On the Costs and Benefits of Procrastination: Approximation

Algorithms for Stochastic Combinatorial Optimization Problems

Nicole Immorlica* David Karger*

Abstract

Combinatorial optimization is often used to “plan ahead,”
purchasing and allocating resources for demands that are not
precisely known at the time of solution. This advance plan-
ning may be done because resources become very expensive
to purchase or difficult to allocate at the last minute when
the demands are known. In this work we study the tradeoffs
involved in making some purchase/allocation decisions early
to reduce cost while deferring others at greater expense to
take advantage of additional, late-arriving information. We
consider a number of combinatorial optimization problems
in which the problem instance is uncertain modeled by a
probability distribution—and in which solution elements can
be purchased cheaply now or at greater expense after the
distribution is sampled. We show how to approximately op-
timize the choice of what to purchase in advance and what
to defer.

1 Introduction

Combinatorial optimization is often used to “plan
ahead,” purchasing and allocating resources for needs
that are not precisely known at the time of solution.
For example, a network designer might have to make a
best guess about the future demands in a network and
purchase capacity accordingly. At other times, however,
it is possible to “wait and see,” deferring decisions about
resource allocation until demands or constraints become
clear. This allows one to plan an optimal solution for
each potential outcome. There is often a trade-off in-
volved, in that allocations made later may be more ex-
pensive. For example, the network designer may be able
to arrange cheap long-term contracts for capacity pur-
chased ahead of time, but may need to purchase extra
capacity at the last minute on a more expensive “spot
market.”

Beyond the basic optimization problem, then, there
is the problem of deciding which part of the solution

*MIT Science and Al TLaboratory.

{nickle,karger,mariam,mirrokni}@theory.lcs.mit.edu Sup-
ported by the TRIS project under National Science Foundation
cooperative agreement ANI-0225660. Dr. Minkoff was supported
by an AT&T Laboratories Graduate Fellowship

Computer

Maria Minkoff* Vahab S. Mirrokni*

should be set early and cheaply based on limited infor-
mation about the problem input, and which part should
be deferred and solved more expensively with the arrival
of additional information about the input.

In this paper we study a particular framework, de-
rived from stochastic programming, for dealing with
this time-information trade-off in the presence of uncer-
tainty. Formally, we postulate a probability distribution
Pr[Z] over problem instances Z. We consider a collection
of variables z; and y; that describe candidate solutions
to the problem, where different settings of the variables
are feasible for different inputs Z. We are required to
set the variables z;, then sample a problem instance 7
from the distribution, and finally, with knowledge of the
instance, to set the variables y; so that (z,y) is feasible
for Z. Given a cost function c¢(z,y) on solutions, our
goal is to minimize the expected cost Ec(z,y)] subject
to the feasibility constraints of the random instance.

In the standard two-stage stochastic programming
with recourse model [1, 11], the problem instances are
polytopes over z; and y; (representing linear or integer
linear programs), and the cost function is linear. When
the distribution involves only a small number of distinct
instances {Z}, the problem can be formulated as large
scale linear (or integer linear) program and solved using
standard methods from mathematical programming.

1.1 Owur Results. We explore the stochastic op-
timization framework in the context of problems with
more combinatorial structure, and apply new tech-
niques that exploit this structure. Specifically, we study
stochastic versions of min-cost flow, bin packing, vertex
cover, shortest path, and the Steiner tree problem. In
each of these problems, a ground set of elements e € E is
specified (vertices in the vertex cover problem, edges in
the Steiner problems, bins in bin packing). A (randomly
selected) problem instance Z defines a set of feasible so-
lutions, each corresponding to a subset Fr C 2. We
can buy certain elements “in advance” at cost c., then
sample a problem instance, and must then buy other
elements at “last-minute” costs Ac. so as to produce a
feasible set, for our problem instance. Our goal is to
minimize the expected total cost.

It is noteworthy that all of our problems are cover-
ing problems and thus “monotone,” in that any super-
set of a feasible solution is feasible. This is convenient
because it means that purchasing elements in advance
never “invalidates” a potentially feasible solution—the
advance purchases may be wasted, but at worst they can
be ignored and any desired feasible solution constructed
from the post-sampling purchases. Thus, we can focus
all of our attention on optimizing cost without worrying
about making feasibility-missteps.

We study two main types of instance probability
distributions. A bounded support distribution gives
nonzero probability to only a polynomial number of dis-
tinct problem instances. And independent distribution
makes each element/constraint of the problem instance
active independently with some probability.

Our results for specific problems are as follows:

Min Cost Flow. Given a source and sink and a prob-
ability distribution on demand, buy some edges
in advance and some after sampling (at greater
cost) such that the given amount of demand can
be routed from source to sink. This problem can
be solved exactly via linear programming.

Bin packing. A collection of items is given, each of
which will need to be packed into a bin with some
probability. Bins can be purchased in advance at
cost, 1; after the determination of which items need
to be packed, additional bins can be purchased at
cost A > 1. How many bins should be purchased in
advance to minimize the expected total cost? We
show that this problem can be efficiently approxi-
mated arbitrarily close to optimal.

Vertex Cover. A graph is given, along with a proba-
bility distribution over sets of edges that may need
to be covered. Vertices can be purchased in advance
at cost 1; after determination of which edges need
to be covered, additional vertices can be purchased
at cost A. Which vertices should be purchased in
advance? We give a 4-approximation based on a
linear programming relaxation for the case where
the probability distribution involves only polyno-
mially many distinct edge sets, and a combinato-
rial 6.3-approximation for the case when each edge
must be covered independently with fixed probabil-

ity p.

Cheap Path. We are given a graph and told that a
randomly selected pair of vertices (or one fixed
vertex and one random vertex) will need to be
connected by a path. We can purchase edge e
at cost ¢, before the pair is known or at cost Ace
after and wish to minimize the expected total edge

cost. We show that this problem is equivalent to
the multicommodity rent-or-buy problem, so that
previously known approximation algorithms apply.

Steiner Tree. A graph is given, along with a probabil-
ity distribution over sets of terminals that need to
be connected by a Steiner tree. Edge e can be pur-
chased at cost ¢, in advance or at cost Ac. after the
set of terminals is known. We give a constant fac-
tor approximation for the case where the expected
number of terminals is constant (generalizing the
Cheap Path result). We also give a constant factor
approximation for the case where the edges form
an ultrametric and an O(logn) approximation for
general edge costs.

1.2 Related work. Stochastic programming is
a tremendous field with a vast literature [14]. It is
applicable whenever probability distributions of inputs
are known or can be estimated. One of the most widely
used models in stochastic programming is the two-
stage recourse model mentioned earlier. It involves an
initial deterministic decision, an opportunity to observe
additional information, and then a recourse action in
response to each random outcome. The two-stage
model can be naturally generalized by adding additional
recourse stages, each consisting of an observation and
a decision responding to it. Stochastic linear programs
are generally tackled via a combination of mathematical
programming and advanced probabilistic techniques. A
key difficulty in solving these problems is dealing with a
very large uncertainty space, as one gets a separate set
of constraints for each potential outcome.

Stochastic multicommodity flow is a particularly
well studied problem in this area (cf. [12]). When
it is the costs that are stochastic the problem is rela-
tively easy as the expectations propagate through, but
the case of stochastic capacities or demands has not
yet been fully solved. Stochastic multicommodity flow
has been used extensively as a model for a variety of
real-world applications. Recently, Mitra and Wang [10]
derived a flow-based framework for stochastic traffic en-
gineering in which the objective is to maximize revenue
from serving demands that are specified by probability
distributions. Their model is similar to ours, in that
it uses a two-tier cost function and explores the trade-
off between deterministic allocations and probabilistic
provisioning. They present conditions under which the
problem can be reduced to an instance of convex pro-
gramming.

A rather different stochastic optimization frame-
work assumes random instances but requires only that
constraints be satisfied with certain probability. This
framework is sometimes known as “chance constrained

programs.” For example, Kleinberg, Rabani and
Tardos [8] consider chance-constrained knapsack, bin-
packing and load-balancing problems. In particular, in
bin-packing, given a probability distribution on the sizes
of items, one is concerned with packing all of the items
into a minimum number of bins so that it is unlikely that
any one of them overflows. Kleinberg et al. provide an
approximation guarantee that is a function of logp~!
(where p is the probability with which bin capacity is
allowed to be violated).

2 Preliminaries

In this section we give a formal definition of the pre-
planning framework for stochastic combinatorial opti-
mization problems, discuss a number of basic properties
shared by the problems in this framework, and present
some generally applicable techniques.

2.1 Formal Problem Statement. Formally, a
preplanning version of a combinatorial optimization
problem is specified in our framework by a ground set of
elements e € E, a probability distribution on instances
{I}, a cost function ¢ : E — IR, and a penalty factor
A > 1. Each instance Z has a corresponding set of
feasible solutions F7 C 2 associated with it. Suppose
a set of elements A C E is purchased before sampling
the probability distribution. Let c4 denote the posterior
cost function, i.e.

cale) = { gc(e)

The objective of a preplanning combinatorial optimiza-
tion problem is to choose a subset of elements A to be
purchased in advance so as to minimize the total ex-
pected cost of a feasible solution

ifee A
otherwise

c(A) +E [Sneuj__nI ca(S)

over a random choice of an instance 7.

2.2 The Threshold Property. Our first obser-
vation is that optimal preplanning solutions exhibit a
natural local-optimality property.

Consider a solution that purchases some set of
elements A C F in advance and then, on sampling
problem instance Z, buys additional elements Lz. Note
that A U Lz is a feasible solution for the instance
Z. Conversely, knowing the complete feasible solution
F7 C E used when each instance 7 is sampled, it is easy
to determine which elements are purchased in advance:

THEOREM 2.1. An element should be purchased in ad-
vance if and only if the probability it is used in the so-
lution for a randomly chosen instance exceeds 1/\.

The theorem follows immediately from the fact that
the cost contribution of an element e is A Pr[e used] if it
is not purchased in advance. We refer to this theorem
as the Threshold Property.

2.3 Approximation Algorithms as Subroutines.

With the exception of min-cost flow and cheap path,
every problem we study is ANP-hard even in the tra-
ditional, non-stochastic setting [3]. This immediately
implies that the preplanning versions of these problems
are also A'P-hard (one can simply define a distribution
that assigns probability one to the unique instance of
interest). Additionally, it complicates our task since we
do not know how to find an optimal solution even to
a particular instance. However, we observe that using
an approximation algorithm instead has limited conse-
quences:

THEOREM 2.2. Given an a-approzimation algorithm
ALG, let Ay be a subset of elements that minimizes the
expected cost of a solution obtained with ALG over a
random choice of a instance T, i.e. ¢(A) +E [¢}-¢(T)].
Then the cost of a preplanning solution that purchases
elements in Ag in advance is at most o times the
minimum possible cost whether one uses an exact or an
approximation algorithm to complete the solution for the
randomly sampled instance.

The above theorem implies that we can reduce the
preplanning version of an A"P-hard problem to solving
a preplanning instance of another optimization problem
that has a polynomial-time algorithm. For example,
since in a metric space an MST over a subset of nodes
S provides a 2-approximation for min-cost Steiner tree
on S, we can use preplanning to optimize the cost of
an MST (instead of a steiner tree) on the terminals and
lose only a factor of 2 in approximating the optimum
preplanning cost.

3 Network Predesign for Min-Cost Flow

Consider a stochastic min-cost flow problem. We wish
to provide capacity on a network sufficient to carry a
(random) amount of flow demand D from a source s
to a sink ¢. We have an option of pre-installing some
amount of capacity in advance at some cost per unit.
We are also allowed to rent additional capacity once the
demands become known, but at cost a factor of A larger
per unit. The sum of capacity installed in advance and
capacity rented must also satisfy a given upper bound
(total capacity) for each edge. The goal is to minimize
(over the given probability distribution on demands)
the expected cost of installing sufficient capacity in the
network so as to be able to satisfy the demand.

Figure 1: Example demonstrating anomalies in min-cost
flow network predesign.

When the probability distribution on D has poly-
nomial support (i.e., only polynomially many distinct
demands are possible) then the min-cost flow network
predesign problem is polynomial-time solvable using the
standard “merger of linear programs” approach from
stochastic programming described in the introduction.
We define a variable a;; for the capacity purchased in
advance on edge (i,j), and then write down, for each
possible demand value, a min-cost flow linear program
on a graph where there are a;; units of cost-0 capacity
on edge (i,j). We then take a weighted (by the proba-
bility distribution) combination of the individual linear
programs’ objectives to get our objective function.

Although this solution is well known, we discuss
min-cost flow because it demonstrates several interest-
ing behaviors in stochastic optimization.

Provisioning for expected demand is unwise.
The plausible approach of provisioning for the expected
amount of demand, i.e. buying capacity sufficient to
route the expected demand in the network, can be far
from optimal. Consider a network consisting of a single
edge of base cost 1 between terminal nodes s and ¢.
Suppose the demand D that has to be sent from s to ¢
is d with probability p = (1+ A)/2\ and zero otherwise.
Provisioning for expected demand means purchasing
capacity pd in advance and buying the rest of it later
if the actual demand turns out to be d. The expected
cost of this solution is pd + Ap(1 — p)d. On the other
hand, a solution that buys capacity d in advance incurs
a cost of d. The ratio between these two solutions is
(1 + X)?/4\, which grows arbitrarily bad with large .

Flow may be sent on non-shortest paths.
Consider the graph G on 4 nodes shown in Figure 1.
Suppose that each edge has maximum allowed capacity
1 and that A = 2. Let Pr[D =0] =1/4, Pr[D =1] =
1/4, and Pr[D =2] = 1/2. Note that the only way
to route 2 units of demand is by saturating the edges
(s,a),(a,t),(s,b),(b,t). Thus, the probability of using
each of these edges is at least 1/2 > 1/X, so by
the Threshold Property introduced in Section 2.2 any
optimal solution has to buy 1 unit of capacity on each

of those arcs in advance. However, once they are
prepurchased, it is unnecessary to use arc (a,b). Hence,
the shortest s-a-b-t path is never used to route flow,
even if only 1 unit of demand needs to be sent.

Prepurchases need not form paths. Using
the same graph G in Figure 1, take A = 2,Pr[D = 0] =
5/12, Pr[D = 1] = 1/4, Pr[D = 2] = 1/3. In this case
an optimal solution ends up prepurchasing 1 unit of
capacity only on arcs (s,a) and (b, t).

4 Bin packing with preplanning

In the classical bin-packing problem, one is given a set
of n items of different sizes. The goal is to pack all
items into unit-size bins so as to minimize the cost of
the packing, namely the total number of bins used. Now
suppose that the set of items to be packed is chosen at
random. Bins may be purchased in advance at cost 1 or
after the set of items is known at cost A. Our objective
is to minimize the cost of bins required for packing in
expectation over a random selection of a set of items.
Since classical bin-packing is NP-hard, we can of course
not expect to find an optimal solution. But we show
how to match the approximation ratio achievable for
the standard bin-packing problem.

Bin packing can be brought into our framework by
thinking of each bin as an “element” that may need
to be purchased. But the problem is particularly easy
because all elements are the same. Thus, we need only
specify how many of these elements are to be purchased
in advance. For convenience, we can assume that the
bins are numbered by, ... , b, and that any solution buys
bins in order i.e., it buys some prefix by, ..., b; of the
bins. The problem is then essentially solved by invoking
the Threshold Property, which says that we should buy
bins in advance only if their probability of use exceeds
1/A. Since the probability of using b; is no greater than
that of using b;_1, there is some maximum : for which
the probability of using b; exceeds 1/, implying we
should buy ¢ bins in advance. Put more directly:

THEOREM 4.1. Let B be a random wvariable denoting
the optimum number of bins used for a particular (ran-
dom) set of items. Then the optimum preplanning algo-
rithm is to buy, in advance, the number of bins k such

that Pr[B > k| > 1/X while Pr[B > k+ 1] < 1/).

This essentially solves our problem, modulo two de-
tails: that we cannot compute B (the optimum bin
packing size) and that we apparently need to compute
the probability distribution over B. Both these prob-
lems are surmountable. In short, we can use an ap-
proximation algorithm instead of an exact algorithm
to pack the items, inheriting the same approximation
bound, and we can use Monte Carlo sampling (repeat-

edly choose a random set of items and pack them) to
get an accurate estimate for Pr[B > k] and identify an
approximately optimum value of £ to buy in advance.
Using Monte Carlo estimation adds another (1+¢) factor
to the approximation bound (taking time polynomial in
1/€). Details are omitted.

Notice that our approach to bin-packing did not
make explicit use of the probability distribution over
items to be packed. It applies to any probability
distribution on items and sizes from which we can
sample efficiently.

5 Vertex Cover with preplanning.

In the (unweighted) vertex cover problem, given an
undirected graph, the goal is to find a subset of vertices
of minimum cardinality such that at least one endpoint
of each graph edge is in the subset. Now suppose
that only a subset of edges needs to be covered, but
that we do not know in advance exactly which ones.
Given a probability distribution on the sets of edges
to be covered, the goal of the preplanning vertex cover
problem is to determine an optimum set of vertices
to buy in advance (at cost 1), so as to minimize the
expected cost of a vertex cover for a random subset of
edges, provided that additional vertices can be added at
cost A each.

5.1 Bounded-Support Distributions. In this
section we show how to obtain a constant-factor ap-
proximation for the case when the probability distri-
bution over problem instances has bounded support,
i.e. the number of possible subsets of edges to be cov-
ered is polynomially bounded. As with min-cost flow,
we start with the standard stochastic programming of
combining linear programs for individual problem in-
stances. We observe that this technique can be extended
to combinatorial optimization problems that are solved
by rounding fractional solutions to linear programming
relaxations, and apply it to the vertex cover problem.

Suppose we are given a graph G = (V, E) and a
probability distribution on the polynomial number of
“active” edge sets from F C 2F that might to be covered
by the vertices. In other words, for each F' € F, we have
access to p”, the probability that we have to construct
a vertex cover for exactly the edges in F. For F' ¢ F,
pf' =0.

We can model the preplanning version of the vertex
cover problem with an integer program. For each vertex
i, let x; = 1 if i is bought in advance, and let y/ = 1
if 7 is added to the vertex cover once it is revealed that
F' is the set of active edges that have to be covered.
For edge (i,j) € F, either i or j has to be in a vertex
cover for edge set F', i.e. at least one of the variables

Ti, T, yiF7 yf has to be 1. Writing this constraint for all
edges in each of the potential edge sets, we obtain the
following integer program:

Min ey i+ A ZiEV,FG}'przF

s.t. mi-l-.rj-l-yf-l-nyl V(i,j)e FeF
z; € {0,1} VieV
yl €{0,1} VFeF,ieV

Since the number of edge sets F' € F is polynomial,
the corresponding linear programming relaxation can
be solved efficiently. The value of an optimal solution
to this LP relaxation provides a lower bound on the
optimal integer solution.

Next, we construct a solution to the vertex cover
preplanning problem by rounding an optimal solution
to the LP. Let us buy vertices i such that =; > 1/4, i.e.,
we round such z; to 1. Once the set F' of edges to be
covered is revealed, we purchase the additional vertices
1 such that yZF > 1/4, i.e., we round such yZF to 1. Let
Z, 9 be the corresponding integral solution. The analysis
goes exactly as for the standard vertex cover problem:
at least one of the four variables associated with a
particular sampled edge must have value at least 1/4,
so the rounded solution is feasible. At the same time,
we have multiplied each fractional value by at most 4
(from 1/4 to 1) so our solution is a 4-approximation to
the fractional solution, and thus to the true optimum.

5.2 Independent edge set. In this section we
consider the version of the problem in which each edge
is active (e.g. has to be covered) independently with
probability p. As before, given a graph G = (V, E),
we would like to determine an optimum set of vertices
A C V to buy in advance (at cost 1), so as to minimize
the expected cost of a vertex cover for a random subset
of edges F' C E, provided that additional vertices can
be added at cost A each. Note that once vertices in
the set A are specified, extending it to a cover of the
edge set F' is equivalent to finding a vertex cover in the
V'\ A-induced subgraph of Gp = (V,F). We assume
that A > Ay where Ag = 3.15. In the event A < A,
we can obtain a trivial 6.3-approximation algorithm by
not purchasing any vertices in advance and using a 2-
approximation algorithm for vertex cover.

This problem demonstrates one key idea for tackling
stochastic problems: that of concentrating sufficient
probability at one spot to make the Threshold Property
apply so that we can justify purchasing certain elements
in advance. In particular, we focus our attention on
certain high-degree vertices (in the original graph) and
argue that the fact that they are very likely to have
an incident edge sampled justifies purchasing them in

advance. We will use much the same idea to tackle
Steiner tree problems in the next section.

DEFINITION 5.1. Given a graph G = (V, E), define a
k-matching to be a subset of edges that induces degree
at most k on every vertex. Call a vertex v € V tight if
its degree is exactly k.

Our approximation algorithm is as follows. Define
k = log, ,(1 — 1/X), construct some mazimal k-
matching (greedily), and purchase in advance the set
Ay of tight vertices in the k-matching.

To show that this algorithm yields a constant-factor
approximation, we prove two things. First, that the
total number of vertices prepurchased (at cost 1) by
our algorithm is proportional to the optimum solution’s
(expected) cost (in both stages). Second, we prove that
in the graph which remains, it is optimal to prepurchase
no additional vertices. Thus, our algorithm’s second-
stage purchase cost is optimal and, in particular, less
than the both-stages cost of the optimum solution on
the original graph.

LeMMA 5.1. |4;] < 4.30PT.

Proof. Due to space limits, we will be sloppy with
constants. In particular we use the fact that k& =
©(1/Ap), since % <)\io

We consider an instance of the preplanning problem
in which only edges of the chosen k-matching have to
be covered (e.g. the edge set of the graph from which
some edges are sampled consists just of the edges of the
k-matching). Clearly, the cost of an optimal solution to
this instance is no more than OPT.

We prove our bound using a surcharging scheme.
For each dollar spent by the optimum, our charging
scheme spends at most one additional dollar. At the
same time, it spends (1) dollars per tight vertex. It
follows that the number of tight vertices is O(1) times
the expected number of dollars spent in our charging
scheme, which in turn is twice the optimum expected
cost.

The charging scheme goes as follows. For each
vertex u purchased in advance by OPT, we spend one
dollar on u and an extra 1/k = ©(\p) dollars on each
neighbor of 4. Since u has degree at most k, this costs at
most one additional dollar. In the second stage, consider
the (random) set of edges actually included. If (u,v) is
an isolated edge, i.e. there are no other edges incident
on u or v, and neither v nor v has been purchased in
advance, then OPT must spend A dollars purchasing u
or v. In this case, we charge an additional A dollars
to the other endpoint. In this case as well, we end up
spending at most twice what OPT spends.

Now consider any tight vertex v. If OPT purchases
it in advance we are done as a dollar was spent on it.
If not, consider each neighbor u of v. If u is purchased
in advance then v receives 1/k dollars from u. Now
suppose u is not purchased in advance. Consider the
event [, that (u,v) is included as an isolated edge in
the random problem instance. This event happens when
(u,v) is chosen and no other edges incident on u or v
are chosen; since v and v have degree at most k and
A> g,

P[] > p(1-p)**
= p(1—p)°t/»
= Qp).

Since the events [, are disjoint, and since v receives
A dollars each time some event I, occurs, we conclude
that vertex v receives {2(Ap) dollars in expectation for
each neighbor u not bought in advance.

In summary, we have shown that v receives Q(\p)
dollars from each neighbor—deterministically when
that neighbor is bought in advance, in expectation oth-
erwise. Since v is tight, it has k¥ = ©(1/Ap) neighbors
and the lemma follows.

LEMMA 5.2. Purchasing the tight vertices in advance
(and deleting their incident edges as covered) leaves a
graph in which it is optimal to prepurchase no vertices.

Proof. In the original graph, every edge not in the k-
matching must have at least one tight endpoint (other-
wise it could have been added to the k-matching, con-
tradicting its maximality), and is therefore covered by
the tight vertices. The remaining (k-matching) edges
induce degree at most k in every vertex. The probabil-
ity that any vertex has any incident edge (and is thus
useful in the solution) is then less than 1/A. Thus by
the Threshold Property it is optimal to buy no vertices
in advance.

THEOREM 5.1. Purchasing in advance a set of all tight
vertices induced by a maximal k-matching, where k =
ﬂoglfp(l — %)] yields a solution of cost at most 6.3
times the optimum.

Proof. The first lemma shows that purchasing all the
tight vertices costs at most 4.3 - OPT. It leaves a graph
whose optimum solution is only cheaper, meaning it too
costs at most OPT. And the second lemma proves that
buying nothing is an optimal solution. Thus, we spend
at most 4.3-OPT in the first stage and at most 20PT in
the second stage by using a 2-approximation for vertex
cover, for a total of 6.30PT.

6 Steiner Tree Predesign

In the network Steiner tree problem we are given an
edge-weighted graph G = (V, E) and a subset of nodes
S C V that need to be connected. The goal is to
find a minimum cost tree spanning S. We consider
preplanning versions of this problem, in which S is the
set of active clients drawn from some distribution.

Formal problem statement. Let G = (V, E)
be an undirected edge-weighted graph. Let ¢, > 0
denote the cost of an edge e € E. We call a subset S of
nodes (clients) active if all of the nodes in it wish to be
connected. Given a probability distribution over active
sets {S}, the objective is to minimize the expected cost
of connecting up active clients. A subset of edges A C F
can be purchased in advance at cost c.; additional edges
can be purchased later on at cost Ac., where A > 1.
Once a set S of active clients is revealed, the cheapest
way to connect up all the clients in S is to build a
min-cost Steiner tree over the vertices of S using the
edge cost function ¢4, where ca(e) = 0 if e € A, and
cale) = Ace otherwise. Let Tst(S) be an optimum
Steiner tree over S for the edge cost function c4. The
objective of the network predesign problem is to choose
A to minimize the cost of the solution ¢(A)+ca(Ts7(S))
in expectation over S.

6.1 Relation to previous problems. A number
of interesting special cases of this problem are equiv-
alent to previously-studied combinatorial optimization
problems; we therefore inherit constant factor approxi-
mations from those problems.

Cheap path to root. A root is specified in advance
and a single, randomly chosen node wishes to be
connected to that root. This problem is equiva-
lent to connected facility location, with probability
(scaled by A) replacing demand, and hence can be
approximated to within a constant [5, 13].

Cheap path. A randomly chosen pair of nodes wishes
to be connected. This problem is equivalent to mul-
ticommodity rent-or-buy, with probability (scaled
by A) replacing demand, which has several constant
factor approximation algorithms [9, 4].

When nodes become active independently, but the
expected number of active clients is 1, there is a constant
probability of having exactly one active client. This
allows a simple reduction to the previous problems.

THEOREM 6.1. If the expected number of active clients
is at most 1, an optimal solution for cheap path-to-
root yields a 2-approximation to the rooted Steiner tree
predesign problem.

Since the cheap path-to-root problem can be ap-
proximated to within a constant factor 3.55 [5] we get
a 7.1-approximation algorithm for our special case. An
obvious generalization yields a 7.1k-approximation for
the case where the expected number of clients is & > 1.

6.2 High probability nodes. We turn to the
case of independent client activations. In this section
we show that if all node activation probabilities are
lower-bounded by 1/A, then prepurchasing a minimum
spanning of the entire node set is a 2-approximation
to the optimum. This result is of limited interest but
is an important component of our general solution for
ultrametrics in the following section.

We can assume without loss of generality that our
graph is metric—i.e., that the edge connecting any two
vertices is a shortest path—since adding an edge of
length equal to the shortest path does not change the
optimum (one can always use the path instead of the
imaginary edge). In such a graph, it is known that the
optimum Steiner tree on any subset of the vertices is two
approximated by the minimum spanning tree (MST) on
the graph induced by those vertices.

LEMMA 6.1. If every vertex in a graph is active with
probability at least p, then the expected cost of the MST
on the active vertices is at least p times the cost of the
entire MST.

Note that this lemma does not distinguish pre- and post-
purchase costs.

Proof. (Sketch). The basic approach is to analyze
Prim’s algorithm with deferred decisions to build a
minimum spanning tree on the active nodes. Details
are similar to the Karger-Klein-Tarjan [7] analysis of
minimum spanning tree value using a randomly sampled
edge subset.

COROLLARY 6.1. If for all clients i, p; > ;7 (where
f > 1), then prepurchasing a minimum spanning tree
over all potentially active clients is a f-approximation
to Steiner tree predesign.

Proof. Let M be the prepurchase cost of the entire
MST. Suppose the optimum buys nothing in advance.
Then by the previous lemma, the expected prepurchase
cost of the MST of the active clients is at least M/ fA.
Since the optimum buys late, it would have to multiply
this cost by A, paying M/f meaning M is an f-
approximation to the optimum. The general proof
follows by observing that the spending ¢ in advance can
only reduce the cost of the MST by ¢, implying that the
optimum would still expect to pay at least (M —¢)/f
in the second stage. Thus, the optimum is at least
¢+ (M —o)/f > M/f.

6.3 Algorithm for Ultrametric Case. We now
give a constant factor approximation algorithm for
the Steiner tree predesign problem for the case when
the underlying graph G = (V, E) forms an ultramet-
ric — an assignment of edge weights such that é,, <
max(Cyy, Cwy). This ultrametric property implies that
the shortest-path distance between any two vertices in
the graph is no more than than the weight of the heav-
iest edge on a path between them, and is in fact equal
to the heaviest edge on the path connecting them in the
MST. It is also the case that in ultrametrics, Steiner
points are never useful in a Steiner tree 1i.e., the Steiner
tree on some nodes is just the MST on those nodes.

The basic idea of our algorithm is to cluster nodes
into components, each containing clients of total prob-
ability mass ©(1/A). On the one hand, we can think of
each component as a “supernodet” which, since it has
©(1/)) probability mass, becomes active with proba-
bility ©(1/X). Corollary 6.1 lets us conclude that pur-
chasing a minimum spanning tree on the supernodes is
approximately optimal. This creates at least one “hub”
in each supernode, connected to the root. But once hubs
are built, since the probability mass within each super-
client is not too large, we can show that there is no real
benefit in prepurchasing edges inside any super-client
to connect vertices to hubs.

As a first step toward demonstrating these ideas,
suppose that the MST is a star with the root at the
center, and that each vertex has activation probability
less than 1/A. We prove that purchasing nothing in
advance is approximately optimal.

Suppose first that the optimum solution purchases
some non-MST edge (u,v) in advance. Vertices u and v
are connected to the root by MST edges of cost ¢, and
¢y respectively. Suppose that instead of buying edge
(u,v) we buy the two edges connecting u and v to the
root. This can only help our second stage purchases:
u and v are still connected to each other, through the
root. From the definition of the MST, the weight w
of the edge connecting u and v is no less than ¢, or
¢y; thus connecting both directly to the root costs at
most 2w. We can apply this replacement rule to every
prepurchased non-MST edge. It follows that at cost
twice the optimum, we get a prepurchase with the same
second-stage cost as the optimum, made up entirely of
edges connected directly to the root.

Given this prepurchase, consider the second stage.
Again by the MST property, any vertex that becomes
active can connect directly to the root more cheaply
than it can connect to any other vertex. Thus, in the
postpurchase phase as well, only edges incident to the
root are purchased. Now, however, we can invoke the
Threshold Property. Since only edges incident to the

root are purchased, each such edge is only “useful” if its
non-root endpoint becomes active. We assumed that
each endpoint activation probability was less than 1/\.
Thus, by the Threshold Property, it makes more sense
not to buy that edge in advance.

In order to generalize this argument, we develop
a clustering algorithm that builds a particular MST
with a special “starlike” structure. This algorithm is
very specific to ultrametrics. Any ultrametric space
has a bottleneck cut: a partition of the points into two
sides such that the distance between any two points
on opposite sides is the same and is no less than the
distance between any two points on the same side. The
most obvious proof of this fact uses the MST. Consider
the heaviest edge in the MST. Removing it produces the
bottleneck cut, as can be seen from the fact that the
distance between two points is equal to the maximum-
weight edge on the MST path connecting those points.

One can use this bottleneck cut in a recursive MST
algorithm for ultrametrics: find the bottleneck cut,
recursively find MSTs of the two sides, and then connect
them with an arbitrary edge across the bottleneck cut
(as all have the same length). We will specialize this
generic algorithm for our purposes. For the purposes of
the algorithm, we define the probability mass of a set of
vertices to be the probability that some vertex in the set
becomes active. Qur specialization produces a minimum
spanning tree in which some of the vertices have been
labelled “hubs.” It has the following properties:

1. The hubs form a connected subgraph of the MST.

2. The total probability mass of vertices hanging off
each hub (i.e., whose paths through the MST reach
that hub before any other) is at least 1/\.

3. The total probability mass of each subtree hanging
off a hub is at most 1/A.

The type of MST we wish to construct is shown in
Figure 2.

LEMMA 6.2. Algorithm CLUSTER produces an MST
with the specified properties.

Proof. When the algorithm is called on a graph with
probability mass less than 1/, it returns an MST with
no hubs, vacuously fulfilling the properties.

If the algorithm is called on a graph of mass
exceeding 1/A, it recurses on the two sides of the
bottleneck cut. Each side returns without a hub if and
only if it is small 1i.e., has probability mass less than
1/A.

If both sides are small, we create one hub at the
join point of the two sides’ MSTs. Since removing this

i

i

Figure 2: A hub tree. Nodes labelled h are hubs.
T = 1/ is the upper bound for individual tree mass
and lower bound for total mass hanging off a hub.

CLUSTER(G)

Input: ultrametric space G.

if G has probability mass less than 1/\ then
return an MST of G with no hubs
else
Compute the bottleneck cut (X,Y) of G
CLUSTER(X)
CLusTER(Y)
if neither X nor Y has a hub then
connect X and Y with any edge e
make one endpoint of ¢ a hub
else
Connect X and Y with some edge, using hubs
in X and Y as the endpoints if they exist

Figure 3: Clustering procedure.

join point separates the two MSTs (at least—it may
further subdivide one side), no “hanging off” subtree
is too large. However, in total at least 1/ probability
mass hangs off the hub (as that is the reason the hub
was created).

If both sides are large, both returned MSTs will
have hubs, so we can connect a hub on each side, again
fulfilling the properties (as this attachment does not
change the set of nodes hanging off any hub).

If one side is large and the other small, then the
small side gets attached to (hangs off of) a hub on the
large side. But since the attached side is small, hanging
it off the hub does not violate the specified properties.

LEMMA 6.3. The cost of the piece of the MST connect-
ing the hubs is at most OPT.

Proof. Imagine contracting all vertices hanging off each
hub into their hub creating a “supernode”. This is done
by contracting MST edges, so the MST of the contracted
graph consists of the uncontracted edges of the original
MST. But these are precisely the MST edges connecting
up the hubs (and the root). In this contracted graph,
the probability that some vertex in a supernode becomes
active is (by the definition of probability mass) at least
1/A. Thus, by Corollary 6.1, purchasing the (remaining)
MST edges costs at most OPT. But these are precisely
the edges connecting the hubs to the root.

It follows that by paying OPT in advance, we can
prepurchase edges that connect all the representatives
(including the root). Equivalently, we can contract
all the representatives into the root. Since what we
contracted was a connected portion of the MST, the
MST of the contracted graph is just the remaining MST
of the original graph. But Property 3 above tells us
the form of this remaining MST: it will consist of a
collection of subtrees hanging off the (contracted) root,
each subtree of size at most 1/A. This is essentially the
“starlike” structure we want to reduce to.

LEMMA 6.4. In the starlike contracted MST just de-
scribed, it s within a factor of 2 of optimal to buy noth-
ing in advance.

Proof. The analysis runs as for the star above: pre- and
post-purchased intra-cluster edges can be replaced by
edges connecting nodes directly to the root. Once we
have done so, since each subtree of the MST has weight
less than 1/A, none of the prepurchased edges can be
used with probability greater than 1/A, so none is worth
buying in advance.

Combining the above arguments, we see that by
spending at most OPT, we can reduce to a graph in
which purchasing nothing in advance is within a factor
of 2 of optimum for that graph. Since that graph’s
optimum costs at most OPT, we see that purchasing
nothing gives a solution of expected cost 2 - OPT.
Combining, we find that our solution has cost at most
3-0PT.

6.4 General Metrics. Finally, we remark that if
edge costs form a tree metric, we can solve the problem
optimally in polynomial time. In a tree metric minimum
cost Steiner tree on any subset of nodes is simply a
spanning tree on that subset. Thus, for each edge we
can compute the exact probability of using that edge
in the Steiner tree over a random set of active clients.
In particular for a given edge e, we have Pr[e used] =
1= [Licp, (1 = pi), where U is the set of clients whose

tree path to the root contains e. The edge should be
purchased in advance if and only if the probability of it
being used is at least 1/\.

Since any metric can be embedded into a tree metric
with distances approximated by a factor of O(logn) in
expectation [2], we obtain the following result:

THEOREM 6.2. There is an O(logn) approximation for
the metric Steiner tree network predesign problem.

7 Conclusions and Open Problems

In this paper we presented a novel “preplanning” frame-
work that allows to study the time-information tradeoff
in solving problems with uncertainty in the inputs. We
have examined a number of (generally A/P-hard) combi-
natorial optimization problems in which it makes to pos-
tulate a probability distribution over possible instances
and to specify a portion of the solution in advance, and
developed algorithms for computing approximately op-
timal pre- and post-sampling parts of a solution.

We leave open a number of questions concerning
the problems we have considered. Another interesting
open question is the integrality of the linear program
for the min-cost flow with preplanning. If it could be
in fact shown that there exists an optimal solution that
pre-installs only integral amounts of capacity, then the
next natural question to ask is whether we can solve the
problem using a purely combinatorial algorithm.

We could also extend our framework to other com-
binatorial optimization problems. One natural problem
to consider is facility location. In the preplanning ver-
sion of the problem, given a probability distribution on
the demand of each client, we would like to determine
which facilities should be opened in advance, provided
that one can add more facilities after the exact demands
have been determined, albeit at a higher price. The goal
is to minimize the overall expected cost plus the facility
opening cost. Recently, it was brought to our attention
that Gupta et al [6] came up with a constant factor ap-
proximation for the scenario based version of this prob-
lem in which the number of possible later scenarios is
polynomail. They also designed a constant factor ap-
proximation for the Steiner network predesign problem
[6].

We can also easily formulate a number of stochastic
scheduling problems in the context of our framework.
Taking job duration times to be probabilistically dis-
tributed, we may ask how many machines should be
reserved in advance in order to complete all jobs by
some deadline, or how much processing time to reserve
in advance (with an option of extending it later) given
a fixed number of machines.

References
[1] J.R. Birge. Stochastic programming and applica-
tions. INFORMS Journal on Computing, 9(2):111-

2]

[10]

[11]

[12]

[13]

[14]

133, spring 1997.

J. Fakcharoenphol, S. Rao, and K. Talwar. A tight
bound on approximating arbitrary metrics by tree
metrics. In Proc. ACM Symposium on Theory of
Computing, 2003.

M.R. Garey and D.S. Johnson. Computers and In-
tractability: A guide to the theory of NP-completeness.
W. H. Freeman and Company, 1979.

A. Gupta, A. Kumar, M. Pal, and T. Roughgarden.
Approximation via cost-sharing: a simple approxi-
mation algorithm for the multicommodity rent-or-buy
problem. In Proc. 44th Annual Symposium on Foun-
dations of Computer Science, Cambridge, MA, 2003.
A. Gupta, A. Kumar, and T. Roughgarden. Simpler
and better approximation algorithms for network de-
sign. In Proc. ACM Symposium on Theory of Comput-
ing, pages 365 372, 2003.

A. Gupta, R. Ravi, and A. Sinha. Hedging uncertainty:
Approximation algorithms for stochastic optimization
problems. Working paper, 2004.

David R. Karger, Philip N. Klein, and Robert E. Tar-
jan. A randomized linear-time algorithm to find mini-
mum spanning trees. Journal of the ACM, 42(2):321
328, March 1995.

J. Kleinberg, Y. Rabani, and E. Tardos. Allocating
bandwidth for bursty connections. SIAM J. Comput-
ing, 30(1):191-217, 2000.

A. Kumar, A. Gupta, and T. Roughgarden. A constant
factor approximation algorithm for the multicommod-
ity rent-or-buy problem. In Proc. 43d Annual Sympo-
stum on Foundations of Computer Science, pages 333
342, 2002.

D. Mitra and Q. Wang. Stochastic traffic engineering,
with applications to network revenue management. In
Proceedings of IEEE INFOCOM 2003, 2003.

N.V. Sahinidis. Optimization under uncertainty:
state-of-the-art and opportunities. University of Illi-
nois,Urbana, February 2003.

H. Soroush and P. B. Mirchandani. The stochastic
multicommodity flow problem. Networks, 20:121 155,
1990.

C. Swamy and A. Kumar. Primal-dual algorithms
for connected facility location problems. In Proc. 5th
APPROX, volume 2462 of LNCS, pages 256-269, 2002.
M. H. der Vlerk. Stochastic pro-
gramming bibliography. World Wide Web,
http://mally.eco.rug.nl/spbib.html, 1996-2003.

van

