and as in Section 5.2.1 students in Ω \ S
have acquired information optimally. As this process results in a precise determination of the

market-clearing cutoffs, we conclude that the resulting mechanism is indeed regret-free stable.

Corollary 5. The communication process PMNL−TS produces a regret-free stable outcome for any

ordered MNL economy with free information.

As in Section 5.1, flexibility in the capacities can absorb errors in the estimation of Γ. We leave

a more thorough econometric analysis of the estimation error in Γ̂ in finite economies (and the

corresponding required flexibility in capacities) to future work.

6 Survey of Admission Systems

Our theoretical results suggest mechanisms ought to provide students with information to guide

their acquisition processes. To understand the prevalence of such guidance in practice, we surveyed

college admission systems in OECD countries as well as the two most populous nations in each

continent.25 We found that, in accordance with our theory, many admissions systems provide appli-

cants access to information about their admission chances. Such information is provided in systems

using a range of mechanisms, from one-shot centralized mechanisms like deferred acceptance, to

systems with dynamic mechanisms that collect preferences and form matches in a decentralized

manner. This suggests that admission officers consider providing information to applicants about

their admission chances to be an essential feature of good design.

Two challenges arise when systems try to provide this information to applicants. The first

challenge is that students need to know how each program will evaluate their application in order

to predict their admission chances. In some countries, notably the USA, applications include essays

and other materials that are evaluated subjectively. This can make it difficult to provide students

with personalized predictions about their admission chances. A similar issue arises when entrance

is based on exams with undisclosed results, such as national exams with grades that arrive after

applications are submitted (e.g. UK), or college-specific entrance exams (e.g. Japan). In contrast,

in many other countries college admissions are entirely determined by performance in national

exams, and students have access to these exam scores prior to the application process.26 While

25Neilson (2020) and Grenet, He, and Kübler (2019) provide complementary surveys of admission systems. The
website www.matching-in-practice.eu provided us with a lot of valuable information about European matching
systems.

26We note that even in the USA, the SAT score is a major admission criterion available to students prior to the
application process, and, while applicants face considerable uncertainty about their admission chances, they also
have a great deal of personalized information provided by high school guidance counselors regarding their chances at
different colleges.
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admission criteria may differ from program to program (for example, different programs may use

different weighted averages of exam grades), it is common for programs to provide students with

information about the exact admission criteria, and even online calculators that provide students

with their exact score.

The second challenge is that students need to know if their score is sufficiently high for admission

to a program in the current year. In our model, this is equivalent to knowing the cutoffs for

each college. For programs that guarantee they will accept any adequately qualified candidate

(for example, most programs in Austria, Belgium, and the Netherlands), the cutoff is given by a

qualification requirement (which does not depend on other students). More generally, programs

with limited capacity will make admission decisions based on the student score in comparison to

other students, so the cutoff is determined by the preferences and relative performance of other

students. Uncertainty about other students therefore implies that cutoffs are uncertain. Many

systems make historical cutoff information publicly available, providing students with an estimate

of the cutoff they will face. We were able to collect a time series of cutoffs over the years in several

countries, and found that for the most part cutoffs are stable from year to year, and historical

cutoffs provide a relatively accurate prediction of admission chances. Such systems are very much

in line with our suggested Historical Cutoff Process (Definition 11).

Two of the programs we surveyed are notable in how their implementation aligns with our

theory. The Australian Universities Admissions Center (UAC) provides a centralized admission

system for Australian universities. The UAC informs students of their exact percentile rank at

each program.27 Some programs, including most programs at the University of Sydney, additionally

publish admission cutoffs and commit to admitting any applicant whose score is above the cutoff.28

These cutoffs are published well in advance of student applications and so, when students choose

programs to apply to, they know where they will be accepted (see Figure 1). The university website

does not provide students with information about the assignment mechanism.

Under the commitment to accept all applying students that pass the cutoff, programs have

limited control over the sizes of their incoming classes, and need the flexibly to adjust capacities.

We see the associated costs as further evidence to the importance of providing information about

admission chances to students. However, the time series of annual cutoffs suggests that the amount

of flexibility required is not large, as cutoffs and enrolments are stable over time. This system is

therefore almost an exact parallel to our suggested Historical Cutoff Process (Definition 11)..

The Israeli university admission process provides another example of the approach suggested

by our theory, implemented in a decentralized manner. In Israel, students submit a separate

application directly to each university. Each university assigns a score to each student that is a

27https://www.uac.edu.au/future-applicants/atar/how-to-get-your-atar
28https://www.sydney.edu.au/study/how-to-apply/undergraduate/guaranteed-atar.html,

https://www.sydney.edu.au/content/dam/corporate/documents/study/how-to-apply/domestic-admission-
criteria.pdf
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(a) Screenshot from University of Sydney Domestic Admission Criteria 2020, available online at
https://www.sydney.edu.au/content/dam/corporate/documents/study/how-to-apply/domestic-admission-
criteria.pdf

(b) Screenshot from University of Sydney’s website providing information to prospective students, available
online at https://www.sydney.edu.au/study/how-to-apply/undergraduate/guaranteed-atar.html

Figure 1: University of Sydney commits to published admissions cutoffs
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function of their test scores in standardized national exams, but different universities use different

formulas to compute these scores. Universities provide websites that allow students to learn their

university-specific score.29 These websites also inform students of their admission chances to the

various programs. Well before students submit their applications, the Tel Aviv University website

publishes a pair of thresholds for each program: students with a score above the higher threshold are

guaranteed acceptance, and students whose scores are below the lower threshold are certain to be

rejected. Students with intermediate scores between the two thresholds can submit an application,

but need to wait until the decentralized application process resolves before learning whether they

are accepted.

(a) Screenshot from Tel Aviv University’s admis-
sion website showing the student score (619) and
the accept/reject thresholds for different programs.
”Acceptance” is in green, ”rejection” is in red.
In the second row the student is neither accepted
or rejected. The website is accessible online at
https://go.tau.ac.il/b.a/calc.

(b) Screenshot from the Technion’s admission
website showing estimated admission thresh-
olds. These estimates are available to students
year round. The website is accessible online at
https://admissions.technion.ac.il/en/english/general-
admission-requirements/.

Figure 2

This approach combines an initial threshold-publishing stage, as we describe in Section 5.1,

with a decentralized market clearing through an admission offers and waiting lists. Tel Aviv

University’s website updates during the admission season to quickly inform students about the

narrowing gap between the admission and rejection thresholds. Relative to a system with pure

pre-published cutoffs — like the UAC programs described above — this mechanism requires less

flexibility with capacities, since it can implement any cutoff that lies between the two thresholds.

And while students with intermediate scores for a given program may still need to engage in

wasteful information acquisition, most students know their admission prospects. The mechanism

can therefore be seen as trading off between capacity flexibility for colleges and information demands

imposed on the students. We note also that despite being decentralized, this admission system has

29See for example: https://in.bgu.ac.il/welcome/Pages/Rishum/what_are_my_chances.aspx, http://

bagrut-calculator.huji.ac.il/, https://go.tau.ac.il/calc3 (retrieved April 2020).
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been operating successfully for many years.30 This is in contrast with the unraveling of similar

decentralized matching markets that do not provide similar information to applicants.

A great deal of theoretical and empirical evidence suggests that stability is a crucial determinant

of the success of a matching market (e.g., Roth (1984), Roth (1991), Roth and Xing (1994)).

Motivated by this, a large body of literature has offered clearinghouses algorithmic solutions that

ensure stability. These algorithms typically assume that students know and are able to report their

full preferences, and do not account for the costs of acquiring this information. Our theory and

survey show that, in many applications, providing students with information about their admission

chances can help address both stability and information acquisition. For example, when the system

has been running for many years, providing students with historical cutoff information can lead to

a stable outcome while helping students acquire information efficiently. Moreover, our survey of

college admissions systems indicates practitioners make substantial efforts to provide students with

cutoffs and other information about their admissions chances. Taken together, we hope that our

work encourages further research by market designers on solutions that combine algorithmic design

with information provision.

30In private conversation, Israeli university admission officers argued that systems remained decentralized despite
attempts by the government to centralize the process, because the success of the current admission systems removes
the need for a nationally centralized process.
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A Informational Inefficiency of One-Shot Processes

We now demonstrate that standard communication processes can fail rather spectacularly in learn-

ing market-clearing cutoffs and alleviating the costs associated with information acquisition. In-

tuitively, in communication processes that maintain aggregate uncertainty, students need to know

other students’ choices in order to determine their optimal inspection strategy. Thus, in general,

the student who performs the ‘first’ inspection will incur additional inspection costs.

Standard deferred acceptance processes, implemented as one-shot processes where students

submit their full preference lists, perform especially poorly. This is because students are given

almost no information about their choices before deciding on their inspection strategy. While in

some settings regret can be eliminated by allowing for multi-round processes, we prove the stronger

result that for general economies even multiple-round processes must either force some students to

acquire information suboptimally, or create an information deadlock, where every student waits for

others to acquire information first.

To demonstrate the issues in computing regret-free stable outcomes, consider an economy in

which each student is willing to inspect any college as long as it is in their budget set. We may view

such an economy as a setting where the costs affect which colleges students are willing to inspect,

but not the order in which they are willing to inspect them. Examples of such economies include

those in the Pandora’s box model where E[vθi ] =∞ for all θ ∈ Θ that have not yet inspected i.

If each student is uncertain about aggregate demand, then the standard implementation of

deferred acceptance as a one-shot process will not be regret-free even in this special case. This is

because students’ budget sets will depend on the preferences of other students, and so students

who have low priority at the colleges they prefer are likely to acquire information suboptimally. We

illustrate this in the following example.

Example 4. Consider a continuum economy E = (C,Ω, η, q) with n colleges C = {1, . . . , n} each

with capacity qi = 1/n. Suppose that college priorities are perfectly aligned, i.e. rωi = rωj for all

ω ∈ Ω, i, j ∈ C.

Let Ω∗ ⊂ Ω be the subset of students of measure η(Ω∗) = 1/n with highest rank. Let Ω̄ = Ω\Ω∗

be the remaining students.

The students in Ω̄ have identical priors and costs, which are also identical across colleges. For

each ω ∈ Ω̄ and i ∈ C, the prior is Fωi is given by Fωi (x) = 0 for all x ∈ [0, 1), Fωi (x) = 1
4 for all

x ∈ [1, 2), Fωi (x) = 1 − 1
2k

for all k ≥ 1 and x ∈
[
2k, 2k+1

)
and the costs are cωi = 1. Note that,

under these priors and costs, the optimal inspection strategy for each student in Ω̄ given a budget

set B is to inspect all colleges in B in an arbitrary order.

The students in Ω∗ have identical and deterministic preferences, aligned on a particular college

i∗. They each have value 1 for college i∗ and value 0 for each college j 6= i∗ with probability 1, and

cost 0 for inspecting any college. We think of i∗ as being unknown to the communication process
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and to the students in Ω̄. One can formalize this by thinking of E as one of a family of n economies,

one for each choice of i∗, and E is selected uniformly at random from this family.

In any one-shot process, a student ω will have no regret only if she chooses to examine precisely

the set of all colleges whose capacities are not filled by higher-ranked students. This is because a

student is willing to incur the cost to examine any college if and only if it is in her budget set. In

particular, each student ω ∈ Ω̄ has as their budget set some non-empty subset of C\{i∗}. Note that

this might not be exactly C\{i∗}, depending on the inspection strategy used by students with higher

rank than ω.

We therefore claim that, regardless of the choices of the other students, each ω ∈ Ω̄ has prob-

ability at most 1/n of selecting their budget set precisely (over the uniform choice of i∗ and the

realization of other agents’ values). To see this, note that the budget set of a student ω ∈ ω̄ is pre-

cisely the subset of C whose capacities are not filled by students of higher rank. But, by symmetry

with respect to colleges, from the perspective of ω this will be a uniformly random subset of C of a

(possibly random) size k ∈ {1, 2, . . . , n− 1}. The number of such subsets is minimized when k = 1

or k = n− 1, in which case the number of possible budget sets that the student must select from is

n.

We conclude that a mass of students of measure at least η(Ω̄) · (1−1/n) = (1−1/n)2 will regret

their inspections, in expectation over the choice of i∗ and any randomness in the communication

process and the inspection strategies of the students. There must therefore exist some choice of i∗

for which this measure of students experiences regret. The example can also be modified so that this

fraction of students experiences unbounded regret.31

This example demonstrates that in settings with aggregate uncertainty one-shot processes can-

not hope to find regret-free stable outcomes, even in settings where students are willing to incur

the costs of searching any number of colleges. This is due to their inability to coordinate the search

of worse-ranked students with the preferences of the better-ranked students.

B Proofs from Section 3

B.1 Proof of Proposition 1

The proof follows a similar proof in Kleinberg, Waggoner, and Weyl (2016). To simplify notation

we write ω instead of ω0. Define i �ω j if and only if min {vωi , vωi } > min
{
vωj , v

ω
j

}
.32

We verify that Dω (B) = max�ω (B) for all B ⊆ C. Let i, j ∈ B be such that min {vωi , vωi } >
min

{
vωj , v

ω
j

}
. Suppose for the sake of contradiction that student ω demands college j, i.e. Dω (B) =

31For each bound K the example can be modified so that each student who inspects suboptimally incurs unnecessary
information costs at least K times their utility.

32If min {vωi , v
ω
i } = min

{
vωj , v

ω
j

}
set i �ω j if i < j.

45



j. Following the optimal inspection policy in Lemma 1, college j must be inspected and vωj must

be the maximal realized value and so vωj ≥ vωk for all inspected k.

If vωj < min {vωi , vωi } then college imust be inspected since vωi > vωj which is the maximal realized

value, and so college i must be demanded over college j since vωi > vωj , which is a contradiction.

If vωj < min {vωi , vωi } then college i must be inspected before college j, since college j has lower

index, and so college i is inspected, as college j is inspected. But as vωi > vωj the student stops

inspecting before college j, which contradicts that j is inspected.

B.2 Proof of Proposition 2

We provide an alternative proof of Proposition 2 by showing that any economy E in the Pandora’s

box domain satisfies WARP. We do this by showing that each individual student demand satisfies

WARP.

Lemma 4. Let ω be a realized student with Pandora demand. Then Dω(·) satisfies WARP, i.e. if

B ⊆ B′ and i ∈ B \ {Dω(B)} then Dω(B′) 6= i.

Proof. The proof follows from the characterization that Dω(B) = argminj∈B min{vωj , vj} (see e.g.

Proposition 1). Suppose for the sake of contradiction that Dω(B′) = i. Let j := Dω(B′), then

min{vωj , vj} > min{vωi , vi} for j ∈ B′ which contradicts that argmink∈B′ min{vωk , vk} = Dω(B′) =

i.

Proof of Proposition 2. The result follows from Theorem 2 and Lemma 4.

B.3 Proof of Proposition 3

The following lemma is used to prove Proposition 3. It also allows us to provide a utility-based

characterization of the partial order in the regret-free stable outcome lattice for Pandora’s box

economies.

Lemma 5 (Kleinberg, Waggoner, and Weyl (2016)). Let E be a Pandora’s box economy, and let

(µ, χ) be a regret-free stable outcome. Then expected utility of θ ∈ Θ0 under (µ, χ) is

Eω∼F θ
[
vωµ(ω) − c

ω (χ (ω))
]

= Eω∼F θ
[
min

{
vωµ(ω), v

ω
µ(ω)

}]
.
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Proof of Lemma 5. We have that

Eω∼F θ
[
vωµ(ω) − c

ω (χ (ω))
]

= Eω∼F θ

vωµ(ω) − ∑
i∈χ(ω)

cωi

 (cost function for Pandora’s Box)

= Eω∼F θ

 max
i∈χ(ω)

vωi −
∑
i∈χ(ω)

cωi

 (since (µ, χ) is regret-free stable)

= Eω∼F θ

 max
i∈χ(ω)

vωi −
∑
i∈χ(ω)

Evi∼F θi
[(
vi − vθi

)+] (by definition of vθi )

= Eω∼F θ

 max
i∈χ(ω)

vωi −
∑
i∈χ(ω)

(
vωi − vθi

)+ (as i ∈ χ (ω) is independent of vωi )

To further simplify the last expression, we show that E
[(
vωi − vθi

)+ | i ∈ χ (ω) , i 6= µ (ω)
]

= 0.

To show the contrary, consider ω, i such that i 6= µ (ω), vωi > vωi , and i ∈ χ (ω). Under the optimal

adaptive inspection, student ω will not inspect any other colleges after inspecting i. Since i ∈ χ (ω),

college i is the last college inspected by student ω. This implies for any college i 6= j ∈ χ (ω) was

inspected before i, and thus vωj ≤ vωi < vωi . Thus, vωi = maxj∈χ(ω) v
ω
j , providing a contradiction to

the stability of (µ, χ).

Therefore, we can further simplify

Eω∼F θ
[
vωµ(ω) − c

ω (χ (ω))
]

= Eω∼F θ

 max
i∈χ(ω)

vωi −
∑
i∈χ(ω)

(
vωi − vθi

)+
= Eω∼F θ

[
vωµ(ω) −

(
vωµ(ω) − v

θ
µ(ω)

)+]
− Eω∼F θ

 ∑
i∈χ(ω)\{µ(ω)}

(
vωi − vθi

)+
= Eω∼F θ

[
vωµ(ω) −

(
vωµ(ω) − v

θ
µ(ω)

)+]
= Eω∼F θ

[
min

{
vωµ(ω), v

ω
µ(ω)

}]

And the result follows.

Proof of Proposition 3. It suffices to show that if two regret-free stable outcomes (µ, χ) and (µ′, χ′)

satisfy (µ, χ) B (µ′, χ′) then

Eω∼F θ
[
vωµ(ω) − c

ω(χ(ω))
]
≥ Eω∼F θ

[
vωµ′(ω) − c

ω(χ′(ω))
]
.

By Theorem 2 there exist market-clearing cutoffs P ≤ P ′ which correspond to (µ, χ) and (µ′, χ′)

respectively, by Theorem 1 it holds that µ(ω) = Dω(Bω(P )), and finally by Lemma 5 it holds that
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Eω∼F θ
[
vωµ(ω) − c

ω (χ (ω))
]

= Eω∼F θ
[
min

{
vωµ(ω), v

ω
µ(ω)

}]
. Hence

Eω∼F θ
[
vωµ(ω) − c

ω (χ (ω))
]

= Eω∼F θ
[
min

{
vωµ(ω), v

ω
µ(ω)

}]
= Eω∼F θ

[
min

{
vωDω(Bω(P )), v

ω
Dω(Bω(P ))

}]
≥ Eω∼F θ

[
min

{
vωDω(Bω(P ′)), v

ω
Dω(Bω(P ′))

}]
= Eω∼F θ

[
vωµ′(ω) − c

ω
(
χ′ (ω)

)]
.

where the inequality follows from the fact that Bω(P ) ≥ Bω(P ′) (since P ≤ P ′), and that Dω(B) =

argmaxi∈B(min{vωi , vωi }) (by Proposition 1).

B.4 Proof of Theorem 2

By Theorem 1, it is sufficient to show that market-clearing cutoffs form a non-empty lattice. This

can be proved either by showing that demand under E is identical to demand under some full-

information economy Ẽ , or by arguing directly based on the properties of aggregate demand. While

the former proof is much more succinct, the latter proof may allow the interested reader to under-

stand which results from the full-information setting can similarly be directly translated into the

incomplete information setting, and so we present both proofs.

First, we show that if demand Dω(·) for a student ω ∈ Ω satisfies WARP, then it is identical to

demand for a student in a full-information economy, i.e. we show there exists an ordering �ω such

that Dω(B) = max�ω(B) for all budget sets B ⊆ C.
Define �=�ω by i � j ⇔ Dω ({i, j}) = i. Since Dω(·) satisfies WARP � is transitive: in

particular if Dω({i, j}) = i and Dω({j, k}) = j then WARP implies that Dω({i, j, k}) 6= j, k and so

Dω({i, j, k}) = i and so again by WARP Dω({i, k}) = i. Hence for all B ⊆ C, if we let i = max�(B)

then by definition of � Dω({i, j}) = i for all j ∈ B \ {i}, and so by WARP Dω(B) = i.

The proof of the lattice structure of the set of market-clearing cutoffs also follows almost exactly

from the proof of the analogous result in complete information settings in Azevedo and Leshno

(2016) (see also the proof in Abdulkadiroğlu, Che, and Yasuda (2015)). For completeness we

replicate the proof here.

We remark that the proof relies on the fact that when individual student demand satisfies

WARP, aggregate demand D(·) : [0, 1]C → [0, 1]C satisfies the following weak gross substitutes

condition: if Di(P ) is decreasing in Pi and increasing in Pj for all j 6= i. We formally state and

prove this in Lemma 6.

We now begin the replicated proof. Given P−i define the interval

Ii(P−i) = {p ∈ [0; 1] : Di(p;P−i) ≤ qi, with equality if p > 0}.
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That is, Ii(P−i) is the set of cutoffs for college i that clear the market for i given the cutoffs of

other colleges. Define the map T (P ) as

Ti(P ) = argmin p∈Ii(P−i) |p− Pi| .

That is, the map T has college i adjust its cutoff as little as possible to clear the market for i,

taking the cutoffs of other colleges as given.

We show that the map T monotone non-decreasing (in the standard partial order of [0, 1]C),

and the set of fixed points of T coincides with the set of market clearing cutoffs.

We first show that T is well defined. Note that, because Di(1,P−i) = 0 and Di is continuous,

then either there exists p ∈ [0, 1] such that Di(p;P−i) = qi or 0 ∈ Ii(P−i). In either case, we have

that Ii(P−i) is nonempty, and also compact (by monotonicity and continuity of Di).

We now show that T is monotone. To see this, consider P ≤ P ′, ti = Ti(P ), and t′i = Ti(P
′).

To reach a contradiction, assume that t′i < ti. In particular ti > 0. We have that

qi = Di(ti,P−i) ≤ Di(t
′
i,P−i) ≤ Di(t

′
i,P

′
−i) ≤ qi,

where the second inequality holds since aggregate student demand satisfies weak gross substitutes.

Likewise

qi = Di(ti,P−i) ≤ Di(ti,P
′
−i) ≤ Di(t

′
i,P

′
−i) ≤ qi,

from which it follows that Di(t
′
i,P−i) = Di(ti,P

′
−i) = qi. Hence

[t′i, ti] ⊆ Ii(P−i) ∩ Ii(P ′−i) .

The fact that the closest point to P i in Ii(P−i) is ti implies that P i ≥ ti. Therefore P ′i ≥ ti,

and so |ti − P ′i| < |t′i − P ′i| which contradicts t′i = Ti(P
′). This contradiction establishes that T is

monotone.

Since T is a monotone operator, by Tarski’s Theorem the set of fixed points of T is a lattice

under the standard partial order of [0, 1]C . It is easy to verify that the set of fixed points of T

coincide with the market clearing cutoffs, and the ordering over regret-free stable outcomes follows

from Theorem 1.

Lemma 6. Suppose demand in E satisfies WARP. Then aggregate demand D(·) satisfies weak

gross substitutes, i.e. Di(P ) is decreasing in Pi and increasing in Pj for all j 6= i.

Proof. We show first that if Pi ≥ P ′i and P−i = P ′−i then Di(P ) ≤ Di(P
′). Now

Di(P ) = η ({ω0 ∈ Ω0 | Dω0(P ) = i}) .

Moreover, since Bω0(P ) = {j ∈ C | rω0
j ≥ Pj}, P−i = P ′−i and Pi ≥ P ′i it must be that Bω0(P ′)
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is either Bω0(P ) or Bω0(P ) ∪ {i}. Hence by WARP if Dω0(P ) = i then Dω0(P ′) = i as well, so

Di(P ) ≤ Di(P
′).

We now show that if Pj ≥ P ′j for some j 6= i and P−j = P ′−j then Di(P ) ≥ Di(P
′). By

the same argument as above, Bω0(P ′) is either Bω0(P ) or Bω0(P ) ∪ {j}. Hence by WARP if

Dω0(P ′) = i then Dω0(P ) = i as well, so Di(P
′) ≤ Di(P ).

C Proofs from Section 4

C.1 Proof of Proposition 4

The proof uses cutoffs P tc to describe the tth period of the process. We note that in every period t

the set of students who have been proposed to by a college c is given by for
{
ω : rωc ≥ P tc

}
for some

cutoff P tc . For the first period, we have that P 1
c = 1− qc.

We show that students receive offers exactly from all colleges in their budget set by analyzing the

cutoffs P tc and showing that they are monotonically decreasing in t. Suppose P τ is monotonically

decreasing in τ for all τ ≤ t. Under the specified σ students collect signals from a college i as soon

as they are proposed to by the college (i.e. in the first period τ where i ∈ mτ ). Hence by the end of

period t student ω has acquired the optimal information χ∗(ω,B(P t)), and therefore she rejects all

colleges in B(P t) except for Dω
(
P t
)
. WARP guarantees that the student has not rejected their

favorite college in B(P t) in some previous round τ < t, and so the set of students who have ever

rejected a college c is the same as the set of students who reject c given cutoffs P t.

Hence in period t + 1 college c proposes to the top qc students who have not yet rejected the

college if and only if they set P t+1
c = P tc − qc + Dc

(
P t
)

and make new proposals to all students

in
{
ω : P t+1

c ≤ rωc < P tc
}

. Since Dc

(
P 1
c

)
≤ qc, it follows that P tc ≥ P t+1

c . By induction P t is

decreasing in t, and Dc

(
P t
)
≤ qc for all t.

Thus ICPDA terminates at some (possibly transfinite) round t∗, and Dc

(
P t∗

)
= qc for all c

such that P t
∗
c > 0 and so P ∗ = P t∗ are market-clearing cutoffs. The outcome (µ, χ) of the process

PICPDA is given by µ(ω) = Dω0(Bω(P ∗)), χω = Bω and is regret-free stable.

C.2 Proof of Lemma 2

Let i ∈ B\B′, and consider an initial inspection type θ0 such that college i has the largest index in set

B, i.e., vθ0i > vθ0j for all j ∈ B\{i}. Let θ′0 be the type obtained from θ0 if we were to add a constant

α to the value vθ0i , i.e. v
θ′0
i = vθ0i + α, where α is chosen so that P

(
vθ0i + α > maxj∈B\{i} v

θ0
j

)
> 0.

Then for a student with type θ′0, given budget set B with positive probability the student will inspect

only i and then stop and demand i. Hence ∩ω0∈θ′0χ
∗(ω0, B) = i, and i 6∈ B′ so i 6∈ ∩ω0∈θ0χ

∗(ω0, B
′),

from which it follows that ∩ω0∈θ0 (χ∗(ω0, B) ∩ χ∗(ω0, B
′)) = ∅. Therefore θ′0 is stagnant given B,B′.
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C.3 Proof of Lemma 3

Let θ ∈ Θ0 be an initial student state that is stagnant given budget sets B,B′ ⊆ C. For notational

convenience, denote that student’s inspection costs cθ by c and inspection indices vθ by v. Fix

i ∈ B and ε > 0.

We construct a state θ′ ∈ Θ0 such that θR(θ′) = θR(θ), θ′ is stagnant given B,B′, and

Dθ′
i (B) > 1 − ε (that is, a student of type θ′ demands i from budget set B with probability

of at least a 1− ε).
Since both θ and θ′ are initial inspection states in the Pandora’s box model, we have that

χθ = χθ
′

= φ and Πθ = Πθ′ = C. Set the priorities and costs of θ′ to be rθ
′

= rθ and cθ
′

= cθ.

We set the priors of θ′ such that the inspection indices of θ′ are vθ
′

= v and θ′ demands i with

probability of at least a 1− ε. To define the priors, fix m < minj vj and define ρj = cj/(M − vj),
where M is chosen to be sufficiently large so that ρj ≤ ε/n for all j. Let the prior distribution F θ

′
i of

vi be defined by P (vi = m) = 1− ρi and P (vi = M) = ρi. For each j 6= i, let the prior distribution

F θ
′

j of vj be defined by P (vj = m/2) = 1−ρj and P (vj = M) = ρj . For this choice of priors we have

that vθ
′

= v since, for any college j (including j = i) we have that E[(vj − vj)+] = ρj(M − vj) = cj .

Moreover θ′ demands college i from B with probability of at least P (vj ≤ m : ∀j 6= i) ≥ (1− ε
n)n ≥

1− ε.
Finally, we verify that θ′ is stagnant given B,B′. For the sake of contradiction, suppose that

student θ′ always inspects college j ∈ C given either B or B′, i.e., j ∈ ∩ω∈θ′ (χ∗ (ω,B) ∩ χ∗ (ω,B′)).

By the characterization of the Pandora’s box inspection policy in Lemma 1, it must be that for any

k ∈ B∪B′, either student θ′ inspects college j before k (i.e., vj ≥ vk), or she inspects college k first

but will always subsequently choose to inspect j regardless of the realization of vθ
′
k (i.e., vj ≥ vθ

′
k ).

We therefore have that

P
(
vj ≥ min{vk, vθ

′
k } : ∀k ∈ B ∪B′

)
= 1. (1)

Since θ is stagnant given B,B′, it follows that

argmaxk∈Bvk ∩ argmaxk∈B′vk = ∅ .

So in particular there exists ` ∈ B ∪B′ such that v` > vj . Then (1) implies that P
(
vθ
′
` < v`

)
= 1.

But by the definition of F θ
′

` we have that P
(
vθ
′
` < v`

)
= 1−ρ`, which implies that ρ` = c`

M−v`
= 0,

and therefore c` = 0. This in turn implies that P
(
vθ
′
` = m

)
= 1 and v` ≤ m, which contradicts the

fact that P
(
vθ
′
` < v`

)
= 1.

C.4 Proof of Theorem 3

We provide initial information about an economy, and construct a set of 6 events that are indistin-

guishable when the reporting function maintains aggregate uncertainty.
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Let colleges C = {1, 2, 3} have capacity q1 = q2 = q3 = 2α for some α < 1
6 . The student types

are given by Ω = X ∪Y ∪Z ∪D∪D′, where X,Y, Z satisfy η (X) = η (Y ) = η (Z) = α, and D and

D′ are dummy students included to prevent trivially stable outcomes and satisfy η (D) = 2α and

η (D′) = 1− 5α. Priorities satisfy

priority at 1 : ry1 > rz1 > rd1 > rx1 > rd
′

1

priority at 2 : rz2 > rx2 > rd1 > ry2 > rd
′

2

priority at 3 : rx3 > ry3 > rd1 > rz3 > rd
′

3 ,

for all (x, y, z, d, d′) ∈ X × Y × Z ×D ×D′, with single tie-breaking among students in the same

group, i.e. ∀x, x′ ∈ X rx1 > rx
′

1 ⇔ rx2 > rx
′

2 ⇔ rx3 > rx
′

3 , and similarly for y, y′ ∈ Y and z, z′ ∈ Z.

Note that these priorities imply that students in X don’t know if their budget set is B = {1, 2, 3}
or B = {2, 3} , as this depends on demand of students in Y ∪Z ∪D (and symmetrically for Y and

Z); and students in D don’t know anything about their budget set so far, as there is a mass of 2α

students in X ∪ Y ∪ Z with higher priority at each college.

Let ∆ = α
24 , let X ′ denote the 2∆ students in X who inspect first, equivalently define Y ′, Z ′, let

D′ be the 15∆ students in D who inspect first, and let X ′′, Y ′′, Z ′′ and D′′ denote X\X ′, Y \Y ′, Z\Z ′

and D\D′ respectively. Finally, students in X are stagnant given {2, 3}, {1, 2, 3}, students in Y are

stagnant given {1, 3}, {1, 2, 3}, students in Z are stagnant given {1, 2}, {1, 2, 3}, and all students

have Pandora demand, and so must inspect a college to attend it and do not wish to inspect colleges

outside of their budget set.

Consider the first point in time τ when either all students in X ′ have inspected, all students in

Y ′ have inspected, all students in Z ′ have inspected, or all students in D′ have inspected. If such a

time does not exist, then some students in X ′∪Y ′∪Z ′∪D′ have not inspected and so the outcome

is not regret-free stable.

Since the reporting function maintains aggregate uncertainty, it is unable to distinguish at time

τ (i.e. after only observing the demand of students in X ′ ∪ Y ′ ∪Z ′ ∪D′) between the following six

events:

1. (a) Almost all students in Y ′′ ∪ Z ′′ ∪D′′ demand 1, i.e.

η
(
ω ∈ Y ′′ ∪ Z ′′ ∪D′′ | Dω(C) = 1

)
≥ (1− ε)η

(
Y ′′ ∪ Z ′′ ∪D′′

)
;

(b) Almost all students in X ′′ ∪ Z ′′ ∪D′′ demand 2;

(c) Almost all students in X ′′ ∪ Y ′′ ∪D′′ demand 3;

2. (a) Almost all students in X ′′ ∪ Z ′′ demand 2, i.e.

η
(
ω ∈ X ′′ ∪ Z ′′ | Dω(C) = 2

)
≥ (1− ε)η

(
X ′′ ∪ Z ′′

)
.
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Almost all students in Y ′′ demand 3, i.e.

η
(
ω ∈ Y ′′ | Dω(C) = 3

)
≥ (1− ε)η

(
Y ′′
)
.

Students in D′′ demand 3 if 3 is in their budget set, i.e.

η
(
ω ∈ D′′ | Dω(C) = 3

)
≥ (1− ε)η

(
D′′
)
.

(b) Almost all students in X ′′ ∪ Y ′′ demand 3, almost all students in Z ′′ ∪D′′ demand 1;

(c) Almost all students in Y ′′ ∪ Z ′′ demand 1, almost all students in X ′′ ∪D′′ demand 2.

We show that any communication process with a reporting function that maintains aggregate

uncertainty results in an outcome that is not regret-free stable.

1. Case 1: ∆ students in X ′ inspect a college that is not definite for B = {2, 3}.
Consider event 1a. If any student in X ′ has budget set B = {1, 2, 3}, then since students at

Y,Z and D have higher priority at 1, all these students have 1 in their budget set. Since in

event 1a it holds that a (1− ε) fraction of students in Y ′′ ∪ Z ′′ ∪D′′ demand 1 from the full

budget set C, and since student demand satisfies the weak axiom of revealed preferences, it

follows that at least (1− ε)η (Y ′′ ∪ Z ′′ ∪D′′) students are assigned to college 1. But

(1− ε)η
(
Y ′′ ∪ Z ′′ ∪D′′

)
= (1− ε)

(
4α− η

(
Y ′ ∪ Z ′ ∪D′

))
= (1− ε) (4α− 19∆) > 2α = q1

for sufficiently small ε, since ∆ < 2
19α. As this many students cannot be assigned to college

1, this shows that all students in X ′ have budget set B = {2, 3}. It follows that a positive

fraction of students in X ′ regret their inspection.

Symmetrically, if ∆ students in Y ′ inspect a college not definite for B = {1, 3}, or if ∆ students

in Z ′ inspect a college not definite for B = {1, 2}, then a positive fraction of students in Y ′

and Z ′ respectively regret their inspection under events 1b and 1c respectively.

2. Case 2: ∆ students in X ′ inspect a college that is not definite for B = {1, 2, 3}. Call this

set X̂.

Consider event 2a. If any student in X̂ has budget set B = {2, 3}, then the only students

possibly with higher priority at 1 are Y,Z,D,X ′′ and the ∆ students in X ′ \ X̂. It follows

that at least q1−∆ students in Y ∪Z ∪D ∪X ′′ demand college 1. We show that this cannot

be the case.

There are 4∆ students in Y ′ ∪ Z ′. Since all students in X ′′ ∪ Z ′′ have 2 in their budget set,

at least (1− ε)η (X ′′ ∪ Z ′′) students in X ′′ ∪Z ′′ demand 2, so at most εη (X ′′ ∪ Z ′′) students

in X ′′ ∪ Z ′′ demand college 1. Since all students in Y ′′ have 3 in their budget set, at least

53



(1− ε)η (Y ′′) students in Y ′′ demand 3, so at most εη (Y ′′) students in Y ′′ demand college 1.

Hence at most

4∆ + εη
(
X ′′ ∪ Z ′′

)
+ εη

(
Y ′′
)

students in X ′′ ∪ Y ∪ Z demand college 1.

We now consider the demand from students in D for college 1. We first show that just under

α = q1
2 students in D′′ have 3 in their budget set. The only students higher ranked at college

3 than D′′ are students in X ∪Y ∪D′. Of these, at least (1−ε)η(X ′′) students in X ′′ demand

2, so at most

η(X ′) + εη(X ′′) + η(Y ) + η(D′) = 2∆ + εη(X ′′) + α+ 15∆ = α+ 17∆ + εη(X ′′)

students higher ranked than D′′ demand 3, so at least q1− (α+ 17∆ + εη(X ′′)) = α− 17∆−
εη(X ′′) students in D′′ have 3 in their budget set. Since at least (1 − ε) of these students

demand college 3, at most η(D)− (1− ε) (α− 17∆− εη(X ′′)) = α+ 17∆ + ε((1− ε)η(X ′′) +

α− 17∆) students in D demand 1. Hence in total at most

α+ 21∆ + ε
(
η(X ′′ ∪ Z ′′) + η(Y ′′) + (1− ε)η(X ′′) + α− 17∆

)
students in Y ∪ Z ∪ D ∪ X ′′ demand 1. Since ∆ < α

22 , this is less than q1 − ∆ = 2α − ∆

for sufficiently small ε. Hence we have shown that none of the ∆ students in X̂ has budget

set B = {2, 3}, and so all of the students in X̂ have budget set B = {1, 2, 3} and a positive

fraction of these students regret their inspection.

Symmetrically, if ∆ students in Y ′ or ∆ students in Z ′ inspect a college not definite for

B = {1, 2, 3}, then a positive fraction of students in Y ′ and Z ′ respectively regret their

inspection under events 2b and 2c respectively.

3. Case 3: 5∆ students in D′ inspect a college i. Call this set D̂, and assume without loss of

generality that i = 1.

Consider event 1a. We show that almost ∆ students in D̂ do not have 1 in their budget set,

and so regret inspecting 1. All students in Y ′′ ∪Z ′′ have higher priority at 1 than students in

D̂, and at least (1− ε)η(Y ′′ ∪ Z ′′) of these students are assigned to college 1. Hence at most

q1 − (1− ε)η(Y ′′ ∪ Z ′′) = 4∆ + εη(Y ′′ ∪ Z ′′)

students in D̂ have 1 in their budget set, so at least

η
(
D̂
)
− 4∆ + εη(Y ′′ ∪ Z ′′) = ∆− εη(Y ′′ ∪ Z ′′)

students in D̂ do not have 1 in their budget set.
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Symmetrically, if 5∆ students in D′ inspect college 2 or college 3 then a positive proportion

of students regret their inspection under events 1b and 1c respectively.

D Additional results about the distribution of estimated market-

clearing cutoffs

Proposition 7 (Distribution of approximately feasible capacities). Let E = (C,Ω, η, q) be a con-

tinuum economy and let P ∗ > 0 be a corresponding market-clearing cutoff. Let Ek =
(
C,Ω, Sk, qk

)
be a finite economy of k randomly sampled students from E. Let q̂k = D

(
P ∗|ηk

)
be the capacities

under which P ∗ is market-clearing for Ek. Then

1√
k
·
(
q̂k − qk

)
d→ N (0,Σ) ,

where N (0,Σ) is the n-dimensional normal distribution with mean 0 and covariance matrix Σ given

by Σij = −qiqj for i 6= j, Σii = qi (1− qi).

Proof. The result follows from the central limit theorem by observing that Di

(
P ∗|ηk

)
=
∑k

`=1X
`
i ,

where X`
i = 1

{
Dθ (P ∗) = i

}
for θ independently drawn according to η is a binary random variable

with mean qi.

Proposition 7 implies that when demand is sampled from a known distribution, posting market-

clearing cutoffs will result in an outcome that is regret-free stable with respect to perturbed capac-

ities q̂k, where the required percent adjustment relative to the true capacities qk is decreasing with

the size of the market k.

Similar arguments can be used to show that posting the market-clearing cutoffs from a previous

year (i.e. another randomly sampled economy Ẽk from the same underlying distribution) will

result in an outcome that is regret-free stable with respect to slightly more perturbed capacities.

Specifically, the distribution of perturbed capacities will be 1√
k
(q̂k − q) d→ N (0, 2Σ), where Σ is

defined as in Proposition 7 .

E Budget Sets in Finite Economies

The following example shows that for finite economies our definition of a student ω’s budget set

Bω (µ) is not necessarily equivalent to the set of colleges the student ω can be admitted to.

Consider the following modification of an example due to Erdil and Ergin (2008). E =

(C = {1, 2, 3} , S = {x, y, z} , q = 1), where college priorities satisfy ry1 > rz1 > rx1 and rx2 > ry2 > rz2,

student x prefers 1 � 2 � 3 and has cost 0 at each college, student y prefers 2 � 1 � 3 and has cost

0 at each college, and student z has information acquisition problem in the Pandora’s box model
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(F z, cz, rz) such that vz1 > vz2 > vz3. There is a unique matching that corresponds to any stable

outcome of E \ z, given by µ (x, y) = (1, 2) , so z’s budget set arriving ‘last to market’ is {1, 3}. If,

given a budget set of {1, 3}, z demands 3, then she is assigned to 3 and her budget set remains

{1, 3}. However, if z demands 1, this changes the unique stable matching in any stable outcome to

be µ (x, y, z) = (2, 1, 3) and z now has budget set {3}.
While the two definitions of budget sets do not always coincide, previous theoretical results

(Azevedo and Leshno, 2016; Menzel, 2015) show the situation illustrated by this example is unlikely

to arise in randomly generated economies.

F Proofs from Section 5

F.1 Proof of Proposition 5

The proof relies on the following result, which is a restatement of Proposition 3 from Azevedo and

Leshno (2016) and follows from the Vapnik-Chervonenkis Inequality.

Proposition 8 (Azevedo and Leshno (2016)). Let E = (C,Ω, η, q) be an economy with market-

clearing cutoffs P ∗. For any ε > 0, there exist constants α, β > 0 such that for all k, if P k are

the market-clearing cutoffs of a finite economy Ek with k students randomly sampled from E, then

|P ∗ − P k|1 > ε with probability at least 1− αk|C| · e−βk.

Let α, β > 0 be constants given as in Proposition 8, and let K be such that α · k|C| · e−βk < ε

for all k > K. Then

P
(
‖q̂k − qk‖1 > k · ε

)
≤ P

(
‖P k − P ∗‖1 > ε

)
< ε

which completes the proof of Proposition 5.

F.2 Proof of Proposition 6

The proof of Proposition 6 is constructive, and relies on the following closed-form expression for

demand in a Pandora’s box MNL economy, which may be of independent interest.

Lemma 7. Let E be a Pandora’s box MNL economy, let B ⊆ C be an arbitrary budget set, and

index the colleges so that B = {1, . . . ,m} and v1 ≥ v2 ≥ · · · ≥ vm.

Then for any type θ0 demand is given by

Dθ0
i (B) = (1−G (vi − δi))

∏
j<i

G (vi − δj) +

m∑
`=i

eδi∑
j≤` e

δj

∏
j≤`

G (v` − δj)−
∏
j≤`

G
(
v`+1 − δj

) ,

where G (x) = e−e
−x

is the cdf of the extreme value distribution EV [0, 1], and vm+1 = −∞.
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The proof of Proposition 6 proceeds in three steps. In the first step the choice probabilities from

C\{n} and C are used to identify δi for all i < n. In the second step, given {δ1, . . . , δn−1}, the choice

probabilities from C \{n} are used to identify vi for all i < n. In the third step, given {δ1, . . . , δn−1}
and {v1, . . . , vn−1}, the demand for college n from C and some budget set n 3 B 6= {n}, C are used

to identify δn and vn.

We now proceed with the proof. Without loss of generality, we can pick an arbitrary college

i ∈ C (without loss, we choose i = 1) and normalize the parameters as follows: δi := δi − δ1

and vi := vi − δ1. The following procedure describes how we find the common value and index

parameters for i > 1. There are only 2n− 2 parameters instead of 2n because the index parameter

for the highest index college does not affect the choice probabilities and one of the common value

terms is used as the normalization factor.

Let ui := e−e
−vi , αi := eδi and γi :=

∑
j≤i αj . Note that since ui and αi are strictly monotonic

transformations of the index vi and common value δi parameters respectively, it is sufficient to

identify these transformed parameters. Throughout, we will use the result in Lemma 7 that for a

budget set B = {1, 2, . . . ,m}

Dθ0
i (B) = (1− uαii )u

γi−1

i +

m∑
`=i

αi
γ`

(
uγ`` − u

γ`
`+1

)
.

Step 1 : We can pin down the αi terms for i < n by using the difference in choice probabilities

Dθ0
i (C\{n})−Dθ0

i (C). In particular, the difference in choice probabilities for college i is a constant

multiple of αi:

Dθ0
i (C\{n})−Dθ0

i (C) =

(
u
γn−1

n−1

γn−1
− uγnn

γn

)
· αi.

This implies that for all i < n

αi =
Dθ0
i (C\{n})−Dθ0

i (C)
Dθ0

1 (C\{n})−Dθ0
1 (C)

α1 =
Dθ0
i (C\{n})−Dθ0

i (C)
Dθ0

1 (C\{n})−Dθ0
1 (C)

,

where the second equality holds since δ1 is normalized to be 0 so α1 = eδ1 = 1.

Step 2 : Using the identified parameters αi for i < n, we can solve for the transformed index

parameters ui for i < n. The demand shares Dθ0
i (C\{n})) define the following system of equations:
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Dθ0
1 (C\{n}) = (1− uαii ) +

n−1∑
`=1

α1

γ`

(
uγ`` − u

γ`
`+1

)
Dθ0

2 (C\{n}) = (1− uα2
2 )uα1

1 +

n−1∑
`=2

α2

γ`

(
uγ`` − u

γ`
`+1

)
· · ·

Dθ0
n−2 (C\{n}) =

(
1− uαn−2

n−2

)
u
γn−3

n−2 +

n−1∑
`=n−2

αn−2

γ`

(
uγ`` − u

γ`
`+1

)
Dθ0
n−1 (C\{n}) =

(
1− uαn−1

n−1

)
u
γn−2

n−1 +
αn−1

γn−1

(
u
γn−1

n−1

)
We can solve this system and find a unique set of solutions for ui for i < n. This is because

each choice probability Dθ0
i (C\{n}) contains only terms uk for k ≥ i and the choice probability of

college i is strictly increasing in ui;
33 i.e. the Jacobian of this system (with respect to ui for i < n)

is an upper-triangular matrix with a strictly positive diagonal. Therefore there is a unique set of

solutions which can be found by using the equation for Dθ0
i (C \ {n}) to solve for ui, in decreasing

order of i.

Step 3 : It remains to find the parameters for the college with the lowest index: αn and un.

Now

Dθ0
n (C \ {n}) = (1− uαnn )uγn +

αn
αn + γ

(
uαn+γ
n

)
= uγn −

γ

αn + γ
uαn+γ
n = d

γn−1

αi

(
Dθ0
i (C\{n})−Dθ0

i (C)
)

= γn−1

(
u
γn−1

n−1

γn−1
− uγnn

γn

)
= uγn−1 − γ

uαn+γ
n

αn + γ
= d′,

for some d, d′, where γ =
∑

j∈C\{n} αj . Note that since we solved for {αi, ui}i<n in steps 1 and 2,

we know d, d′, un−1, and γ, and the only unknowns in these two equations are αn and un.

Subtracting the two equations yields

un =
(
d− d′

)1/γ
.

33Suppose we consider the demand shares among students with a budget set B = {1, ...,m} ordered in decreasing
order of their indices. The derivative of the ith demand share with respect to ui is:

d

dui

(
Dθ0
i (B)

)
=

d

dui

(
(1− uαii )u

γi−1

i +

n∑
`=i

(
u
γ`
` − u

γ`
`+1

) αi
γ`

)
= γi−1u

γi−1−1

i − γiuγi−1
i + αiu

γi−1
i

= γi−1 · u
γi−1−1

i · (1− uαii ) > 0.

The last inequality results from the fact that ui = e−e
−vi

, and so 0 < ui < 1.
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Finally, αn satisfies
γ

αn + γ
uαnn = 1− d

uγ

and since ∂
∂α

(
γ

αn+γu
αn
n

)
= γ

(
(αn+γ)(lnun)uαnn −uαn

(αn+γ)2

)
= γuαnn

(αn+γ)2
((αn + γ) (lnun)− 1) < 0 (as un =

e−e
−vn < 1) it follows that there is a unique solution for αn.

Proof of Lemma 7. Since the indices vi are decreasing in i, a student will inspect a set of colleges

{1, 2, . . . , `} for some `. Let college i be such that student ω chooses Dω (B) = i. It must hold that

` ≥ i, and that vi = maxj≤` vj . If ` > i then it must be the case that vi ∈
(
v`+1, v`

]
. If i = ` it

must be the case that v` = maxj≤` vj > v`+1, and so either vi = v` ∈
(
v`+1, v`

]
or v` > v`.

Consider the case where vi ∈
(
v`+1, v`

]
for ` ≥ i. This occurs with probability∫ v`

v`+1

g (x− δi)
∏

j≤`,j 6=i

G (x− δj) dx =

∫ v`

v`+1

e−(x−δi)e−e
−x∑

j≤` e
δj
dx

= eδi
∫ v`

v`+1

e−e
−x∑

j≤` e
δj
e−xdx

= eδi
∫ e−v`+1

e−v`
e−y

∑
j≤` e

δj
dy

=
eδi∑
j≤` e

δj

(
e−e

−v`
∑
j≤` e

δj − e−e
−v`+1

∑
j≤` e

δj
)

=
eδi∑
j≤` e

δj

∏
j≤`

G (v` − δj)−
∏
j≤`

G
(
v`+1 − δj

) ,

where G(x) = ee
−x

and g(x) = e−(x+e−x) are the cdf and pdf respectively of the extreme value

distribution EV [0, 1].

Consider the case where vi = v` > v` > vj for all j < `. This occurs with probability

(1−G (vi − δi))
∏
j<i

G (vi − δj) .

Summing the two probabilities over all possible values of ` gives

Dθ0
i (B) = (1−G (vi − δi))

∏
j<i

G (vi − δj) +

m∑
`=i

eδi∑
j≤` e

δj

∏
j≤`

G (v` − δj)−
∏
j≤`

G
(
v`+1 − δj

) .
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