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Most research in sponsored search auctions assume that users act in a stochastic manner, ignoring potential
strategic deliberations. We propose a simple model of user costs and benefits. We then show how to formulate

the corresponding sponsored search environment as a Markov decision process. For certain sponsored-search

mechanisms, we are able to derive the optimal (i.e., utility-maximizing) user search behavior. The optimal
behavior is characterized by a threshold policy in which users view ads in a top-down manner and click on

those whose perceived quality exceeds a fixed threshold.

1. INTRODUCTION

When a user submits a query to a search engine, the search engine displays a list of ‘algo-
rithmic’ results alongside a ranked list of ‘sponsored’ results, or advertisements. These spon-
sored results are sold to advertisers via an auction. In a typical sponsored-search auction,
advertisements are ranked based on two attributes for each advertiser, value and quality.
Value is the advertiser’s maximum willingness to pay for a click on their ad and quality is
usually interpreted as the probability that this advertiser will satisfy the search need of a
user visiting that site. Search engine users then search through these advertisements in an
effort to satisfy a search need. Given that users have a cost associated with each searching
action (reading the small text of the ad, visiting a website), and a benefit for satisfying the
search need, we ask the following question: What is the optimal search strategy for users?

Most prior work analyzing sponsored-search auctions assumes stochastic models for user
search behavior. The early separable click-through-rate model and later cascade model as-
sume the user clicks on each ad with an exogenous probability related to the ad itself, its
rank in the list, and (in the case of the cascade model) the rank of other ads. These models
enjoy tremendous success in explaining the welfare properties of sponsored-search auctions
for advertisers in equilibria, and the resulting revenue for the search engine. However, neither
model considers users as strategic agents, and thus forbids analyses that directly address
user welfare.

We overcome this shortcoming by modeling users as strategic agents. To understand the
model, let’s consider the setting in a bit more detail. A user submits a query, say “camera”
for example, to a search engine in order to satisfy a search need, buying a new SLR perhaps.
In response to the query, the search engine presents a ranked list of ads that it hopes will
satisfy the user’s need. The user reads the ads, clicking on some subset of them, until he
either satisfies his search need (finds a satisfactory camera), or abandons the search. The
user has some value for satisfying his search need, and incurs costs in the search process.
Reading the text of an advertisement in the ranking imposes a small viewing cost on the
user, related to the time it takes to read and evaluate the ad. After reading, the user has
an estimate of the quality of the ad, i.e., the probability the ad satisfies his search need. By
incurring an additional (and larger) cost, the user can click on the advertisement, visit the
advertiser’s website, and determine whether the ad does indeed satisfy his search need.

In this work, we present a framework for determining optimal user behavior based on
the sponsored search environment, namely users’ benefits and costs, the distributions over
advertisers’ qualities and values, and the sponsored-search mechanism, or ranking rule,
used by the search engine. We assume that, given the quality and value distributions and
ranking rule, users can determine the distribution of quality for each advertisement in
the list (conditional on prior advertisements). Thus the optimization problem facing the
user reduces to the following simple Markov decision process: there is a stream of coins
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(advertisements). Each coin has a probability of heads (ad quality) that is drawn according
to a known joint distribution. The user maintains a bag of coins, initially empty. At each
step, the user can: 1) pay a small cost to purchase the next coin in the stream1 and hence
observe the realization of its probability of heads; 2) pay a larger cost to flip a coin in his
bag and hence satisfy his search need (receiving the value of the search) if the coin flip is
heads; 3) abandon the search.

We consider two special cases of the sponsored search environment. In the first case, the
ranking rule sorts ads in order of quality. Thus the highest quality ad is the first ad that
the user views. The optimal user behavior, as observed in prior work, is thus to read and
click in a top-down manner until the expected quality of the next ad fails to exceed the
clicking cost. In the second case, the ranking rule sorts ads in random order with respect
to qualities. Our main result is that, for this setting, the following simple threshold policy
is optimal: read ads one-by-one and click any ad that exceeds the computed threshold.

Although for general quality distributions we can only represent the threshold implicitly,
for uniform distributions we can explicitly characterize the user value of the optimal policy
in the two cases of interest. This allows us to compare the social welfare (sum of advertiser
and user value) for these two cases. We show that, depending on the view and click costs,
either rule can optimize social welfare. The intuition is that the first case offers the user
high value, but generates few clicks for advertisers, whereas the second case imposes a larger
search cost on the user but also generates more clicks, giving each clicked advertiser some
positive welfare (equal to his value for a click).

The remainder of the paper is as follows. Section 3 formally introduces our sponsored-
search model and the stochastic process we use to study user search behavior. Section 4
presents an application of this model to the primary setting considered in this paper. Section
5 gives background for Markov Decision Processes and section 6 uses this background to
prove that a threshold policy is optimal for the setting in Section 4. Sections 7 and 8 contain
discussions regarding welfare comparisons and future directions for this work.

2. PREVIOUS WORK

Early work in the sponsored-search literature was largely focused on characterizing equilibria
bidding strategies for advertisers [Varian 2007; Edelman et al. 2005]. These early models
did not allow any advertiser-specific effects on click-through-rate or externalities on CTR
between ads. Later work proposed various stochastic models of user search behavior to
develop a more complete theory on the role of advertiser-specific effects and externalities
in click-through-rates [Aggarwal et al. 2008; Kempe and Mahdian 2008]. In the context of
these stochastic models for user behavior, prior work also studies properties, like revenue
and welfare, of various ranking rules [Lahaie and McAfee 2011; Lahaie and Pennock 2007;
Gomes et al. 2009]. Our work can be viewed as a strategic analogue of this line of work; we
first derive optimal strategic behavior for user search and then use these results to compare
welfare properties of two simple ranking rules.

The work of Athey and Ellison [2009] is mostly closely related to our work. They consider a
setting where users strategically search through displayed links and use this characterization
to show a strong connection between user value and total social welfare. They assume that
advertisers only receive value when they meet the search need of a consumer and thus quality
and value are completely aligned in their model. In turn, their results pertain to equilibria

1Note by assuming users must always purchase coins in order, we are assuming in the sponsored search
setting that users read ads in a top-down manner. This assumption is not without loss in all settings,
although it will be in the setting we study in this paper. Exploring optimal behavior with an unrestricted
reading order is interesting future work.
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in which ads are sorted by quality. Our framework addresses a large class of ranking rules2

and allows for more general relations between advertiser quality and value.

3. THE MODEL

3.1. Sponsored-Search

An advertiser is defined by a quality and value pair (q, v) where an advertiser’s quality is
the probability that the advertiser’s site satisfies a user’s search need and an advertiser’s
value is the value he has for one visitor to his site. We assume that the (q, v) pair for each
advertiser is drawn IID from distribution D. A sponsored-search mechanism M produces
an assignment of advertisers to slots based on the reports of (quality,value) pairs for all
advertisers. For simplicity, we assume advertisers report their values truthfully. We note
that the quality for an advertiser is different from its click-through-rate; quality is chance
that a user will have his need satisfied by the ad while CTR is the expected number of clicks
that an ad receives. These two quantities are related but they are not the same.

We shall refer to the pair of a mechanism M and the distribution D as a sponsored-
search environment. Together, these elements induce distributions over the quality of the
advertisement in each slot. We will refer to the assignment of ads to display slots as a
ranking, where the first ranked item is assigned to the first slot, etc. For example, if a
mechanism produces a ranking over the N advertisers which is ordered by quality then the
distribution of ad quality in the first slot will be the first order statistic of N draws from
D, the second slot will be distributed according to the second order statistic, and so forth.
We will let the random variable Qi denote the quality of the ad shown in the slot i.

When a user visits the search engine, the search engine displays the ranking produced by
M(v̄, q̄) where v̄ is the reported vector of values and q̄ is the reported vector of qualities. We
assume that the user starts searching at the top position and proceeds top-down. When a
user views an ad in position i, he pays the cost of viewing cv, reads the short text of that ad
and learns its quality qi. When a user clicks on an ad in position i, he pays cost of clicking
cc, visits the site associated with that ad and has his search need satisfied with probability
qi. We assume users can only click upon ads that they have already viewed and that they
view ads in order (i.e. they cannot view the 3rd ad if they have not viewed the second) 3. If
his search need is satisfied, he receives a (normalized) reward of 1. We assume the user has
knowledge of the sponsored-search environment, i.e. the mechanism M and distribution D,
and thus knows the distributions for Q1, Q2, .... Furthermore, we assume the user is able to
update his prior for Qk based on the realized qualities of the first k − 1 ads.

This model presents two analytic challenges: (1) determining the distributions of ad quali-
ties for each slot for the given sponsored-search environment and (2) solving for the optimal
user search strategy for the given quality distributions in each slot. We treat these two
problems separately for the remainder of this paper. In the next section, we present the ab-
straction for the user search behavior problem but first we present an example to highlight
some of the aspects of a search policy.

Example. Here we briefly mention an example in which a user should not click on an ad
immediately after it is viewed. Suppose that there are two ads, the user viewed the first ad
already, and learned q1 = 0.3. Conditioned upon this information, the user knows that the
quality of the second ad Q2 is distributed uniform [0, 1]. The cost of viewing is cv = 0.1 and
the cost of clicking is cc = 0.2. The options of the user are then:

2It is important to note that we don’t study whether these general ranking rules could arise in equilibrium
3This assumption is not without loss; there are some environments where this leads to sub-optimal search
search strategies. Characterizing environments where this restriction affects the optimal policy is an inter-
esting direction for future work
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— click-first: this incurs a cost of 0.2 with an expected gain of 0.3 In the ad does not satisfy
the user, then the user will view the next ad and click if its quality is above .2, giving an
expected quality of .6. Thus the expected utility of this strategy is .3 − .2 + (.7)(−.1 +
.8(.6− .2)) = .254.

— view-first: this first incurs a cost of 0.1. The second ad has a quality Q2 uniformly
distributed in [0, 1]. If this quality is more than 0.3, the user will click on this ad first, and
on a failure, will also click on the first ad. This results in a utility of q2−cc+(1−q2)(q1−cc).
The expectation of Q2 in this range is .65, so this expression is .65− .2+(1− .65)(.3− .2) =
0.485. If q2 ∈ [0.2, 0.3], then the user will click on the first ad, and then, if not successful,
click on ad 2. In this case, one can calculate in a similar way that the expected utility
is 0.135. Finally, when q2 < 0.2, the user will only click on the first ad, resulting in an
expected utility of q1 − cc = .1. The overall utility of this strategy is −.1 + 0.7× 0.485 +
0.1× 0.135 + .2× .1 = 0.273.

Since the expected reward of viewing first is higher, we should expect the user to view the
next ad rather than clicking on the first. Then it will click on the second ad first when its ad
quality is above that of the first ad, which happens with probability .7 and thus we would
actually find a CTR for the first ad that is actually lower than the CTR for the second ad,
if we reached this point in the process.

3.2. Coin Flipping Problem

In this section, we present an abstract stochastic problem that we will use to generalize the
search behavior of users. We feel this problem potentially applies to a few problems. We use
it to solve for the optimal, or near optimal, search behavior for users in the sponsored-search
context.

Definition 3.1 (The Coin Flipping Problem). Let Q1, Q2, ... be a countable stream
of weighted coins, where Qi is the random variable representing the quality (success proba-
bility) of the ith coin in the stream. The cost of drawing a new coin from the stream is cv
and the cost of flipping a coin is cc. The user knows the distributions for Q1, Q2... (and can
update his priors based on realized values ) but only knows the realized quality of coin i after
drawing it from the stream. At each point, the user has the choice of actions to either flip
any coin in his possession, draw the next coin from the stream, or quit. Note, the user is
not allowed to skip any coin in the stream, so he must always draw the very next coin if he
chooses to draw a new coin. If the coin flip succeeds, he receives a payoff of 1 and quits. If
it fails, he loses that coin and continues to the next stage. The user seeks to maximize his
expected reward minus costs from this process.

To analyze this problem, we will frame it as discrete-time stochastic control problem; our
actions at time t will determine both a reward and how the system state evolves from time
t to t+ 1.

The current state S = (O,C, k) of this process is defined by a set of observed qualities O,
the set of coins in the user’s possession C, and the index of the next coin in the stream k.
We’ll denote the set of all states by S and write state S0 = (∅, ∅, 1) to be the starting state of
the system. The set of actions consists of {flip any q ∈ C, draw, quit} and is denoted by A.
The choice of an action determines both the immediate reward received (or cost incurred)
and determines the transition probabilities to the next state of the system. The rewards
and transitions for each action in the Coin Flipping Problem are as follows.

(1) Draw next coin. Pay cost cv. With probability P (Qk = qk), transition to state S′ =
(O ∪ qk, C ∪ qk, k + 1). In an abuse of notation, we will abbreviate this new state by
writing S ∪ qk.
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(2) Flip a coin q ∈ C. Pay cost cc. With probability q, transfer to the winning state,
receive a reward of 1, and end the process. With probability 1 − q transition to state
S′ = (O,C \ q, k). We will abbreviate this state by writing S \ q.

(3) Quit. The user receives a final reward of 0 and the process ends.

A policy π : S → A is a function specifying which action a to take in state S. The goal of
the Coin Flipping problem is to find a policy which maximizes the user’s expected return.

Lemma 3.2 (Flipping Reward). When taken an action of flip, we pay cost cc and with
probability q, transition to the winning state and receive a reward of 1. We transition to state
S \ q with probability 1− q. This is equivalent in expectation to receiving a reward of q − cc
and transition to state S \ q with probability 1− q.

Definition 3.3 (Value Function). The value function Vπ(S) for policy π is a map-
ping of the expected reward the user obtains when starting in state S and following policy
π for the duration of this process. The expected value for state S is equal to the reward in
the current state plus the future earning from following π. For the Coin Flipping Problem,
it has the following form

Vπ(S) =


q − cc + (1− q)Vπ(S \ q) if π(S) = flip coin q

−cv + E[Vπ(S ∪Qk+1)] if π(S) = draw next coin

0 if π(S) = quit

where the expectation in the second case is taken over the realize value of coin Qk+1.

Thus the goal of the Coin Flipping Problem is to find a policy π such that solves

max
π∈Π

Vπ(S0)

where Π is the set of all policies.
The example from the last section demonstrates an important observation; if we set

cc = cv = 0, then both strategies would have given the same value because q1 +(1− q1)q2 =
q1 + q2 − q1q2 = q2 + (1 − q2)q1. Then it must be that one strategy is better because
it minimizes expected costs. In terms of drawing costs, the click-first strategy is superior
because we only expect to incur a drawing cost (1−q1)cv while the view-first strategy incurs
a drawing cost of cv. However, the draw-first strategy incurs a lower cost of flipping but
the reason is more subtle. As we will show, flipping coins in order from highest to lowest
quality minimizes the cost of flipping. Since the quality q1 was relatively low, we expected
the Q2 > q1 and the gain of flipping coins in the sorted order offsets the higher flipping
costs.

Before moving on, we prove a useful lemma showing that the greedy ordering of coin flips
minimizes the cost of flipping.

Lemma 3.4 (Greedy Ordering). Consider the following problem: Given a finite set
of coins C, find the order flipping order of coins to maximize value. Then the sorted order
from highest to lowest quality solves this problem.

Proof. WLOG, assume q1 ≥ q2... ≥ qn. Consider any arbitrary ordering and let a1

be the quality of the first coin flipped, a2 be the quality of the second coin flipped, etc.
Consider the expected value for flipping in this order

a1 − cc + (1− a1)(a2 − cc) + (1− a1)(1− a2)(a3...) =

N∑
i=0

[

i−1∏
j=0

(1− aj)](ai − cc)
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First we split up the terms to get

N∑
i=0

[

i−1∏
j=0

(1− aj)]ai −
N∑
i=0

[

i−1∏
j=0

(1− aj)]cc

First, we focus on the positive term above. As we noted in the example, ai+(1−ai)ai+1 =
ai+1 + (1 − ai+1)ai, so we can reverse the ordering of any two elements and not affect the
value. So any ordering achieves the same value for the first term in above equation. Next, to
maximize the overall value, we want to minimize the value of the second term. The (1−a1)
appears in the last N − 1 terms, the (1− a2) appears in the last N − 2 terms, etc. Thus we
would should first minimize the term (1−a1), then minimize (1−a2), etc. This minimization
is achieved by the greedy ordering, i.e. ai = qi. Thus the greedy ordering maximizes the
value of this expression.

Intuitively, this lemma should imply that the optimal action at any state will either be draw
the next coin or flip the highest quality coin in the user’s possession. We do not show this
implication holds for all optimal policies but we will show it to be true for the policies that
we are interested in.

4. APPLICATIONS OF MODEL

In this section, we present two sponsored-search environments, show their transformation to
the Coin Flipping problem and solve for the optimal policies. Let D = F ×G be a product
distribution for (quality,value) pairs. We can consider a mechanisms which ranks ads by
vrq1−r where r is some chosen weighting factor between the two quantities. Setting r = 0
induces a sorted ranking of ads by quality. Setting r = 1 ranks completely by quality and
induces a uniformly random ranking of ad qualities; the distribution over ad quality is the
same for each slot. We show that a simple threshold strategy is an optimal search policy for
this setting.

We are motivated to study these two environments because the they represent the ex-
tremes of rankings for this family of ranking rules. For certain distributions, we show there’s
a small constant additive loss in user value.

4.1. Rank by Quality

First, we will present what we call the ‘rank by quality’ environment, when r = 0. The
mechanism M ranks advertisers completely on the basis of quality; the highest quality ad
is assigned to the first slot, second highest to the second slot, etc. With N advertisers
participating, Qi is the ith order statistic of N independent draws from F . We denote this
value by F i:N .

When transforming to the Coin Flipping problem, we simply have that Qi = F i:N . The
optimal policy here is quite simple: draw the next coin and flip it immediately until either:
(A) the realized quality of the coin qi < cc or (B) the expected quality of the next coin Qi+1

(conditioned upon the realized qualities so far) falls below cc + cv. When N is large, the
first order statistic is very close to 1. Then with high probability, the user will only need to
draw and flip a single coin, yielding a user value of 1− (cc + cv).

4.2. Rank by Value

Now we present the ‘rank by value’ environment, when r = 1. The mechanism M ranks
purely on value; i.e. the highest valued advertiser is assigned to the first slot and so forth.
Since ad quality and value are independent and M ranks on the basis of value, the quality
of the ad in slot i is a simply an independent draw from F .
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We study a Coin Flipping problem where each coin follows the distribution, i.e. Qi = Q
for all i, and Qi and Qj are independent for all pairs i, j. We assume that there are an
infinite number of coins in the stream.

After these assumptions, the current state need only be defined by the set of coins cur-
rently held by the users; the set of observations is not necessary because each coin is inde-
pendent of the qualities of all other coins and index is unnecessary because there is always
an infinite number of coins remaining at any state. We take advantage of this reduced state
space by formulating this problem as a simple Markov Decision Process and use standard
MDP tools to show that a threshold policy is optimal for this setting.

5. MARKOV DECISION PROCESSES OVERVIEW

Readers familiar with Markov Decision Processes should feel free to skip this section.
We study this problem by formulating it as a Markov Decision Process (MDP), a frame-

work used to solve discrete-time stochastic control problems. At the beginning of each a
period, the particular state of the system is observed and then an action must be taken.
Based on the current state and the chosen action, a reward is earned (this reward can
be negative) and the probability distribution over the next period’s state is determined.
Formally, an MDP is defined by a set of states S, a set of actions A, a reward function
R : S × A → R, and a transition function P : S × S × A → [0, 1]. When action a ∈ A
is taken in state S ∈ S, you receive reward R(S, a) and the process transitions to state S′

with probability P (S, S′, a).
The goal is to find a policy π : S → A, which is a mapping of states to actions taken

in that state, which maximizes your expected return. We denote the expected return you
would receive if you were to start in state S and follow policy π throughout this process as
Vπ(S).

Definition 5.1. For a given policy π, the value function Vπ(S) denotes the expected
return received by starting in state S and following policy π. Vπ(S) has the following form

Vπ(S) = R(S, π(S)) +
∑
S′∈S

P (S, S′, π(S))Vπ(S′)

This above form for the value function of π has a simple interpretation; it is the reward
earned in the current state plus the expected future reward you receive by following policy
π.

The Optimality Equation, denoted V (S), represents the maximum reward achievable
when starting in state S and is defined by

V (S) = sup
π
Vπ(S)

Similarly, we can say a policy π∗ is optimal when

V (S) = Vπ∗(S) ∀S ∈ S
The following theorem is a classic result of Markov Decision Processes.

Theorem 5.1. The optimal value function V (S) represents the optimal reward one can
earn when starting in state S. It has the following form

V (S) = max
a

[R(S, a) +
∑
S′∈S

P (S, S′, a)V (S′)]

Definition 5.2. For a given policy π, the value function Vπ(S) is said to satisfy the
optimality equation if

Vπ(S) = max
a

[R(S, a) +
∑
S′∈S

P (S, S′, π(S))Vπ(S′)]
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Theorem 5.2 (Ross [1983]). If Vπ(S) ≥ 0 for all states S and Vπ(S) satisfies the op-
timality equation for all states, then π is an optimal policy.

The above theorem suggests a way to prove that a policy optimal; guess a candidate
policy, derive its value function, and check that the value function satisfies the optimality
equation. We use this approach in the next section to show that a threshold policy is optimal
for the ‘rank by value’ setting.

6. RANK BY VALUE AS AN MDP

In section 2, we described the state space, action, rewards, transition probabilities, and
value function for the Coin Flipping Problem. The value function for policy π had the form

Vπ(S) =


q − cc + (1− q)Vπ(S \ q) if π(S) = flip coin q

−cv + E[Vπ(S ∪Qk+1)] if π(S) = draw next coin

0 if π(S) = quit

Then the optimal value function V (S) for the Coin Flipping problem has the form

V (S) = max


qi − cc + (1− qi)V (S \ qi) coin qi is flipped

−cv + EQ[V (S ∪Q)] new coin drawn

0 quit

Thus a policy π satisfies the optimality equation if the following holds for all states S ∈ S.

Vπ(S) = max


q − cc + (1− q)Vπ(S \ q)
−cv + E[Vπ(S ∪Qk+1)]

0

We now show that a threshold policy, with a particular threshold, constitutes an optimal
policy for this problem.

We first derive the value function for the threshold policy and show that the reward func-
tion satisfies the optimality equation. Theorem 5 allows us to conclude that the threshold
policy is optimal.

Definition 6.1 (Threshold policy). Let S be the current state and let q1 be the max-
imum quality coin in S. Then the threshold policy with threshold t, denoted by πt(), is defined
as follows

πt(S) =

{
flip q1 if q1 ≥ t
draw if q1 < t

Since this process begins with S = ∅, the threshold policy immediately flips any coin with
quality q ≥ t and never flips any coin q < t, implying we can discard any q < t. After we
pay cv and draw the first coin, we flip it if is above the threshold and thus end up with
S = ∅ again. If it is below the threshold, we discard it and again end up with S = ∅.

Vπt(∅) = −cv + P (Q ≥ t)E[Q− cc + (1−Q)Vπt(∅)|Q ≥ t] + (1− P (Q ≥ t))Vπt(∅)
Rearranging this term yields

cv = P (Q ≥ t)E[(1− Vπt(∅))Q− cc|Q ≥ t]

Vπt(∅) = 1− P (Q > t)cc + cv
E[Q|Q > t]P (x > t)
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Maximizing this term over the choice of threshold t would yield the policy which is optimal
amongst the class of threshold policies. We prove below that it is optimal amongst the class
of all policies.

Definition 6.2. Let V0 denote the value that satisfies

EQ[max{0, (1− V0)Q− cc)}] = cv

Later we show that V0 and is the expected reward the user can earn from this process by
following an optimal policy. For now, we will use V0 to define a threshold value.

Lemma 6.1. Let t∗ = cc
1−V0

. Then the threshold policy with threshold t∗ satisfies the
optimality equation. That is

Vπt∗ (S) = max


q1 − cc + (1− q1)Vπt∗ (S \ q1)

−cv + EQ[Vπt∗ (S ∪Q)]

0

Where the first term in the max is taken over all coins qi ∈ S. Further Vπt∗ (∅) = V0.

Proof. See appendix.

Theorem 1. The threshold policy with threshold t∗ is an optimal policy for the ‘rank by
value’ setting for the Coin Flipping Problem.

Proof. Corollary of previous lemma and Theorem 5.

7. COMPARISON AND DISCUSSION

With these tools in hand, we can discuss the differences in social welfare between these two
settings. In this context, social welfare is the sum of the user’s expected value and the sum
of the expected value for each advertiser. Unfortunately, computing a closed form for V0 is
not so simple and thus it is hard to establish a general comparison of the ‘rank by value’
and ‘rank by quality’ mechanism for an arbitrary product distribution D. For the purposes
of discussion, we evaluate the social welfare of the two mechanisms with an infinite number
of advertisers and D = F × G; the distribution for qualities F is uniform [0, 1] and the
distribution for values G is uniform [0, 1].

7.1. Uniform [0,1]

Lemma 7.1. The value that the user receives from ‘rank by value’

V0 = 1− (cc + cv +
√

2cvcc + c2v)

With an optimal threshold of

t∗ =
cc

cc + cv +
√

2cccv + c2v

The expected value from the set of advertisers is 2
1+t yielding a total expected social welfare

of

SWvalue =
2

1 + t∗
+ 1− (1− t∗)cc + cv

1
2 (1− t∗2)

Proof. The derivation of the user value for this setting comes from plugging in the
uniform distribution to equations at the end of 6. The details of this algebra are deferred
to the appendix.

Value is generated for an advertiser whenever a user visits clicks through to their site.
Users will continue clicking on ads above the threshold until their need is satisfied; each
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ad above the threshold has probability E[Q|Q ≥ t∗] = 1+t∗

2 of satisfying the user. In

expectation, users will click on 1
E[Q|Q≥t∗] = 2

1+t∗ ads. Similarly, users will only have to

view the first 1
P (Q≥t∗)E[Q|Q≥t∗] = 1

1−t∗2 , which is a bounded number of ads. Any ad that is

clicked upon must be part of the first 1
1−t∗2 ads; since ads are ordered by quality and there

are an infinite number of ads, all of these advertisers will have a value of 1 for a click. Thus
the expected welfare generated from the advertisers is 2

1+t∗ .

Lemma 7.2. The value that the user receives from ‘rank by quality’ is

1− (cc + cv)

The expected value for the set of advertisers is 1
2 . The yields an expected welfare of

SWquality =
1

2
+ 1− (cc + cv)

Proof. Ads are sorted by quality and thus the first ad will have a quality of 1. This
implies that the user will view and click on a single ad and then stop (because his need is
satisfied by that ad with probability 1). Qualities and values are independent, so that first
ad will have an expected value of a single draw from G, which is 1

2 .

Then the ‘rank by value’ model has a higher social welfare when the following is true

2

1 + t∗
+ 1− (1− t∗)cc + cv

1
2 (1− t∗2)

>
1

2
+ 1− (cc + cv)

We can evaluate this expression numerically and we observe there are settings for which the
above inequality hold and other settings in which the inequality does not hold. We provide
some intuition here for why this is so: because the loss in user value is not too large, the
‘rank by value’ model has a higher social welfare because the user will be clicking on more
than just one ad and generating more value for the advertisers. Furthermore, the ads that
the user clicks in the ‘rank by quality’ model have higher values because the ads are ranked
by value. In the ‘rank by quality’ model, the user only clicks on a single ad which has lower
expected value than any of the ads clicked upon in the ‘rank by value’ model. However,
when the user costs are high enough, the inefficiency of the user search offsets any gains to
advertisers and the ‘rank by quality’ model has a better welfare. It is likely that neither of
these ranking rules are socially optimal for the given D; determining the socially optimal
ranking rule for various environments is an interesting direction for future work.

8. DISCUSSION AND FUTURE RESEARCH

We presented here general framework for studying the optimal user search behavior for
a given sponsored-search environment. By incorporating users’ values for satisfying their
search needs and their costs associated with searching, we are able to extend the discussion
of social welfare in sponsored-search to include consumers. We evaluated the optimal search
and the social welfare for a very specific sponsored-search environments. However our model
has two shortcomings: (1) this general framework does not simplify the analysis of more
complex environments and (2) the optimal policies may be quite complicated for more
complex environments, so requiring optimal search seems like a strong assumption. Our
analysis of the ‘rank by value’ rule required an infinite number of ads; addressing the effect
of a smaller number of ads on the value of the search policy and the social welfare is another
important direction for this work to be practically relevant.

In the course of performing this work, we have seen evidence that threshold policies (with
the right threshold) are quite reasonable for settings where the induced ranking of qualities
is somewhat sorted by quality in expectation. To formalize this notion more, we have the
following conjecture
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Conjecture 1 (Prophet Inequality). Assume that Q1, Q2... forms a supermartin-
gale, i.e. E[Qi+1|Qi = qi, Qi−1 = qi−1...] ≤ Qi. Then there exists a threshold policy which
achieves a constant additive approximation in expectation (over the realization of coin qual-
ities) to a prophet who knew all the coin qualities ahead of time.

We believe that reasonable assumptions on the sponsored-search environment should pro-
duce Q1, Q2... that satisfy the supermartingale property.

Conjecture 1 (Sufficient Environment Conditions). If ranking rules are mono-
tone (increasing value or quality should only raise you in the ranking) and advertiser values
and qualities are positively correlated, then the induced Q1, Q2, ... should be a supermartin-
gale.
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Appendix

A. PROOF OF 6.1

Proof. First we prove that V0 = Vπt∗ (∅) by showing that V0 satisfies the recurrence
relation if we assume that V0 is in fact the value for starting with the empty set and using
threshold t∗

Vπt∗ (∅) = E[Vπt∗ (Q)]− cv = P (Q ≥ t∗)E[Q− cc + (1−Q)V0] + (1− P (Q ≥ t∗))V0 − cv

= V0 + (1− V0)P (Q ≥ t∗)E[Q− t∗ + t∗|Q ≥ t∗]− ccP (Q ≥ t∗)− cv

= V0 + (1− V0)E[max(Q− t∗, 0)] + ((1− V0)t∗ − cc)P (Q ≥ t∗)− cv

= V0 + E[max((1− V0)Q− cc, 0)]− cv = V0

Note E[max((1 − V0)Q − cc, 0)] = cv by definition. Using this, we now show that the t∗

threshold policy satisfies the optimality equation.
Let the current state be S = {q1, q2, q3...} and relabel such that q1 ≥ q2..... Let q1 ≥

q2... ≥ qx ≥ t∗ and qi < t∗ for i > x. We must prove the following

Vπt∗ (S) = max


q1 − cc + (1− q1)Vπt∗ (S \ q1)

−cv + EQ[Vπt∗ (S ∪Q)]

0
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First we prove that flipping q1 is better than flipping any other coin in S. If we flip
any coin qi ≥ t∗ (the case where qi < t∗ is obviously not optimal because it results in an
expected loss), the next state we move to is S \ qi. Following policy πt

∗
at state S \ qi will

result in flipping all the coins above t∗. Then regardless of what coin when flip at set S,
we will flip all of the coins with quality greater than t∗, so the set of flipped coins will be
the same. The greedy lemma from section 3 implies the value from flipping a set of coins is
maximized with the sorted order.

Case 1: q1 ≥ t∗. Next we need to prove that when q1 ≥ t∗, it is better to flip q1 than to
draw the next coin. That is we need to show the following inequality

q1 − cc + (1− q1)Vπt∗ (S \ q1) ≥ EQ[Vπt∗ (S ∪Q)]− cv (1)

Focus on the LHS of the above: If the newly drawn coin is greater than q1, then we will flip
on it first and then flip on q1. The yields

LHS = P (Q ≥ q1)E[Q− cc + (1−Q)(q1 − cc + (1− q1)Vπt∗ (S \ q1))|Q > q1]

+P (Q < q1)E[q1 − cc + (1− q1)Vπt∗ ({S ∪Q} \ q1)|Q < q1]

We can use the fact that (1−Q)Vπt∗ (S \ q1) = −Q+ cc + Vπt∗ ({S ∪Q} \ q1) when Q > q1

to rewrite the above as.

= E[q1 − cc + (1− q1)Vπt∗ ({S ∪Q} \ q1)] + P (Q ≥ q1)E[cc(Q− q1)|Q ≥ q1]

= q1 − cc + (1− q1)E[Vπt∗ ({S ∪Q} \ q1)] + ccE[max(0, Q− q1)]

So we can write the RHS - LHS of equation 1 as

RHS − LHS = (1− q1)E[Vπt∗ (S \ q1)− Vπt∗ ({S ∪Q} \ q1)]− cc[max(0, Q− q1)] + cv

Consider the Vπt∗ (S \ q1) − Vπt∗ ({S ∪ Q} \ q1) term: for any Q ≤ t∗, Vπt∗ (S \ q1) =
Vπt∗ ({S ∪ Q} \ q1) and for any Q ≥ t∗, the loss in value only happens when Q is flipped.
Let A represent the product of (1− qi) for all qi ∈ S \ q1 such that qi > Q. Then

Vπt∗ (S \ q1)− Vπt∗ ({S ∪Q} \ q1) = A(Q− cc − (1−Q)Vπt∗ (S′))−A(Vπt∗ (S′))

= A(Q− cc −QVπt∗ (S′))

where S′ is the state after Q is flipped. The A term is at most 1 and V0 ≤ Vπt∗ (S) for any
S, so we get that Vπt∗ (S \ q1)− Vπt∗ ({S ∪Q} \ q1) ≤ Q− cc −QV0. Using this, we get

RHS − LHS ≥ (1− q1)P (Q ≥ t∗)E[−Q+ cc +QV0|Q ≥ t∗]− ccE[max(0, Q− q1)] + cv

= (1− q1)(1− V0)P (Q ≥ t∗)E[−Q+ t∗|Q ≥ t∗]− ccE[max(0, x− q1)] + cv

= −(1− q1)(1− V0)E[max(0, Q− t∗)]− ccE[max(0, Q− q1)] + cv

= −(1− q1)E[max(0, (1− V0)Q− cc]− ccE[max(0, Q− q1] + cv

= q1cv − ccE[max(0, Q− q1)]

This is an increasing function of q1 so just consider the case where q1 = t∗

RHS − LHS ≥ t∗cv − ccE[max(0, Q− t∗)] =
cc

1− V0
(cv − E[max(0, (1− V0)Q− cc))]) = 0

Where the last equality holds because V0 was defined as the value that solves EQ[max{0, (1−
V0)Q− cc)}] = cv.
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Case 2: q1 < t∗ Consider the case where q1 < t∗. Then we need to show the value for
flipping is less than the value for drawing. Since q1 < t∗, then all coins have quality less
than t∗, so Vπt∗ (S \ q1) = V0 because we’ll never flip any of the other coins. Therefore the
value of flipping is

q1 − cc + (1− q1)V0 < t∗ − cc − (1− t∗)V0 = t∗(1− V0)− cc + V0 = V0

because t∗ = cc
1−V0

. So the value of flipping is less than V0 and now we need to show the
value of drawing is at least V0. Since the q1 < t∗, all other coins are below the threshold, so
they will never be flipped. Therefore Vπt∗ (S ∪Q) = Vπt∗ (Q). Then the value of drawing is

Vπt∗ (S ∪Q)− cv = Vπt∗ (Q)− cv
As we showed at the beginning of this proof, Vπt∗ (Q) − cv = V0. Therefore the value of
drawing is greater than the value of flipping.

Thus we satisfy the recurrence in both cases and we conclude that Vπt∗ satisfies the
optimality equation.
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