EECS 495: Randomized Algorithms Hashing

Lecture 9

Reading: Text:

Hashing, Randomized Rounding

Linear Probing

 $\begin{bmatrix} See & STOC'07 & paper & of & Pagh, & Pagh, \\ Ruzic. & & \end{bmatrix} \end{bmatrix}$

Note: Analysis for b=3n to ease notation. Consider binary tree spanning array of buckets:

- leaves level 0
- node at level k has 2^k array positions under it
- expect node of level k to have $(1/3)2^k$ items hashed to buckets under it

 $\begin{bmatrix} In \ sense \ of \ original \ location \ h(x), \ not \\ h(x)+1, \ h(x)+2, \ etc. \end{bmatrix}$

Def: A node of level k is *dangerous* if more than $(2/3)2^k$ elts hash under it.

To bound operation time, must bound size of contiguous run of elts. containing h(q):

Claim: If $2^k \le$ size of run $\le 2^{k+1}$, either (k-2)-ancestor of h(q) or a nearby sibling is dangerous.

Proof: Counting argument.

Let E_k be event a level-k node is dangerous. Expected operation time:

Randomized
$$\sum_{k} O(2^{k}) \Pr[2^{k} \operatorname{run}(h(q)) \leq 2^{k+1}] \leq \sum_{k} O(2^{k}) \Pr[E_{k-2}].$$

Balls-in-bins: want to bound prob. bin of expected size $\mu = n/b = 2^k/3$ has more than 2μ balls

- Markov: $\Pr[X \ge 2\mu] \le 1/2$, exp. diverges
- Chebyshev:

$$\Pr[X \ge 2\mu] = \Pr[(X - \mu) \ge \mu]$$

$$\le \Pr[(X - \mu)^2 \ge \mu^2]$$

$$\le E[(X - \mu)^2)]/\mu^2$$

$$= O(1/\mu)$$

• 4th moment:

First compute moment. Let $Y_i = X_i - (1/b)$ where X_i indicates *i*th ball in bin, so $E[Y_i] = 0$.

$$E[(X-\mu)^4] = E[(\sum Y_i)^4] = \sum E[Y_i Y_j Y_k Y_l]$$

- one index, say i, appears once: $E[Y_iY_iY_kY_l] = E[Y_i]E[Y_iY_kY_l] = 0$
- all equal: $E[Y_i^4] = O(1/b)$
- two pairs: $E[Y_i^2 Y_j^2] = E[Y_i^2] = O(1/b^2)$

so
$$E[(X - \mu)^4] = O(n/b + (n/b)^2) = O(n^2/b^2) = O(\mu^2)$$
, and

$$\Pr[X > 2\mu] = \Pr[(X - \mu) > \mu]$$

$$\leq \Pr[(X - \mu)^4 \geq \mu^4]$$

 $\leq E[(X - \mu)^4)]/\mu^4$
 $= O(1/\mu^2)$

Why not 3rd moments? Get negatives so can't apply Markov.

By 4th moment, expected operation time at most $\sum_{k} O(2^{k})O(2^{-2k}) = O(1)$.

Cuckoo Hashing

Idea: Place n keys into two arrays and resolve collisions by bumping to other array.

- two arrays A[1..b] and B[1..b], where b = 2n
- \bullet two hash functions h and g
- when x arrives, if A[h(x)] contains elt y, recursively tro to move y to B[g(y)]

Note: Think random bipartite graph, nodes array positions, edges (h(x), g(x)), edge probability n/b^2

Analysis:

- hashing succeeds (no cycles): show constant prob. of collision
- fail: then rehash, must bound prob. of cycles

No cycles

$$\Pr[1st \text{ evict}] = \sum_{y} \Pr[h(x) = h(y)]$$
$$= n/b$$
$$= 1/2$$

Pr[lth evict] at most 2^{-l} by induction, so expected running time is $\sum_{l} l \cdot 2^{-l}$, constant.

Rehashing

• Prob. fixed cycle of length l:

 $(n/b^2)^l$

• # cycles of length l:

 b^l

• Prob. exists cycle of length l:

$$(n/b)^l = 2^{-l}$$

• Prob. exists cycle:

$$\sum_{l} 2^{-l} = O(1)$$

How much randomness do we need for these? STOC'07 says can cuckoo hash with pairwise independence!

Randomized Rounding

Max-SAT

Def: A satisfiability formula consists of

- n Boolean variables x_i
- m disjunctive clauses C_i

Example: $(x_1 \land \neg x_2 \land x_3) \lor (x_3) \lor (\neg x_1 \land x_2)$

Note: Terminology: literal, length of clause,

...

Problem: MAX-SAT: Given weights w_i for clauses C_i , find assignment that maximizes value of satisfied clauses.

Question: Approximation?

• uniform random sampling:

Claim: Let $x_i = 1$ w/prob. p = 1/2. This is a (1/2)-approximation.

Proof: Let Y_j indicate if C_j is satisfied. Then

$$E[\sum_{j} w_j Y_j] = \sum_{j} w_j \Pr[C_j = 1],$$

and since $C_j = 1$ iff each literal is true,

$$\Pr[C_j = 1] = (1 - (1/2)^{l_j}) \ge 1/2.$$

Note: Better for longer clauses: optimal if $l_j = 3 \forall j$.

• biased random sampling:

Claim: Let $x_i = 1$ w/prob. p > 1/2. Then $\Pr[C_j = 1] \ge \min(p, 1 - p^2)$ if no negated unit clauses.

Proof: Unit clauses ok since $p \ge (1 - p)$. For clauses with a unnegated and b negated literals,

$$\Pr[C_j = 1] = 1 - p^a (1 - p)^b \ge 1 - p^{a+b}$$
$$= 1 - p^{l_j} > 1 - p^2.$$

Note:
$$p = 1 - p^2 \to p = \frac{1}{2}(\sqrt{5} - 1) \approx 0.618$$

Claim: Let $x_i = 1$ w/prob. p > 1/2. This is a p-approximation.

Proof: Must show negated unit clauses don't hurt. Improve bound on opt:

- assume WLOG weight v_i of $\neg x_i$ smaller than weight w_i of x_i

$$- OPT \leq \sum_{i} w_{i} - \sum_{i} v_{i}$$

Let U be clauses excluding negated ones. Note $\sum_{j \in U} w_j = \sum_j w_j - \sum_i v_i$. Count performance of alg only on clauses in U.

• randomized rounding:

Idea: decouple the bias, use different bias for each variable.

LP Formulation

Variables:

- y_i for each variable
- z_i for each clause

Objective: $\max \sum_{j} w_{j} z_{j}$

Constraint: $\forall C_j, z_j \leq \sum_{i \in P_j} y_j + \sum_{i \in N_j} (1 - y_i)$

Rounding

Fact: Arithmetic-Geometric Mean Inequality: For non-negative a_i , $\prod_{i=1}^k a_i \le ((1/k) \sum_{i=1}^k a_i)^k$.

Claim: Randomized rounding gives (1 - 1/e)-approx.

Proof: Want to bound prob. clause C_j of length l_j is satisfied. Let P_j be set of positive literals and N_j be set of negative literals and y^*, z^* be an optimal soln to the LP. Then

$$\Pr[C_{j} = 0] = \prod_{i \in P_{j}} (1 - y_{i}^{*}) \prod_{i \in N_{j}} y_{i}^{*} \\
\leq \left(\frac{1}{l_{j}} \sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*}\right)^{l_{j}} \\
= \left[1 - \frac{1}{l_{j}} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*})\right)\right]^{l_{j}} \\
\leq \left(1 - \frac{z_{j}^{*}}{l_{i}}\right)^{l_{j}}$$

where the first inequality is by arithmeticgeometric mean inequality and the second is from the constraint in the LP. Thus

$$\Pr[C_j = 0] \ge 1 - (1 - \frac{z_j^*}{l_j})^{l_j} \ge \left[1 - (1 - \frac{1}{l_j})^{l_j}\right] z_j^*$$

by concavity of function on unit interval and algebraic manipulation. The min. is for large l_j and approaches (1-1/e) from above.