
EECS 495, Winter 2010
Instructor: Nicole Immorlica

Problem Set #1
Due: Feb 1, 2010

1. Generating random bits.

Consider the following scenario: you buy a coin with bias p, then an
adversary asks you to simulate a coin with bias q. The goal of the puzzle
is to determine the original bias p that will minimize the expected number
of coin flips required to simulate the adversarily chosen q (note that q is a
function of p). I do not know how to do this (in fact, it or close variants are
likely open questions and hence a good research project for this course).
Instead this problem focuses on using a coin of unknown bias to produce
a coin of bias 1/2.

(a) It is natural to assume that our sources of randomness might have
some bias p. Nonetheless, many randomized algoritms require un-
biased coin flips. In 1951, von Neumann suggested the following
procedure for producing an unbiased coin flip from a biased coin:
Flip the biased coin twice. If the observed sequence is HT output H;
if it is TH output T; else start over. Calculate the expected number
of coin flips that this procedure uses to create one unbiased coin flip.

(b) Note that von Neumann’s method works even if you do not know
the bias p. Now suppose p = 2/3. Design a procedure that improves
upon von Neumann’s method and calculate the expected number of
flips required.

(c) Again supposing you don’t know p, design a procedure that provably
improves upon von Neumann’s method. It is great if you can analyze
your procedure, but it’s sufficient for the purposes of the problem set
to prove that it beats von Neumann.

1



2. Understanding duality.

Consider a directed1 graph G with source s and sink t, and positive arc
capacities c : A→ <+.

The problem of computing a max s−t flow in a graph is: find the maximum
flow that can be sent from s to t subject to the following constraints:

• capacity constraints: for each arc e, the flow sent through e is at most
its capacity ce, and

• flow conservation: at each node v 6= s, t, the total flow into v equals
the total flow out of v.

For a partition of the nodes into two sets X1 and X2 with s ∈ X1, the
capacity of the cut c(X1, X2) is the sum of the capacities of the arcs from
X1 to X2. The min s− t cut is the cut with smallest capacity.

This problem asks you to investigate the relationship between max flows
and min cuts using LP duality.

(a) Formulate the max s− t flow problem as a linear program.2

(b) Write the dual of your LP.

(c) Interpret the integral version of your dual LP as the min s − t cut,
concluding that the max s−t flow lower bounds the min s−t cut. Be
sure to explain your reasoning, including how the integral solutions
map to cuts and why this implies that the max s−t flow lower bounds
the min s− t cut.

(d) Prove that the dual LP is in fact integral (i.e., the polytopes of the
vertex are integral), and thus conclude that the max s − t flow in
fact equals the min s − t cut. It may be useful to read up on total
unimodularity (although I’m not sure this is necessary).

1This is WLOG since if we are given an undirected graph we can replace each edge with
two arcs of the same capacity, one in each direction.

2HINT: First introduce a fictituous arc from t to s so that we are dealing with a circulation.
Now label each arc (i, j) with a variable fij representing the flow on arc (i, j).

2



3. Designing simple algorithms.

Given a graph G on n vertices with m edges and an integer k, the long-
path problem asks us to find a simple path of length at least k in graph
G. For k = n−1 this is the Hamiltonian path problem, which is NP-hard.
In this problem, we will design a polytime randomized algorithm due to
Alon, Yuster, and Zwick for k = O(log n).

(a) First show how to use dynamic programming to find the longest path
in a directed acyclic graph (DAG) which runs in time linear in the
number of edges.

(b) Consider ordering the vertices of G randomly from left to right and
direct all edges forward. This creates a DAG to which we can apply
the procedure from the previous part. Prove that if G had a simple
path of length k, then the resulting DAG has a directed path of length
at least k with probability at least 2/(k + 1)!.

(c) Use these two observations to design a polytime Monte Carlo algo-
rithm which finds a path of length k = O(log n/ log log n) with high
probability if one exists.

(d) To make this work for longer paths, consider the following technique:
color each vertex randomly with one of k + 1 colors. Call a path
colorful if no color repeats (note the longest colorful path can have
length k). First show how to use dynamic programming to find a
long colorful path in time O(2kmk). Then use Stirling’s formula to
bound the probability that a given long path is colorful by a reverse-
exponential in k. Conclude that there’s a polytime algorithm that
finds a path of length O(log n) with high probability if one exists.

3



4. Minimax principle.

The purpose of this problem is to prove Yao’s minimax method through
LP duality and practice an application of it to sorting. Given an n ×m
payoff matrix A for a zero-sum game, let ∆n be the set of mixed strategies
for the row player and ∆m be the set of mixed strategies for the column
player. We want to prove von Neumann’s minimax theorem,

min
x∈∆m

max
y∈∆n

yT Ax = max
y∈∆n

min
x∈∆m

yT Ax.

(a) First express the problem of computing a best-response as an LP
and show that the LP is integral (and hence we can assume there is
a best-response that is a pure strategy). Hence we have reduced the
problem to proving

min
x∈∆m

max
i∈{1,n}

Aix = max
y∈∆n

min
j∈{1,m}

yT Aj .

(b) Write the lhs of the statement in the previous part as an LP, take
the dual, and show it is equal to the rhs of the statement.3 Conclude
von Neumann’s minimax theorem via LP duality.

(c) Use Yao’s minimax principle to show that the randomized quicksort
algorithm presented in lecture is optimal.

3HINT: Often times you will see objectives that don’t look quite linear, like in this problem
where we have the min of a max. To deal with such objectives, add a variable representing
the max and a constraint forcing the max to be at most this variable and then minimize the
variable in the objective function. Such tricks also help you deal with max of min objectives
or objectives maximizing or minimizing a ratio.

4


