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1 Introduction

Randomized algorithm analyses normally assume access to a sequence of unbiased truly random bits. Unfortunately,
it is not always easy to generate random bits with this property. Sources of randomness often are biased in one way
or another. Is it possible to use an biased source of randomness to produce an unbiased sequence of random bits?

To word it more formally, suppose we are given a biased coin C, which outputs H with probability p and T with
probability (1 − p). We might wish to generate a biased coin C′ which outputs H′ or T′ with equal probability 1

2
.

In 1951, von Neumann suggested the following procedure: flip the biased coin twice, then, based on the outcomes,
do one of the following:

• HT : output H′,

• TH : output T′,

• TT,HH : try again,

The intuition behind von Neumann’s method is that one can combine sequences of H and T into events that have
equal probability. Since the sequence HT has the same probability of occurring as TH, if we output H′ for one and
T′ for the other there will be an equal probability of producing H′ and T′. One can extend this idea to develop more
efficient schemes.

1.1 Performance of von Neumann’s Method

We now want to analyze the expected number of coin flips needed by the von Neumann procedure to output a single
unbiased bit.

Let X be a random variable representing the number of coin flips before the algorithm terminates. Since the
biased coin flips used by the algorithm are bernoulli trials, X follows a geometric distribution. Specifically, the success
probability of each underlying bernoulli trial is the probability associated with either HT or TH. Since the events
are mutually exclusive, this is just the sum of the two (equal) probabilities, i.e. 2p(1 − p).

One way to determine the expectation of a geometric random variable is using its memoryless property. To lighten
up notation in the following derivation we assume X has success probability p′ and failure probability q′ = (1 − p′),
so that Pr (X = k) = pqk−1. The memoryless property of the geometric distribution can be shown by considering

Pr (X = k + h|X > h) =
p′q′k+h−1Pr (X > h|X = k + h)

q′h
= pq′k−1 = Pr (X = k) . (1.1)

Consider the expectation of X conditioned on the result of the first bernoulli trial:

E [X |X = 1] = 1

If, on the other hand, the first trial fails (i.e. X > 1) we have

E [X |X > 1] =

∞∑

k=1

kPr (X = k|X > 1)

=
∞∑

k=2

kPr (X = k|X > 1)
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since Pr (X = 1|X > 1) = 0. Changing variables, with k′ = k − 1, we get

=

∞∑

k′=1

(k′ + 1)Pr (X = k′ + 1|X > 1)

and by (1.1)

=

∞∑

k′=1

(k′ + 1)Pr (X = k′)

=

∞∑

k′=1

Pr (X = k′) +

∞∑

k′=1

k′Pr (X = k′)

= 1 + E [X ] .

By the total probability theorem, E [X ] = E [E [X |Y ]], so

E [X ] = p′E [X |X = 1] + q′E [X |X > 1]

= p′ + q′(1 + E [X ])

= 1 + q′E [X ] ,

since q′ = 1 − p′. So the expectation of a random variable with geometric distribution is simply

E [X ] =
1

p′
.

In von Neumann’s procedure, the success probability at each iteration is p′ = 2p(1− p), and since we need two biased
coin flips per iteration, the expected number of coin flips needed to output a single unbiased bit is

expected nr. of flips = 2E [X ] = 2
1

p′
=

1

p(1 − p)
. (1.2)

This formula follows intuitive sense. If we were to take p = 1 or p = 0, only H or T would result and it would
take infinitely long to terminate. The best coin for this method is clearly the coin that is already unbiased (though
one should note that the method is clearly inefficient for an unbiased coin).
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Figure 1: Expected number of biased flips needed to obtain one unbiased bit using the procedure outlined by von
Neumann.

2 Improvements

2.1 Optimizing for a Specific Input Coin

Suppose that we are given a coin of known bias, with the probability of getting H being p = 2

3
. In expectation, von

Neumann’s procedure would require 9

2
coin flips. Can we improve von Neumann’s method using the fact that we know

the bias of this input coin?
Consider the following procedure:
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1. Flip two input coins

2. depending on the values of these coins:

• HT,TH: output T′ and terminate

• HH: output H′ and terminate

• TT: go to step 1

Note that the probability of getting HH is 4

9
and the probability of getting HT or TH are each 2

9
. Therefore, the

probabilities of getting H′ or T′ are both 4

9
. It is clear that this method must be better than the original once, since

in case the double flip results in HH, this specialized procedure will terminate while the general one will not.
The probability that an iteration fails (i.e. doesn’t output) is now q′ = Pr (TT) = 1

9
. Substituting the success

probability p′ = 8/9 in (1.2) we get

expected nr. of flips = 2E [X ] = 2
1

p′
=

9

4
.

Thus the specialized procedure halves the expected number of tosses.

2.2 Generic Input Coins

1. As in von Neumann, flip two pairs of coins repeatedly until the algorithm terminates

2. Evaluate the flips C1, . . . ,Cn as follows:

(a) Let k = ⌊log2 n⌋, where n is the number of flips

(b) For j ∈ {1, . . . , k}:

i. If n mod 2k 6= 0, skip this value of j

ii. Consider g = (Cn−2k+1, . . . ,Cn−2k−1) and h = (Cn−2k−1+1, . . . ,Cn)

iii. If g = (H, . . . ,H) and h = (T, . . . ,T), output H′ and terminate

iv. If g = (T, . . . ,T) and h = (H, . . . ,H), output T′ and terminate

(c) Go to step 1 (if it did not terminate)

This algorithm is effectively von Neumann operating at all possible scales. It terminates if a sequence of mixed
heads or tails is found, such as HT or TTHH. When the number of flips is a power of two, the algorithm only does
not terminate if the flips are all heads or all tails. As a result, depending on p, the probability of not terminating after
a given number of flips can become extremely small quickly.

A detailed analysis of this method is challenging. However, it is clear that its expected number of flips is smaller
than that of von Neumann because the times when it terminates are a superset of those of the original von Neumann
method.

2.3 A Simpler Algorithm

If we simplify the above algorithm, we can obtain a procedure that still outperforms von Neumann (although it’s
worse than the one just presented) and for which an analysis is possible. The algorithm is the following:

1. flip two coins

(a) if Cn−1Cn (i.e. the two flips just generated) are of type HT or TH output the value of the last flip and
terminate,

(b) otherwise, if n is a multiple of 4

• if the suffix of length 4 is of the following kind

HHTT

TTHH

output the value of the last coin and terminate,

(c) otherwise continue (i.e. go to step 1).

Again it is easy to see that this algorithm does better than von Neumann’s, since it always terminates when von
Neumann’s does and it also terminates in cases in which von Neumann’s doesn’t (e.g. HHTT). The correctness can
be easily verified, since HHTT and TTHH have the same probability.
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Analysis It is possible to analyze the expected number of flips for this method. The expected number of flips when
only considering cases in which we terminate on a set of 4 flips is:

2 + 2(p2 + (1 − p)2)

If we consider the process on the granularity of 4 flips, the procedure is memoryless so we can solve for its expected
value:

E[X ] = [2 + 2(p2 + (1 − p)2)] + (p4 + (1 − p)4)E[X ]

=
2 + 2(p2 + (1 − p)2)

1 − p4 − (1 − p)4

Figure 2 shows the expectation of the improved method (in red) compared to von Neumann’s (blue).
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Figure 2: Comparison of the expected number of flips from von Neumann’s method (blue line) and the improved
algorithm proposed (red line)

3 Producing a Biased Output

It is possible to use an unbiased coin generator to produce a desired biased output. Suppose that we want to produce
an output coin Ĉ and generate Ĥ with a probability of q or T̂ with a probability of (1 − q).

As before, let C′ be the unbiased coin that outputs values H′ or T′ with probability 1

2
.

Consider the bits representing 1/2 and below in the binary representation of q, Sq. Also consider the binary
representation of 1 − q, S1−q. Since S1−q is the two’s complement of Sq, it is equal to Sq up until the lowest bit that
is 1, at which point they are the same. Because of this, we can perform the following procedure to generate a biased
output:

1. Let i = 1

2. Flip C′

3. Do one of the following:

• If Sq(i) = S1−q(i), let Ĉ = C′ and stop

• If C′ = H′ and Sq(i) = 1, output Ĥ and stop

• If C′ = T′ and S1−q(i) = 0, output T̂ and stop

• Else let i = i + 1 and go to step 2

Note that when bit i is 1, the probability of outputting Ĥ is (1/2) and likewise the probability of outputting T̂

when bit i is 0 is (1/2). However, we can see that the procedure is memoryless leading to an exponential probability of
a given event being outputted. So the probability of terminating on step i is (1/2)i. The probability of outputting Ĥ

is then (1

2
)k +

k−1∑
i=1

Sq(i)(
1

2
)i = q, where k is the lowest bit of q that is 1 (if one exists). Because of this, the appropriate

biased output is generated.
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Now, note that the probability of matching up with a given value on step i is (1/2)i. The expected number of
steps to output in the case where there is no lowest 1 bit is

∑
∞

i (1

2
)i = 1

1−1/2
= 2. So in expectation it takes no more

than twice as long to output a biased coin as it does to output an unbiased one.
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