
EECS 495: Randomized Algorithms Lecture 9
Hashing

Reading: Text:

Hashing, Randomized

Rounding

Linear Probing

[[
See STOC’07 paper of Pagh, Pagh,
Ruzic.

]]
Note: Analysis for b = 3n to ease notation.

Consider binary tree spanning array of buck-
ets:

• leaves level 0

• node at level k has 2k array positions un-
der it

• expect node of level k to have (1/3)2k

items hashed to buckets under it[[
In sense of original location h(x), not
h(x) + 1, h(x) + 2, etc.

]]
Def: A node of level k is dangerous if more
than (2/3)2k elts hash under it.

To bound operation time, must bound size of
contiguous run of elts. containing h(q):

Claim: If 2k ≤ size of run ≤ 2k+1, either
(k− 2)-ancestor of h(q) or a nearby sibling is
dangerous.

Proof: Counting argument.

Let Ek be event a level-k node is dangerous.
Expected operation time:∑

k

O(2k) Pr[2krun(h(q)) ≤ 2k+1] ≤
∑

k

O(2k) Pr[Ek−2].

Balls-in-bins: want to bound prob. bin of ex-
pected size µ = n/b = 2k/3 has more than 2µ
balls

• Markov: Pr[X ≥ 2µ] ≤ 1/2, exp. di-
verges

• Chebyshev:

Pr[X ≥ 2µ] = Pr[(X − µ) ≥ µ]
≤ Pr[(X − µ)2 ≥ µ2]
≤ E[(X − µ)2)]/µ2

= O(1/µ)

• 4th moment:

First compute moment. Let Yi = Xi −
(1/b) where Xi indicates ith ball in bin,
so E[Yi] = 0.

E[(X−µ)4] = E[(
∑

Yi)
4] =

∑
E[YiYjYkYl]

– one index, say i, appears once:
E[YiYjYkYl] = E[Yi]E[YjYkYl] = 0

– all equal: E[Y 4
i ] = O(1/b)

– two pairs: E[Y 2
i Y

2
j ] =

E[Y 2
i ]E[Y 2

j ] = O(1/b2)

so E[(X − µ)4] = O(n/b + (n/b)2) =
O(n2/b2) = O(µ2), and

Pr[X ≥ 2µ] = Pr[(X − µ) ≥ µ]

1



≤ Pr[(X − µ)4 ≥ µ4]
≤ E[(X − µ)4)]/µ4

= O(1/µ2)[[
Why not 3rd moments? Get negatives so
can’t apply Markov.

]]
By 4th moment, expected operation time at
most

∑
k O(2k)O(2−2k) = O(1).

Cuckoo Hashing

Idea: Place n keys into two arrays and re-
solve collisions by bumping to other array.

• two arrays A[1..b] and B[1..b], where b =
2n

• two hash functions h and g

• when x arrives, if A[h(x)] contains elt y,
recursively tro to move y to B[g(y)]

Note: Think random bipartite graph, nodes
array positions, edges (h(x), g(x)), edge prob-
ability n/b2

Analysis:

• hashing succeeds (no cycles): show con-
stant prob. of collision

• fail: then rehash, must bound prob. of
cycles

No cycles

Pr[1st evict] =
∑

y

Pr[h(x) = h(y)]

= n/b
= 1/2

Pr[lth evict] at most 2−l by induction, so ex-
pected running time is

∑
l l · 2−l, constant.

Rehashing

• Prob. fixed cycle of length l:

(n/b2)l

• # cycles of length l:

bl

• Prob. exists cycle of length l:

(n/b)l = 2−l

• Prob. exists cycle:∑
l

2−l = O(1)

[[
How much randomness do we need for
these? STOC’07 says can cuckoo hash
with pairwise independence!

]]

Randomized Rounding

Max-SAT

Def: A satisfiability formula consists of

• n Boolean variables xi

• m disjunctive clauses Ci

Example: (x1∧¬x2∧x3)∨ (x3)∨ (¬x1∧x2)

Note: Terminology: literal, length of clause,
...

Problem: MAX-SAT: Given weights wi for
clauses Ci, find assignment that maximizes
value of satisfied clauses.

Question: Approximation?

2



• uniform random sampling:

Claim: Let xi = 1 w/prob. p = 1/2.
This is a (1/2)-approximation.

Proof: Let Yj indicate if Cj is satisfied.
Then

E[
∑

j

wjYj] =
∑

j

wj Pr[Cj = 1],

and since Cj = 1 iff each literal is true,

Pr[Cj = 1] = (1− (1/2)lj ) ≥ 1/2.

Note: Better for longer clauses: optimal
if lj = 3 ∀ j.

• biased random sampling:

Claim: Let xi = 1 w/prob. p > 1/2.
Then Pr[Cj = 1] ≥ min(p, 1 − p2) if no
negated unit clauses.

Proof: Unit clauses ok since p ≥ (1 −
p). For clauses with a unnegated and b
negated literals,

Pr[Cj = 1] = 1− pa(1− p)b ≥ 1− pa+b

= 1− plj ≥ 1− p2.

Note: p = 1 − p2 → p = 1
2
(
√

5 − 1) ≈
0.618

Claim: Let xi = 1 w/prob. p > 1/2.
This is a p-approximation.

Proof: Must show negated unit clauses
don’t hurt. Improve bound on opt:

– assume WLOG weight vi of ¬xi

smaller than weight wi of xi

– OPT ≤
∑

j wj −
∑

i vi

Let U be clauses excluding negated ones.
Note

∑
j∈U wj =

∑
j wj −

∑
i vi. Count

performance of alg only on clauses in U .

• randomized rounding:

Idea: decouple the bias, use different
bias for each variable.

LP Formulation

Variables:

• yj for each variable

• zj for each clause

Objective: max
∑

j wjzj

Constraint: ∀ Cj, zj ≤
∑

i∈Pj
yj +

∑
i∈Nj

(1−
yj)

Rounding

Fact: Arithmetic-Geometric Mean In-
equality: For non-negative ai,

∏k
i=1 ai ≤

((1/k)
∑k

i=1 ai)
k.

Claim: Randomized rounding gives (1 −
1/e)-approx.

Proof: Want to bound prob. clause Cj of
length lj is satisfied. Let Pj be set of positive
literals and Nj be set of negative literals and
y∗, z∗ be an optimal soln to the LP. Then

Pr[Cj = 0] =
∏
i∈Pj

(1− y∗i )
∏
i∈Nj

y∗i

≤

 1

lj

∑
i∈Pj

(1− y∗i ) +
∑
i∈Nj

y∗i

lj

=

1− 1

lj

∑
i∈Pj

y∗i +
∑
i∈Nj

(1− y∗i )

lj

≤
(

1−
z∗j
lj

)lj

where the first inequality is by arithmetic-
geometric mean inequality and the second is
from the constraint in the LP. Thus

Pr[Cj = 0] ≥ 1−(1−
z∗j
lj

)lj ≥
[
1− (1− 1

lj
)lj

]
z∗j

3



by concavity of function on unit interval and
algebraic manipulation. The min. is for large
lj and approaches (1− 1/e) from above.

4


