
EECS 495: Randomized Algorithms Lecture 2
Background Tour

Reading: Algorithm Desgin by Klein-
berg and Tardos; Introduction to Algo-
rithms by Cormen, Leiserson, Rivest, and
Stein; Approximation Algorithms by Vazi-
rani; The Design of Approximation Algo-
rithms by Williamson and Shmoys

Flagship Problems

Minimum vertex cover

Given:

• A graph G = (V,E)

Output:

• A subset of vertices V ′ ⊆ V s.t. for each
edge (i, j) ∈ E, either i ∈ V ′ or j ∈ V ′

Goal: MIN-VC: Minimize cardinality of V ′.

Example: Draw a graph, a vertex cover, and
a min vertex cover.

Maximum matching

Given:

• A graph G = (V,E)

Output:

• A subset of edges E ′ ⊆ E s.t. each vertex
is adjacent to at most one edge in E ′

Goal: MAX-MATCH: Maximize cardinality
of E ′.

Example: Draw a graph, a matching, and a
max matching.

Approximation

Algorithm: Consider all possible solutions
and output best.

So check all subsets of vertices, eliminate
subsets that aren’t covers, output small-
est; or check all subsets of edges, elmi-
nate subsets that aren’t matchings, output
largest.

Question: Quality of solution? Optimal.

Question: Run time? Exponential.

Note: Sometimes not possible to do better
quickly (MIN-VC), or quick algs are compli-
cated (MAX-MATCH).

We can try to approximate such problems:

• Let I be an instance of a min/max prob-
lem

• Let COPT (I) be value of optimal solution

• Let CA(I) be value of alg A on instance
I

1

Def: If I is a minimization problem, A is
an approximation alg A with approximation
ratio α ≥ 1 if for all input instances I,

CA(I) ≤ αCOPT (I).

Def: If I is a maximization problem, A is
an approximation alg A with approximation
ratio α ≤ 1 if for all input instances I,

CA(I) ≥ αCOPT (I).

Techniques

Charging arguments

Idea: Charge optimal soln. to alg. soln.

Example: MAX-MATCH:

Algorithm: Select legal edges arbitrarily
until can’t add any more.

Analysis:

• Consider an optimal solution OPT

• ALG owes each edge in OPT $1

→ money owed = value of OPT

• Edges in ALG pay edges in OPT

→ max # guys an ALG edge must pay
bounds approx ratio

Question: How much money does each edge
in ALG need?

Idea: Payment scheme:

Each edge in ALG pays adjacent edges in
OPT

• Everyone gets paid: each edge in OPT
adj to some edge in ALG.

Why? If not, contradicts fact that
matching is maximal (could add edge
from OPT).

• ALG edges need at most $2 each: each
edge in ALG adj to at most two edges in
OPT.

Draw picture.

Claim: ALG is a (1/2)-approx.

Question: Tight example?

Example: MIN-VC:

Algorithm:

• Set C = ∅

• While E 6= ∅

– Select e ∈ E and add an endpoint
v of e to C

– Set E to be E \ {e : v ∈ e}

Analysis:

• Consider an optimal solution OPT

• OPT lends each vertex in ALG $1

→ money lent = value of ALG

• Vertices in OPT lend to vertices in ALG

→ max # guys an OPT vertex must pay
bounds approx ratio

Question: How much money does each ver-
tex in OPT need?

Idea: Lending scheme:

• Each vertex v in ALG is added because
of some edge e

• Let v∗ be an OPT vertex covering e

• v borrows $1 from v∗

• Everyone gets $1

2

• OPT vertices need at most $(n-1) each

Each vertex in OPT can cover at most
$(n-1) edges (max degree).

Claim: ALG is an O(n)-approx.

Question: Tight example?

Question: Improved algs?

• Greedy: iteratively select v of current
max degree gives O(log n)-approx

• Maximal matching: use above alg, but
select both endpoints gives 2-approx

Why 2-approx? Each edge in maximal
matching borrows $2 from covering ver-
tex in OPT to pay for its endpoints; each
vertex in OPT can cover at most one
such edge since they are a matching.

Algorithm: Greedy:

• Set C = ∅

• While E 6= ∅

– Find vertex v of highest induced de-
gree d(v) and add v to C

– Set E = E \ {e : v ∈ e}[[
Charging argument through a middle-
man.

]]
Analysis: Greedy: Let the “price” of an
edge e covered by a vertex v in an iteration
of the alg be 1/d(v) – all edges processed in
one iteration pay for covering vertex v.

• Let ek be k’th edge covered. Then
price(ek) ≤ OPT/(m− k + 1).

At time k at least m−k+1 edges left and
OPT covers them all, so average cost-
effectiveness is OPT/(m−k+1), so some
such vertex exists.

• Greedy is O(log n)-approx.

Selected vertices totally paid for by
edges, so cost of cover is

m∑
k=1

price(ek) ≤
n2∑

k=1

OPT/k = O(log n)OPT

Linear programming

Def: A linear program is a linear objective
subject to a set of linear constraints.

Example:

minimize x1 + 2x2 + x3

subject to x1−x2+x3 ≥ 10, 5x1+x2−x3 ≥ 3,
x1, x2, x3 ≥ 0[[

Constraints are a polytope, objective is a
direction.

]]
Def: An extreme point of a linear program is
a vertex of the polytope, i.e., a solution that
cannot be written as a convex combination of
other solutions.

Fact: The optimal solution is achieved by an
extreme point.

Def: An integer program is a linear program
in which variables are constrained to be 0 or
1.

Note: We can solve LPs efficiently, but not
IPs.

Idea: LP-based approx algs:

• express problem as an IP

• relax to an LP and solve

• round solution

• show rounded solution is close in value
to LP and hence to IP

Draw picture:

3

OPT LP — OPT IP — rounded solution

Example: MIN-VC:

• variables: xi for each vertex i (xi = 1
indicates vertex i is in cover)

• objective: min
∑n

i=1 xi (cost of cover)

• constraints:

– ∀(i, j) ∈ E, xi + xj ≥ 1 (each edge
is covered)

– xi ∈ {0, 1} (integrality)

• for LP, relax last constraint to xi ∈ [0, 1].

Any soln can be represented by setting
variables appropriately; it’s cost is de-
scribed by objective. Hence, optimal soln
to IP is optimal MIN-VC.

Fact: LP for vertex cover is half integral: in
an extreme point of LP, each variable xi ∈
{0, 1/2, 1} Proof:

• Let V− = {i : 0 < xi < 1/2} and V+ =
{i : 1/2 < xi < 1}.

• For ε > 0, let

– yv = {xv + ε if in V+; xv −
ε otherwise}

– zv = {xv − ε if in V+; xv +
ε otherwise}

• x 6= y, z since V+ ∪ V− 6= ∅

• x convex comb of y and z since x = 1
2
(y+

z)

• y and z are feasible for ε small enough
since

– positive

– if xu + xv > 1 then yu + yv > 1 and
zu + zv > 1 for ε small enough

– if xu + xv = 1 then if not half-
integral either u ∈ V− and v ∈
V+ or vice versa, so ε cancels and
yu + yv = zu + zv = 1

Algorithm: MIN-VC

• Solve LP

• Let C = {i : xi > 0}

Analysis:

cost(C) ≤ 2
∑

xi ≤ 2OPT

Question: IP/LP for matching?[[
Can add constraints to strengthen, e.g.,
odd cycles.

]]
Question: IP/LP for ranking tournaments?[[

Sometimes multiple choices for variables;
helps to pick right one.

]]

4

