3.

Nima Haghpanah, Tom Hayden, Michael Lucas

Randomized Algs Assignment 1
February 1, 2010

(a) We first need to topologically sort the vertices of the DAG. That is, order the nodes of the graph

from left to right so that all the edges go from left to right. Since the graph is acyclic, there is a
node with no incoming edges (otherwise we can follow the edges in the reverse order and find a
cycle). We can number this vertex 1, and then recursively order the graph induced from removing
1 and all its edges.

Pre-Sort

P o<—0—»olo\o
1 2 3 4 5 6 7

Claim 0.1 We can do this efficiently in time O(m), which is linear in the number of edges m.

First, we find the degree of all nodes in time O(m). Now let S be the set of vertices with in-degree
0. Select any one of them to be the first node, and for each edge incident to it update the in-degree
of the other end, and add that vertex to A if its degree is 0. The number of updates is equal to
the number of edges, so the algorithm takes time O(m).

After-Sort

e -0 e o6 -0 -0
1 Q 4 (5] i

3 6

Now we show how to use the sorted graph to find the longest path. Let £(i) show the longest path
starting from vertex i. For any j so that (i,7) € E, we have £[i] > 1 + £[j], since going to j and
then continuing from there is a valid path from 1.

Now, Let the next vertex in the shortest path starting from i be j. We can also see that
l[i) = 1+ £[j]. This is because the same path minus the starting vertex is a valid path for j.
So we have ([i] = 1 4 max;.; j)eg £[j]. So we can start from the rightmost vertex, and update
the entries in ¢ vector. From the rightmore vertex, we can move leftwards considering the value
of each ¢ long the way, checking the edges going out of that vertex. So the number of moves is

equal to the number of edges. So the algorithm is O(m).

(b)

Claim 0.2 If G has a simple path of length k, then the resulting DAG has a directed path of
length at least k with probability at least (k%l)'

A path of length k has k+1 vertices. Let the path be i1,4s,...,4x+1. There are two valid orderings
of these vertices; One is 41, ..., ig+1, and the other is igx41,...,41. There are (k+1)! ways to order
the vertices, and since all the orderings happen with equal probability (and the ordering of the
other vertices does not matter), the probability of having the right ordering is 2/(k + 1)!.

As seen in the previous part, the probability of making a mistake is 2/(k 4+ 1)! (drop the one and
assume that it is 2/k!). Now if we repeat the algorithm k! times, the probability of error will be
(1—2/k* = (1/e)2. So we only need to check that k! is polynomial in n for k = logn/loglogn.
This is true because:

log n log n log n log n
| — 610g Toglogn® ~ egloglogn log Toglogn < eloglogn

log n log log n

loglogn’ "

So we can have a constant error in polynomial time. Repeating this polynomial times, we get an
exponential error in polynomial time.

Add a new vertex s to the graph and connect it to any other vertex with a new color. The new
graph has a colorful path of lenght k 4 1 iff the old graph has one of length k. So we can assume
that our problem is to find a colorful path (now assume with length k) from a certain vertex.
Let A(¢,v) denote the set of colors of size ¢ from s to v. That is, each S € A(¢,v) is a subset
of 1,...,k of size £, which shows that there is a colorful path of length ¢ from s to v with colors
S. Obviously we want to see if there is a vertex v with A(k,v) # (. Now we will show how to
compute the the vector A in desired time. Assume the we have computed paths of length up to
£. There exists a colorful path of length ¢ + 1 from s to some vertex v, if and only if there exists
a colorful path of length ¢ from s to some other vertex u so that there is an edge from v to v and
the path from s to u does not use the color of vertex v. So we can write the recursive relation
A(l,w) = U,.(ou)ep,3se A(—1,0) color(u) ¢ (A — 1,v) U color(u)). In order to find all the paths of
length ¢ using paths of length ¢ — 1, for each edge (v, u) we have to check all the sets in A(¢—1,v).
So it takes time m2" to update from £ —1 to £. So the overall process takes time m2Fk. Assuming
k = O(logn), this will be O(mnlogn), which is polynomial.

In order to bound the probability of error, consider any path of length k. There are (k + 1)k*!
ways to color all the vertices, and (k + 1)! of these colorings are valid. So the probability of
success is (k 4+ 1)!/(k 4+ 1)*+1, which, using the power series expansion from Sterling’s formula is
approximately (1/e)**1. So the probability of error, if we repeat the process e* times, is equal to
(1- (1/e)k)ek = 1/e. The number of repetitions is & = O(logn) is e©(°8™) = O(n). So again we
can have exponentially small error by repeating the algorithm polynomial number of times.

