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tCombinatorial optimization is often used to \plan ahead,"pur
hasing and allo
ating resour
es for demands that are notpre
isely known at the time of solution. This advan
e plan-ning may be done be
ause resour
es be
ome very expensiveto pur
hase or diÆ
ult to allo
ate at the last minute whenthe demands are known. In this work we study the tradeo�sinvolved in making some pur
hase/allo
ation de
isions earlyto redu
e 
ost while deferring others at greater expense totake advantage of additional, late-arriving information. We
onsider a number of 
ombinatorial optimization problemsin whi
h the problem instan
e is un
ertain|modeled by aprobability distribution|and in whi
h solution elements 
anbe pur
hased 
heaply now or at greater expense after thedistribution is sampled. We show how to approximately op-timize the 
hoi
e of what to pur
hase in advan
e and whatto defer.1 Introdu
tionCombinatorial optimization is often used to \planahead," pur
hasing and allo
ating resour
es for needsthat are not pre
isely known at the time of solution.For example, a network designer might have to make abest guess about the future demands in a network andpur
hase 
apa
ity a

ordingly. At other times, however,it is possible to \wait and see," deferring de
isions aboutresour
e allo
ation until demands or 
onstraints be
ome
lear. This allows one to plan an optimal solution forea
h potential out
ome. There is often a trade-o� in-volved, in that allo
ations made later may be more ex-pensive. For example, the network designer may be ableto arrange 
heap long-term 
ontra
ts for 
apa
ity pur-
hased ahead of time, but may need to pur
hase extra
apa
ity at the last minute on a more expensive \spotmarket."Beyond the basi
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should be set early and 
heaply based on limited infor-mation about the problem input, and whi
h part shouldbe deferred and solved more expensively with the arrivalof additional information about the input.In this paper we study a parti
ular framework, de-rived from sto
hasti
 programming, for dealing withthis time-information trade-o� in the presen
e of un
er-tainty. Formally, we postulate a probability distributionPr[I℄ over problem instan
es I. We 
onsider a 
olle
tionof variables xi and yj that des
ribe 
andidate solutionsto the problem, where di�erent settings of the variablesare feasible for di�erent inputs I. We are required toset the variables xi, then sample a problem instan
e Ifrom the distribution, and �nally, with knowledge of theinstan
e, to set the variables yj so that (x; y) is feasiblefor I. Given a 
ost fun
tion 
(x; y) on solutions, ourgoal is to minimize the expe
ted 
ost E[
(x; y)℄ subje
tto the feasibility 
onstraints of the random instan
e.In the standard two-stage sto
hasti
 programmingwith re
ourse model [1, 11℄, the problem instan
es arepolytopes over xi and yj (representing linear or integerlinear programs), and the 
ost fun
tion is linear. Whenthe distribution involves only a small number of distin
tinstan
es fIg, the problem 
an be formulated as larges
ale linear (or integer linear) program and solved usingstandard methods from mathemati
al programming.1.1 Our Results. We explore the sto
hasti
 op-timization framework in the 
ontext of problems withmore 
ombinatorial stru
ture, and apply new te
h-niques that exploit this stru
ture. Spe
i�
ally, we studysto
hasti
 versions of min-
ost 
ow, bin pa
king, vertex
over, shortest path, and the Steiner tree problem. Inea
h of these problems, a ground set of elements e 2 E isspe
i�ed (verti
es in the vertex 
over problem, edges inthe Steiner problems, bins in bin pa
king). A (randomlysele
ted) problem instan
e I de�nes a set of feasible so-lutions, ea
h 
orresponding to a subset FI � 2E. We
an buy 
ertain elements \in advan
e" at 
ost 
e, thensample a problem instan
e, and must then buy otherelements at \last-minute" 
osts �
e so as to produ
e afeasible set for our problem instan
e. Our goal is tominimize the expe
ted total 
ost.



It is noteworthy that all of our problems are 
over-ing problems and thus \monotone," in that any super-set of a feasible solution is feasible. This is 
onvenientbe
ause it means that pur
hasing elements in advan
enever \invalidates" a potentially feasible solution|theadvan
e pur
hases may be wasted, but at worst they 
anbe ignored and any desired feasible solution 
onstru
tedfrom the post-sampling pur
hases. Thus, we 
an fo
usall of our attention on optimizing 
ost without worryingabout making feasibility-missteps.We study two main types of instan
e probabilitydistributions. A bounded support distribution givesnonzero probability to only a polynomial number of dis-tin
t problem instan
es. And independent distributionmakes ea
h element/
onstraint of the problem instan
ea
tive independently with some probability.Our results for spe
i�
 problems are as follows:Min Cost Flow. Given a sour
e and sink and a prob-ability distribution on demand, buy some edgesin advan
e and some after sampling (at greater
ost) su
h that the given amount of demand 
anbe routed from sour
e to sink. This problem 
anbe solved exa
tly via linear programming.Bin pa
king. A 
olle
tion of items is given, ea
h ofwhi
h will need to be pa
ked into a bin with someprobability. Bins 
an be pur
hased in advan
e at
ost 1; after the determination of whi
h items needto be pa
ked, additional bins 
an be pur
hased at
ost � > 1. How many bins should be pur
hased inadvan
e to minimize the expe
ted total 
ost? Weshow that this problem 
an be eÆ
iently approxi-mated arbitrarily 
lose to optimal.Vertex Cover. A graph is given, along with a proba-bility distribution over sets of edges that may needto be 
overed. Verti
es 
an be pur
hased in advan
eat 
ost 1; after determination of whi
h edges needto be 
overed, additional verti
es 
an be pur
hasedat 
ost �. Whi
h verti
es should be pur
hased inadvan
e? We give a 4-approximation based on alinear programming relaxation for the 
ase wherethe probability distribution involves only polyno-mially many distin
t edge sets, and a 
ombinato-rial 6.3-approximation for the 
ase when ea
h edgemust be 
overed independently with �xed probabil-ity p.Cheap Path. We are given a graph and told that arandomly sele
ted pair of verti
es (or one �xedvertex and one random vertex) will need to be
onne
ted by a path. We 
an pur
hase edge eat 
ost 
e before the pair is known or at 
ost �
eafter and wish to minimize the expe
ted total edge


ost. We show that this problem is equivalent tothe multi
ommodity rent-or-buy problem, so thatpreviously known approximation algorithms apply.Steiner Tree. A graph is given, along with a probabil-ity distribution over sets of terminals that need tobe 
onne
ted by a Steiner tree. Edge e 
an be pur-
hased at 
ost 
e in advan
e or at 
ost �
e after theset of terminals is known. We give a 
onstant fa
-tor approximation for the 
ase where the expe
tednumber of terminals is 
onstant (generalizing theCheap Path result). We also give a 
onstant fa
torapproximation for the 
ase where the edges forman ultrametri
 and an O(logn) approximation forgeneral edge 
osts.1.2 Related work. Sto
hasti
 programming isa tremendous �eld with a vast literature [14℄. It isappli
able whenever probability distributions of inputsare known or 
an be estimated. One of the most widelyused models in sto
hasti
 programming is the two-stage re
ourse model mentioned earlier. It involves aninitial deterministi
 de
ision, an opportunity to observeadditional information, and then a re
ourse a
tion inresponse to ea
h random out
ome. The two-stagemodel 
an be naturally generalized by adding additionalre
ourse stages, ea
h 
onsisting of an observation anda de
ision responding to it. Sto
hasti
 linear programsare generally ta
kled via a 
ombination of mathemati
alprogramming and advan
ed probabilisti
 te
hniques. Akey diÆ
ulty in solving these problems is dealing with avery large un
ertainty spa
e, as one gets a separate setof 
onstraints for ea
h potential out
ome.Sto
hasti
 multi
ommodity 
ow is a parti
ularlywell studied problem in this area (
f. [12℄). Whenit is the 
osts that are sto
hasti
 the problem is rela-tively easy as the expe
tations propagate through, butthe 
ase of sto
hasti
 
apa
ities or demands has notyet been fully solved. Sto
hasti
 multi
ommodity 
owhas been used extensively as a model for a variety ofreal-world appli
ations. Re
ently, Mitra and Wang [10℄derived a 
ow-based framework for sto
hasti
 traÆ
 en-gineering in whi
h the obje
tive is to maximize revenuefrom serving demands that are spe
i�ed by probabilitydistributions. Their model is similar to ours, in thatit uses a two-tier 
ost fun
tion and explores the trade-o� between deterministi
 allo
ations and probabilisti
provisioning. They present 
onditions under whi
h theproblem 
an be redu
ed to an instan
e of 
onvex pro-gramming.A rather di�erent sto
hasti
 optimization frame-work assumes random instan
es but requires only that
onstraints be satis�ed with 
ertain probability. Thisframework is sometimes known as \
han
e 
onstrained



programs." For example, Kleinberg, Rabani andTardos [8℄ 
onsider 
han
e-
onstrained knapsa
k, bin-pa
king and load-balan
ing problems. In parti
ular, inbin-pa
king, given a probability distribution on the sizesof items, one is 
on
erned with pa
king all of the itemsinto a minimum number of bins so that it is unlikely thatany one of them over
ows. Kleinberg et al. provide anapproximation guarantee that is a fun
tion of log p�1(where p is the probability with whi
h bin 
apa
ity isallowed to be violated).2 PreliminariesIn this se
tion we give a formal de�nition of the pre-planning framework for sto
hasti
 
ombinatorial opti-mization problems, dis
uss a number of basi
 propertiesshared by the problems in this framework, and presentsome generally appli
able te
hniques.2.1 Formal Problem Statement. Formally, apreplanning version of a 
ombinatorial optimizationproblem is spe
i�ed in our framework by a ground set ofelements e 2 E, a probability distribution on instan
esfIg, a 
ost fun
tion 
 : E ! IR, and a penalty fa
tor� � 1. Ea
h instan
e I has a 
orresponding set offeasible solutions FI � 2E asso
iated with it. Supposea set of elements A � E is pur
hased before samplingthe probability distribution. Let 
A denote the posterior
ost fun
tion, i.e.
A(e) = � 0 if e 2 A�
(e) otherwiseThe obje
tive of a preplanning 
ombinatorial optimiza-tion problem is to 
hoose a subset of elements A to bepur
hased in advan
e so as to minimize the total ex-pe
ted 
ost of a feasible solution
(A) + E �minS2FI 
A(S)�over a random 
hoi
e of an instan
e I.2.2 The Threshold Property. Our �rst obser-vation is that optimal preplanning solutions exhibit anatural lo
al-optimality property.Consider a solution that pur
hases some set ofelements A � E in advan
e and then, on samplingproblem instan
e I, buys additional elements LI . Notethat A [ LI is a feasible solution for the instan
eI. Conversely, knowing the 
omplete feasible solutionFI � E used when ea
h instan
e I is sampled, it is easyto determine whi
h elements are pur
hased in advan
e:Theorem 2.1. An element should be pur
hased in ad-van
e if and only if the probability it is used in the so-lution for a randomly 
hosen instan
e ex
eeds 1=�.

The theorem follows immediately from the fa
t thatthe 
ost 
ontribution of an element e is �Pr[e used℄ if itis not pur
hased in advan
e. We refer to this theoremas the Threshold Property.2.3 Approximation Algorithms as Subroutines.With the ex
eption of min-
ost 
ow and 
heap path,every problem we study is NP-hard even in the tra-ditional, non-sto
hasti
 setting [3℄. This immediatelyimplies that the preplanning versions of these problemsare also NP-hard (one 
an simply de�ne a distributionthat assigns probability one to the unique instan
e ofinterest). Additionally, it 
ompli
ates our task sin
e wedo not know how to �nd an optimal solution even toa parti
ular instan
e. However, we observe that usingan approximation algorithm instead has limited 
onse-quen
es:Theorem 2.2. Given an �-approximation algorithmALG, let A0 be a subset of elements that minimizes theexpe
ted 
ost of a solution obtained with ALG over arandom 
hoi
e of a instan
e I, i.e. 
(A) + E �
ALGA (I)�.Then the 
ost of a preplanning solution that pur
haseselements in A0 in advan
e is at most � times theminimum possible 
ost whether one uses an exa
t or anapproximation algorithm to 
omplete the solution for therandomly sampled instan
e.The above theorem implies that we 
an redu
e thepreplanning version of an NP-hard problem to solvinga preplanning instan
e of another optimization problemthat has a polynomial-time algorithm. For example,sin
e in a metri
 spa
e an MST over a subset of nodesS provides a 2-approximation for min-
ost Steiner treeon S, we 
an use preplanning to optimize the 
ost ofan MST (instead of a steiner tree) on the terminals andlose only a fa
tor of 2 in approximating the optimumpreplanning 
ost.3 Network Predesign for Min-Cost FlowConsider a sto
hasti
 min-
ost 
ow problem. We wishto provide 
apa
ity on a network suÆ
ient to 
arry a(random) amount of 
ow demand D from a sour
e sto a sink t. We have an option of pre-installing someamount of 
apa
ity in advan
e at some 
ost per unit.We are also allowed to rent additional 
apa
ity on
e thedemands be
ome known, but at 
ost a fa
tor of � largerper unit. The sum of 
apa
ity installed in advan
e and
apa
ity rented must also satisfy a given upper bound(total 
apa
ity) for ea
h edge. The goal is to minimize(over the given probability distribution on demands)the expe
ted 
ost of installing suÆ
ient 
apa
ity in thenetwork so as to be able to satisfy the demand.



3

1

a

b

s t

1 3

1Figure 1: Example demonstrating anomalies in min-
ost
ow network predesign.When the probability distribution on D has poly-nomial support (i.e., only polynomially many distin
tdemands are possible) then the min-
ost 
ow networkpredesign problem is polynomial-time solvable using thestandard \merger of linear programs" approa
h fromsto
hasti
 programming des
ribed in the introdu
tion.We de�ne a variable aij for the 
apa
ity pur
hased inadvan
e on edge (i; j), and then write down, for ea
hpossible demand value, a min-
ost 
ow linear programon a graph where there are aij units of 
ost-0 
apa
ityon edge (i; j). We then take a weighted (by the proba-bility distribution) 
ombination of the individual linearprograms' obje
tives to get our obje
tive fun
tion.Although this solution is well known, we dis
ussmin-
ost 
ow be
ause it demonstrates several interest-ing behaviors in sto
hasti
 optimization.Provisioning for expe
ted demand is unwise.The plausible approa
h of provisioning for the expe
tedamount of demand, i.e. buying 
apa
ity suÆ
ient toroute the expe
ted demand in the network, 
an be farfrom optimal. Consider a network 
onsisting of a singleedge of base 
ost 1 between terminal nodes s and t.Suppose the demand D that has to be sent from s to tis d with probability p = (1+�)=2� and zero otherwise.Provisioning for expe
ted demand means pur
hasing
apa
ity pd in advan
e and buying the rest of it laterif the a
tual demand turns out to be d. The expe
ted
ost of this solution is pd + �p(1 � p)d. On the otherhand, a solution that buys 
apa
ity d in advan
e in
ursa 
ost of d. The ratio between these two solutions is(1 + �)2=4�, whi
h grows arbitrarily bad with large �.Flow may be sent on non-shortest paths.Consider the graph G on 4 nodes shown in Figure 1.Suppose that ea
h edge has maximum allowed 
apa
ity1 and that � = 2. Let Pr [D = 0℄ = 1=4, Pr [D = 1℄ =1=4, and Pr [D = 2℄ = 1=2. Note that the only wayto route 2 units of demand is by saturating the edges(s; a); (a; t); (s; b); (b; t). Thus, the probability of usingea
h of these edges is at least 1=2 � 1=�, so bythe Threshold Property introdu
ed in Se
tion 2.2 anyoptimal solution has to buy 1 unit of 
apa
ity on ea
h

of those ar
s in advan
e. However, on
e they areprepur
hased, it is unne
essary to use ar
 (a; b). Hen
e,the shortest s-a-b-t path is never used to route 
ow,even if only 1 unit of demand needs to be sent.Prepur
hases need not form paths. Usingthe same graph G in Figure 1, take � = 2;Pr [D = 0℄ =5=12, Pr [D = 1℄ = 1=4, Pr [D = 2℄ = 1=3. In this 
asean optimal solution ends up prepur
hasing 1 unit of
apa
ity only on ar
s (s; a) and (b; t).4 Bin pa
king with preplanningIn the 
lassi
al bin-pa
king problem, one is given a setof n items of di�erent sizes. The goal is to pa
k allitems into unit-size bins so as to minimize the 
ost ofthe pa
king, namely the total number of bins used. Nowsuppose that the set of items to be pa
ked is 
hosen atrandom. Bins may be pur
hased in advan
e at 
ost 1 orafter the set of items is known at 
ost �. Our obje
tiveis to minimize the 
ost of bins required for pa
king inexpe
tation over a random sele
tion of a set of items.Sin
e 
lassi
al bin-pa
king is NP-hard, we 
an of 
oursenot expe
t to �nd an optimal solution. But we showhow to mat
h the approximation ratio a
hievable forthe standard bin-pa
king problem.Bin pa
king 
an be brought into our framework bythinking of ea
h bin as an \element" that may needto be pur
hased. But the problem is parti
ularly easybe
ause all elements are the same. Thus, we need onlyspe
ify how many of these elements are to be pur
hasedin advan
e. For 
onvenien
e, we 
an assume that thebins are numbered b1; : : : ; bn and that any solution buysbins in order|i.e., it buys some pre�x b1; : : : ; bk of thebins. The problem is then essentially solved by invokingthe Threshold Property, whi
h says that we should buybins in advan
e only if their probability of use ex
eeds1=�. Sin
e the probability of using bi is no greater thanthat of using bi�1, there is some maximum i for whi
hthe probability of using bi ex
eeds 1=�, implying weshould buy i bins in advan
e. Put more dire
tly:Theorem 4.1. Let B be a random variable denotingthe optimum number of bins used for a parti
ular (ran-dom) set of items. Then the optimum preplanning algo-rithm is to buy, in advan
e, the number of bins k su
hthat Pr[B � k℄ � 1=� while Pr[B � k + 1℄ < 1=�.This essentially solves our problem, modulo two de-tails: that we 
annot 
ompute B (the optimum binpa
king size) and that we apparently need to 
omputethe probability distribution over B. Both these prob-lems are surmountable. In short, we 
an use an ap-proximation algorithm instead of an exa
t algorithmto pa
k the items, inheriting the same approximationbound, and we 
an use Monte Carlo sampling (repeat-



edly 
hoose a random set of items and pa
k them) toget an a

urate estimate for Pr[B � k℄ and identify anapproximately optimum value of k to buy in advan
e.Using Monte Carlo estimation adds another (1+�) fa
torto the approximation bound (taking time polynomial in1=�). Details are omitted.Noti
e that our approa
h to bin-pa
king did notmake expli
it use of the probability distribution overitems to be pa
ked. It applies to any probabilitydistribution on items and sizes from whi
h we 
ansample eÆ
iently.5 Vertex Cover with preplanning.In the (unweighted) vertex 
over problem, given anundire
ted graph, the goal is to �nd a subset of verti
esof minimum 
ardinality su
h that at least one endpointof ea
h graph edge is in the subset. Now supposethat only a subset of edges needs to be 
overed, butthat we do not know in advan
e exa
tly whi
h ones.Given a probability distribution on the sets of edgesto be 
overed, the goal of the preplanning vertex 
overproblem is to determine an optimum set of verti
esto buy in advan
e (at 
ost 1), so as to minimize theexpe
ted 
ost of a vertex 
over for a random subset ofedges, provided that additional verti
es 
an be added at
ost � ea
h.5.1 Bounded-Support Distributions. In thisse
tion we show how to obtain a 
onstant-fa
tor ap-proximation for the 
ase when the probability distri-bution over problem instan
es has bounded support,i.e. the number of possible subsets of edges to be 
ov-ered is polynomially bounded. As with min-
ost 
ow,we start with the standard sto
hasti
 programming of
ombining linear programs for individual problem in-stan
es. We observe that this te
hnique 
an be extendedto 
ombinatorial optimization problems that are solvedby rounding fra
tional solutions to linear programmingrelaxations, and apply it to the vertex 
over problem.Suppose we are given a graph G = (V;E) and aprobability distribution on the polynomial number of\a
tive" edge sets from F � 2E that might to be 
overedby the verti
es. In other words, for ea
h F 2 F , we havea

ess to pF , the probability that we have to 
onstru
ta vertex 
over for exa
tly the edges in F . For F 62 F ,pF = 0.We 
an model the preplanning version of the vertex
over problem with an integer program. For ea
h vertexi, let xi = 1 if i is bought in advan
e, and let yFi = 1if i is added to the vertex 
over on
e it is revealed thatF is the set of a
tive edges that have to be 
overed.For edge (i; j) 2 F , either i or j has to be in a vertex
over for edge set F , i.e. at least one of the variables

xi; xj ; yFi ; yFj has to be 1. Writing this 
onstraint for alledges in ea
h of the potential edge sets, we obtain thefollowing integer program:Min Pi2V xi + �Pi2V;F2F pF yFis.t. xi + xj + yFi + yFj � 1 8 (i; j) 2 F 2 Fxi 2 f0; 1g 8 i 2 VyFi 2 f0; 1g 8 F 2 F ; i 2 VSin
e the number of edge sets F 2 F is polynomial,the 
orresponding linear programming relaxation 
anbe solved eÆ
iently. The value of an optimal solutionto this LP relaxation provides a lower bound on theoptimal integer solution.Next, we 
onstru
t a solution to the vertex 
overpreplanning problem by rounding an optimal solutionto the LP. Let us buy verti
es i su
h that xi � 1=4, i.e.,we round su
h xi to 1. On
e the set F of edges to be
overed is revealed, we pur
hase the additional verti
esi su
h that yFi � 1=4, i.e., we round su
h yFi to 1. Letx̂; ŷ be the 
orresponding integral solution. The analysisgoes exa
tly as for the standard vertex 
over problem:at least one of the four variables asso
iated with aparti
ular sampled edge must have value at least 1=4,so the rounded solution is feasible. At the same time,we have multiplied ea
h fra
tional value by at most 4(from 1/4 to 1) so our solution is a 4-approximation tothe fra
tional solution, and thus to the true optimum.5.2 Independent edge set. In this se
tion we
onsider the version of the problem in whi
h ea
h edgeis a
tive (e.g. has to be 
overed) independently withprobability p. As before, given a graph G = (V;E),we would like to determine an optimum set of verti
esA � V to buy in advan
e (at 
ost 1), so as to minimizethe expe
ted 
ost of a vertex 
over for a random subsetof edges F � E, provided that additional verti
es 
anbe added at 
ost � ea
h. Note that on
e verti
es inthe set A are spe
i�ed, extending it to a 
over of theedge set F is equivalent to �nding a vertex 
over in theV nA-indu
ed subgraph of GF = (V; F ). We assumethat � � �0 where �0 = 3:15. In the event � < �0,we 
an obtain a trivial 6.3-approximation algorithm bynot pur
hasing any verti
es in advan
e and using a 2-approximation algorithm for vertex 
over.This problem demonstrates one key idea for ta
klingsto
hasti
 problems: that of 
on
entrating suÆ
ientprobability at one spot to make the Threshold Propertyapply so that we 
an justify pur
hasing 
ertain elementsin advan
e. In parti
ular, we fo
us our attention on
ertain high-degree verti
es (in the original graph) andargue that the fa
t that they are very likely to havean in
ident edge sampled justi�es pur
hasing them in



advan
e. We will use mu
h the same idea to ta
kleSteiner tree problems in the next se
tion.Definition 5.1. Given a graph G = (V;E), de�ne ak-mat
hing to be a subset of edges that indu
es degreeat most k on every vertex. Call a vertex v 2 V tight ifits degree is exa
tly k.Our approximation algorithm is as follows. De�nek = log1�p(1 � 1=�), 
onstru
t some maximal k-mat
hing (greedily), and pur
hase in advan
e the setAt of tight verti
es in the k-mat
hing.To show that this algorithm yields a 
onstant-fa
torapproximation, we prove two things. First, that thetotal number of verti
es prepur
hased (at 
ost 1) byour algorithm is proportional to the optimum solution's(expe
ted) 
ost (in both stages). Se
ond, we prove thatin the graph whi
h remains, it is optimal to prepur
haseno additional verti
es. Thus, our algorithm's se
ond-stage pur
hase 
ost is optimal and, in parti
ular, lessthan the both-stages 
ost of the optimum solution onthe original graph.Lemma 5.1. jAtj � 4:3OPT.Proof. Due to spa
e limits, we will be sloppy with
onstants. In parti
ular we use the fa
t that k =�(1=�p), sin
e 1� � 1�0 .We 
onsider an instan
e of the preplanning problemin whi
h only edges of the 
hosen k-mat
hing have tobe 
overed (e.g. the edge set of the graph from whi
hsome edges are sampled 
onsists just of the edges of thek-mat
hing). Clearly, the 
ost of an optimal solution tothis instan
e is no more than OPT.We prove our bound using a sur
harging s
heme.For ea
h dollar spent by the optimum, our 
hargings
heme spends at most one additional dollar. At thesame time, it spends 
(1) dollars per tight vertex. Itfollows that the number of tight verti
es is O(1) timesthe expe
ted number of dollars spent in our 
hargings
heme, whi
h in turn is twi
e the optimum expe
ted
ost.The 
harging s
heme goes as follows. For ea
hvertex u pur
hased in advan
e by OPT, we spend onedollar on u and an extra 1=k = �(�p) dollars on ea
hneighbor of u. Sin
e u has degree at most k, this 
osts atmost one additional dollar. In the se
ond stage, 
onsiderthe (random) set of edges a
tually in
luded. If (u; v) isan isolated edge, i.e. there are no other edges in
identon u or v, and neither u nor v has been pur
hased inadvan
e, then OPT must spend � dollars pur
hasing uor v. In this 
ase, we 
harge an additional � dollarsto the other endpoint. In this 
ase as well, we end upspending at most twi
e what OPT spends.

Now 
onsider any tight vertex v. If OPT pur
hasesit in advan
e we are done as a dollar was spent on it.If not, 
onsider ea
h neighbor u of v. If u is pur
hasedin advan
e then v re
eives 1=k dollars from u. Nowsuppose u is not pur
hased in advan
e. Consider theevent Iu that (u; v) is in
luded as an isolated edge inthe random problem instan
e. This event happens when(u; v) is 
hosen and no other edges in
ident on u or vare 
hosen; sin
e u and v have degree at most k and� > �0, Pr[Iu℄ � p(1� p)2k= p(1� p)�(1=�p)= 
(p):Sin
e the events Iu are disjoint, and sin
e v re
eives� dollars ea
h time some event Iu o

urs, we 
on
ludethat vertex v re
eives 
(�p) dollars in expe
tation forea
h neighbor u not bought in advan
e.In summary, we have shown that v re
eives 
(�p)dollars from ea
h neighbor|deterministi
ally whenthat neighbor is bought in advan
e, in expe
tation oth-erwise. Sin
e v is tight, it has k = �(1=�p) neighborsand the lemma follows.Lemma 5.2. Pur
hasing the tight verti
es in advan
e(and deleting their in
ident edges as 
overed) leaves agraph in whi
h it is optimal to prepur
hase no verti
es.Proof. In the original graph, every edge not in the k-mat
hing must have at least one tight endpoint (other-wise it 
ould have been added to the k-mat
hing, 
on-tradi
ting its maximality), and is therefore 
overed bythe tight verti
es. The remaining (k-mat
hing) edgesindu
e degree at most k in every vertex. The probabil-ity that any vertex has any in
ident edge (and is thususeful in the solution) is then less than 1=�. Thus bythe Threshold Property it is optimal to buy no verti
esin advan
e.Theorem 5.1. Pur
hasing in advan
e a set of all tightverti
es indu
ed by a maximal k-mat
hing, where k =�log1�p(1� 1� )� yields a solution of 
ost at most 6:3times the optimum.Proof. The �rst lemma shows that pur
hasing all thetight verti
es 
osts at most 4:3 �OPT. It leaves a graphwhose optimum solution is only 
heaper, meaning it too
osts at most OPT. And the se
ond lemma proves thatbuying nothing is an optimal solution. Thus, we spendat most 4:3 �OPT in the �rst stage and at most 2OPT inthe se
ond stage by using a 2-approximation for vertex
over, for a total of 6:3OPT.



6 Steiner Tree PredesignIn the network Steiner tree problem we are given anedge-weighted graph G = (V;E) and a subset of nodesS � V that need to be 
onne
ted. The goal is to�nd a minimum 
ost tree spanning S. We 
onsiderpreplanning versions of this problem, in whi
h S is theset of a
tive 
lients drawn from some distribution.Formal problem statement. Let G = (V;E)be an undire
ted edge-weighted graph. Let 
e � 0denote the 
ost of an edge e 2 E. We 
all a subset S ofnodes (
lients) a
tive if all of the nodes in it wish to be
onne
ted. Given a probability distribution over a
tivesets fSg, the obje
tive is to minimize the expe
ted 
ostof 
onne
ting up a
tive 
lients. A subset of edges A � E
an be pur
hased in advan
e at 
ost 
e; additional edges
an be pur
hased later on at 
ost �
e, where � � 1.On
e a set S of a
tive 
lients is revealed, the 
heapestway to 
onne
t up all the 
lients in S is to build amin-
ost Steiner tree over the verti
es of S using theedge 
ost fun
tion 
A, where 
A(e) = 0 if e 2 A, and
A(e) = �
e otherwise. Let TST(S) be an optimumSteiner tree over S for the edge 
ost fun
tion 
A. Theobje
tive of the network predesign problem is to 
hooseA to minimize the 
ost of the solution 
(A)+
A(TST(S))in expe
tation over S.6.1 Relation to previous problems. A numberof interesting spe
ial 
ases of this problem are equiv-alent to previously-studied 
ombinatorial optimizationproblems; we therefore inherit 
onstant fa
tor approxi-mations from those problems.Cheap path to root. A root is spe
i�ed in advan
eand a single, randomly 
hosen node wishes to be
onne
ted to that root. This problem is equiva-lent to 
onne
ted fa
ility lo
ation, with probability(s
aled by �) repla
ing demand, and hen
e 
an beapproximated to within a 
onstant [5, 13℄.Cheap path. A randomly 
hosen pair of nodes wishesto be 
onne
ted. This problem is equivalent to mul-ti
ommodity rent-or-buy, with probability (s
aledby �) repla
ing demand, whi
h has several 
onstantfa
tor approximation algorithms [9, 4℄.When nodes be
ome a
tive independently, but theexpe
ted number of a
tive 
lients is 1, there is a 
onstantprobability of having exa
tly one a
tive 
lient. Thisallows a simple redu
tion to the previous problems.Theorem 6.1. If the expe
ted number of a
tive 
lientsis at most 1, an optimal solution for 
heap path-to-root yields a 2-approximation to the rooted Steiner treepredesign problem.

Sin
e the 
heap path-to-root problem 
an be ap-proximated to within a 
onstant fa
tor 3:55 [5℄ we geta 7.1-approximation algorithm for our spe
ial 
ase. Anobvious generalization yields a 7:1k-approximation forthe 
ase where the expe
ted number of 
lients is k > 1.6.2 High probability nodes. We turn to the
ase of independent 
lient a
tivations. In this se
tionwe show that if all node a
tivation probabilities arelower-bounded by 1=�, then prepur
hasing a minimumspanning of the entire node set is a 2-approximationto the optimum. This result is of limited interest butis an important 
omponent of our general solution forultrametri
s in the following se
tion.We 
an assume without loss of generality that ourgraph is metri
|i.e., that the edge 
onne
ting any twoverti
es is a shortest path|sin
e adding an edge oflength equal to the shortest path does not 
hange theoptimum (one 
an always use the path instead of theimaginary edge). In su
h a graph, it is known that theoptimum Steiner tree on any subset of the verti
es is twoapproximated by the minimum spanning tree (MST) onthe graph indu
ed by those verti
es.Lemma 6.1. If every vertex in a graph is a
tive withprobability at least p, then the expe
ted 
ost of the MSTon the a
tive verti
es is at least p times the 
ost of theentire MST.Note that this lemma does not distinguish pre- and post-pur
hase 
osts.Proof. (Sket
h). The basi
 approa
h is to analyzePrim's algorithm with deferred de
isions to build aminimum spanning tree on the a
tive nodes. Detailsare similar to the Karger-Klein-Tarjan [7℄ analysis ofminimum spanning tree value using a randomly samplededge subset.Corollary 6.1. If for all 
lients i, pi � 1f� (wheref � 1), then prepur
hasing a minimum spanning treeover all potentially a
tive 
lients is a f-approximationto Steiner tree predesign.Proof. Let M be the prepur
hase 
ost of the entireMST. Suppose the optimum buys nothing in advan
e.Then by the previous lemma, the expe
ted prepur
hase
ost of the MST of the a
tive 
lients is at least M=f�.Sin
e the optimum buys late, it would have to multiplythis 
ost by �, paying M=f|meaning M is an f -approximation to the optimum. The general prooffollows by observing that the spending 
 in advan
e 
anonly redu
e the 
ost of the MST by 
, implying that theoptimum would still expe
t to pay at least (M � 
)=fin the se
ond stage. Thus, the optimum is at least
+ (M � 
)=f �M=f .



6.3 Algorithm for Ultrametri
 Case. We nowgive a 
onstant fa
tor approximation algorithm forthe Steiner tree predesign problem for the 
ase whenthe underlying graph G = (V;E) forms an ultramet-ri
 | an assignment of edge weights su
h that ~
uv �max(~
uw ; ~
wv). This ultrametri
 property implies thatthe shortest-path distan
e between any two verti
es inthe graph is no more than than the weight of the heav-iest edge on a path between them, and is in fa
t equalto the heaviest edge on the path 
onne
ting them in theMST. It is also the 
ase that in ultrametri
s, Steinerpoints are never useful in a Steiner tree|i.e., the Steinertree on some nodes is just the MST on those nodes.The basi
 idea of our algorithm is to 
luster nodesinto 
omponents, ea
h 
ontaining 
lients of total prob-ability mass �(1=�). On the one hand, we 
an think ofea
h 
omponent as a \supernodet" whi
h, sin
e it has�(1=�) probability mass, be
omes a
tive with proba-bility �(1=�). Corollary 6.1 lets us 
on
lude that pur-
hasing a minimum spanning tree on the supernodes isapproximately optimal. This 
reates at least one \hub"in ea
h supernode, 
onne
ted to the root. But on
e hubsare built, sin
e the probability mass within ea
h super-
lient is not too large, we 
an show that there is no realbene�t in prepur
hasing edges inside any super-
lientto 
onne
t verti
es to hubs.As a �rst step toward demonstrating these ideas,suppose that the MST is a star with the root at the
enter, and that ea
h vertex has a
tivation probabilityless than 1=�. We prove that pur
hasing nothing inadvan
e is approximately optimal.Suppose �rst that the optimum solution pur
hasessome non-MST edge (u; v) in advan
e. Verti
es u and vare 
onne
ted to the root by MST edges of 
ost 
u and
v respe
tively. Suppose that instead of buying edge(u; v) we buy the two edges 
onne
ting u and v to theroot. This 
an only help our se
ond stage pur
hases:u and v are still 
onne
ted to ea
h other, through theroot. From the de�nition of the MST, the weight wof the edge 
onne
ting u and v is no less than 
u or
v; thus 
onne
ting both dire
tly to the root 
osts atmost 2w. We 
an apply this repla
ement rule to everyprepur
hased non-MST edge. It follows that at 
osttwi
e the optimum, we get a prepur
hase with the samese
ond-stage 
ost as the optimum, made up entirely ofedges 
onne
ted dire
tly to the root.Given this prepur
hase, 
onsider the se
ond stage.Again by the MST property, any vertex that be
omesa
tive 
an 
onne
t dire
tly to the root more 
heaplythan it 
an 
onne
t to any other vertex. Thus, in thepostpur
hase phase as well, only edges in
ident to theroot are pur
hased. Now, however, we 
an invoke theThreshold Property. Sin
e only edges in
ident to the

root are pur
hased, ea
h su
h edge is only \useful" if itsnon-root endpoint be
omes a
tive. We assumed thatea
h endpoint a
tivation probability was less than 1=�.Thus, by the Threshold Property, it makes more sensenot to buy that edge in advan
e.In order to generalize this argument, we developa 
lustering algorithm that builds a parti
ular MSTwith a spe
ial \starlike" stru
ture. This algorithm isvery spe
i�
 to ultrametri
s. Any ultrametri
 spa
ehas a bottlene
k 
ut : a partition of the points into twosides su
h that the distan
e between any two pointson opposite sides is the same and is no less than thedistan
e between any two points on the same side. Themost obvious proof of this fa
t uses the MST. Considerthe heaviest edge in the MST. Removing it produ
es thebottlene
k 
ut, as 
an be seen from the fa
t that thedistan
e between two points is equal to the maximum-weight edge on the MST path 
onne
ting those points.One 
an use this bottlene
k 
ut in a re
ursive MSTalgorithm for ultrametri
s: �nd the bottlene
k 
ut,re
ursively �nd MSTs of the two sides, and then 
onne
tthem with an arbitrary edge a
ross the bottlene
k 
ut(as all have the same length). We will spe
ialize thisgeneri
 algorithm for our purposes. For the purposes ofthe algorithm, we de�ne the probability mass of a set ofverti
es to be the probability that some vertex in the setbe
omes a
tive. Our spe
ialization produ
es a minimumspanning tree in whi
h some of the verti
es have beenlabelled \hubs." It has the following properties:1. The hubs form a 
onne
ted subgraph of the MST.2. The total probability mass of verti
es hanging o�ea
h hub (i.e., whose paths through the MST rea
hthat hub before any other) is at least 1=�.3. The total probability mass of ea
h subtree hangingo� a hub is at most 1=�.The type of MST we wish to 
onstru
t is shown inFigure 2.Lemma 6.2. Algorithm Cluster produ
es an MSTwith the spe
i�ed properties.Proof. When the algorithm is 
alled on a graph withprobability mass less than 1=�, it returns an MST withno hubs, va
uously ful�lling the properties.If the algorithm is 
alled on a graph of massex
eeding 1=�, it re
urses on the two sides of thebottlene
k 
ut. Ea
h side returns without a hub if andonly if it is small|i.e., has probability mass less than1=�.If both sides are small, we 
reate one hub at thejoin point of the two sides' MSTs. Sin
e removing this
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Figure 2: A hub tree. Nodes labelled h are hubs.T = 1=� is the upper bound for individual tree massand lower bound for total mass hanging o� a hub.Cluster(G)Input: ultrametri
 spa
e G.if G has probability mass less than 1=� thenreturn an MST of G with no hubselseCompute the bottlene
k 
ut (X;Y ) of GCluster(X)Cluster(Y )if neither X nor Y has a hub then
onne
t X and Y with any edge emake one endpoint of e a hubelse Conne
t X and Y with some edge, using hubsin X and Y as the endpoints if they existFigure 3: Clustering pro
edure.join point separates the two MSTs (at least|it mayfurther subdivide one side), no \hanging o�" subtreeis too large. However, in total at least 1=� probabilitymass hangs o� the hub (as that is the reason the hubwas 
reated).If both sides are large, both returned MSTs willhave hubs, so we 
an 
onne
t a hub on ea
h side, againful�lling the properties (as this atta
hment does not
hange the set of nodes hanging o� any hub).If one side is large and the other small, then thesmall side gets atta
hed to (hangs o� of) a hub on thelarge side. But sin
e the atta
hed side is small, hangingit o� the hub does not violate the spe
i�ed properties.Lemma 6.3. The 
ost of the pie
e of the MST 
onne
t-ing the hubs is at most OPT.

Proof. Imagine 
ontra
ting all verti
es hanging o� ea
hhub into their hub 
reating a \supernode". This is doneby 
ontra
tingMST edges, so the MST of the 
ontra
tedgraph 
onsists of the un
ontra
ted edges of the originalMST. But these are pre
isely the MST edges 
onne
tingup the hubs (and the root). In this 
ontra
ted graph,the probability that some vertex in a supernode be
omesa
tive is (by the de�nition of probability mass) at least1=�. Thus, by Corollary 6.1, pur
hasing the (remaining)MST edges 
osts at most OPT. But these are pre
iselythe edges 
onne
ting the hubs to the root.It follows that by paying OPT in advan
e, we 
anprepur
hase edges that 
onne
t all the representatives(in
luding the root). Equivalently, we 
an 
ontra
tall the representatives into the root. Sin
e what we
ontra
ted was a 
onne
ted portion of the MST, theMST of the 
ontra
ted graph is just the remaining MSTof the original graph. But Property 3 above tells usthe form of this remaining MST: it will 
onsist of a
olle
tion of subtrees hanging o� the (
ontra
ted) root,ea
h subtree of size at most 1=�. This is essentially the\starlike" stru
ture we want to redu
e to.Lemma 6.4. In the starlike 
ontra
ted MST just de-s
ribed, it is within a fa
tor of 2 of optimal to buy noth-ing in advan
e.Proof. The analysis runs as for the star above: pre- andpost-pur
hased intra-
luster edges 
an be repla
ed byedges 
onne
ting nodes dire
tly to the root. On
e wehave done so, sin
e ea
h subtree of the MST has weightless than 1=�, none of the prepur
hased edges 
an beused with probability greater than 1=�, so none is worthbuying in advan
e.Combining the above arguments, we see that byspending at most OPT, we 
an redu
e to a graph inwhi
h pur
hasing nothing in advan
e is within a fa
torof 2 of optimum for that graph. Sin
e that graph'soptimum 
osts at most OPT, we see that pur
hasingnothing gives a solution of expe
ted 
ost 2 � OPT.Combining, we �nd that our solution has 
ost at most3 �OPT.6.4 General Metri
s. Finally, we remark that ifedge 
osts form a tree metri
, we 
an solve the problemoptimally in polynomial time. In a tree metri
 minimum
ost Steiner tree on any subset of nodes is simply aspanning tree on that subset. Thus, for ea
h edge we
an 
ompute the exa
t probability of using that edgein the Steiner tree over a random set of a
tive 
lients.In parti
ular for a given edge e, we have Pr[e used℄ =1�Qi2Ue(1� pi), where Ue is the set of 
lients whose



tree path to the root 
ontains e. The edge should bepur
hased in advan
e if and only if the probability of itbeing used is at least 1=�.Sin
e any metri
 
an be embedded into a tree metri
with distan
es approximated by a fa
tor of O(logn) inexpe
tation [2℄, we obtain the following result:Theorem 6.2. There is an O(logn) approximation forthe metri
 Steiner tree network predesign problem.7 Con
lusions and Open ProblemsIn this paper we presented a novel \preplanning" frame-work that allows to study the time-information tradeo�in solving problems with un
ertainty in the inputs. Wehave examined a number of (generallyNP-hard) 
ombi-natorial optimization problems in whi
h it makes to pos-tulate a probability distribution over possible instan
esand to spe
ify a portion of the solution in advan
e, anddeveloped algorithms for 
omputing approximately op-timal pre- and post-sampling parts of a solution.We leave open a number of questions 
on
erningthe problems we have 
onsidered. Another interestingopen question is the integrality of the linear programfor the min-
ost 
ow with preplanning. If it 
ould bein fa
t shown that there exists an optimal solution thatpre-installs only integral amounts of 
apa
ity, then thenext natural question to ask is whether we 
an solve theproblem using a purely 
ombinatorial algorithm.We 
ould also extend our framework to other 
om-binatorial optimization problems. One natural problemto 
onsider is fa
ility lo
ation. In the preplanning ver-sion of the problem, given a probability distribution onthe demand of ea
h 
lient, we would like to determinewhi
h fa
ilities should be opened in advan
e, providedthat one 
an add more fa
ilities after the exa
t demandshave been determined, albeit at a higher pri
e. The goalis to minimize the overall expe
ted 
ost plus the fa
ilityopening 
ost. Re
ently, it was brought to our attentionthat Gupta et al [6℄ 
ame up with a 
onstant fa
tor ap-proximation for the s
enario based version of this prob-lem in whi
h the number of possible later s
enarios ispolynomail. They also designed a 
onstant fa
tor ap-proximation for the Steiner network predesign problem[6℄. We 
an also easily formulate a number of sto
hasti
s
heduling problems in the 
ontext of our framework.Taking job duration times to be probabilisti
ally dis-tributed, we may ask how many ma
hines should bereserved in advan
e in order to 
omplete all jobs bysome deadline, or how mu
h pro
essing time to reservein advan
e (with an option of extending it later) givena �xed number of ma
hines.
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