
On the Costs and Bene�ts of Prorastination: ApproximationAlgorithms for Stohasti Combinatorial Optimization ProblemsNiole Immorlia� David Karger� Maria Minko�� Vahab S. Mirrokni�AbstratCombinatorial optimization is often used to \plan ahead,"purhasing and alloating resoures for demands that are notpreisely known at the time of solution. This advane plan-ning may be done beause resoures beome very expensiveto purhase or diÆult to alloate at the last minute whenthe demands are known. In this work we study the tradeo�sinvolved in making some purhase/alloation deisions earlyto redue ost while deferring others at greater expense totake advantage of additional, late-arriving information. Weonsider a number of ombinatorial optimization problemsin whih the problem instane is unertain|modeled by aprobability distribution|and in whih solution elements anbe purhased heaply now or at greater expense after thedistribution is sampled. We show how to approximately op-timize the hoie of what to purhase in advane and whatto defer.1 IntrodutionCombinatorial optimization is often used to \planahead," purhasing and alloating resoures for needsthat are not preisely known at the time of solution.For example, a network designer might have to make abest guess about the future demands in a network andpurhase apaity aordingly. At other times, however,it is possible to \wait and see," deferring deisions aboutresoure alloation until demands or onstraints beomelear. This allows one to plan an optimal solution foreah potential outome. There is often a trade-o� in-volved, in that alloations made later may be more ex-pensive. For example, the network designer may be ableto arrange heap long-term ontrats for apaity pur-hased ahead of time, but may need to purhase extraapaity at the last minute on a more expensive \spotmarket."Beyond the basi optimization problem, then, thereis the problem of deiding whih part of the solution�MIT Computer Siene and AI Laboratory.fnikle,karger,mariam,mirroknig�theory.ls.mit.edu Sup-ported by the IRIS projet under National Siene Foundationooperative agreement ANI-0225660. Dr. Minko� was supportedby an AT&T Laboratories Graduate Fellowship

should be set early and heaply based on limited infor-mation about the problem input, and whih part shouldbe deferred and solved more expensively with the arrivalof additional information about the input.In this paper we study a partiular framework, de-rived from stohasti programming, for dealing withthis time-information trade-o� in the presene of uner-tainty. Formally, we postulate a probability distributionPr[I℄ over problem instanes I. We onsider a olletionof variables xi and yj that desribe andidate solutionsto the problem, where di�erent settings of the variablesare feasible for di�erent inputs I. We are required toset the variables xi, then sample a problem instane Ifrom the distribution, and �nally, with knowledge of theinstane, to set the variables yj so that (x; y) is feasiblefor I. Given a ost funtion (x; y) on solutions, ourgoal is to minimize the expeted ost E[(x; y)℄ subjetto the feasibility onstraints of the random instane.In the standard two-stage stohasti programmingwith reourse model [1, 11℄, the problem instanes arepolytopes over xi and yj (representing linear or integerlinear programs), and the ost funtion is linear. Whenthe distribution involves only a small number of distintinstanes fIg, the problem an be formulated as largesale linear (or integer linear) program and solved usingstandard methods from mathematial programming.1.1 Our Results. We explore the stohasti op-timization framework in the ontext of problems withmore ombinatorial struture, and apply new teh-niques that exploit this struture. Spei�ally, we studystohasti versions of min-ost ow, bin paking, vertexover, shortest path, and the Steiner tree problem. Ineah of these problems, a ground set of elements e 2 E isspei�ed (verties in the vertex over problem, edges inthe Steiner problems, bins in bin paking). A (randomlyseleted) problem instane I de�nes a set of feasible so-lutions, eah orresponding to a subset FI � 2E. Wean buy ertain elements \in advane" at ost e, thensample a problem instane, and must then buy otherelements at \last-minute" osts �e so as to produe afeasible set for our problem instane. Our goal is tominimize the expeted total ost.



It is noteworthy that all of our problems are over-ing problems and thus \monotone," in that any super-set of a feasible solution is feasible. This is onvenientbeause it means that purhasing elements in advanenever \invalidates" a potentially feasible solution|theadvane purhases may be wasted, but at worst they anbe ignored and any desired feasible solution onstrutedfrom the post-sampling purhases. Thus, we an fousall of our attention on optimizing ost without worryingabout making feasibility-missteps.We study two main types of instane probabilitydistributions. A bounded support distribution givesnonzero probability to only a polynomial number of dis-tint problem instanes. And independent distributionmakes eah element/onstraint of the problem instaneative independently with some probability.Our results for spei� problems are as follows:Min Cost Flow. Given a soure and sink and a prob-ability distribution on demand, buy some edgesin advane and some after sampling (at greaterost) suh that the given amount of demand anbe routed from soure to sink. This problem anbe solved exatly via linear programming.Bin paking. A olletion of items is given, eah ofwhih will need to be paked into a bin with someprobability. Bins an be purhased in advane atost 1; after the determination of whih items needto be paked, additional bins an be purhased atost � > 1. How many bins should be purhased inadvane to minimize the expeted total ost? Weshow that this problem an be eÆiently approxi-mated arbitrarily lose to optimal.Vertex Cover. A graph is given, along with a proba-bility distribution over sets of edges that may needto be overed. Verties an be purhased in advaneat ost 1; after determination of whih edges needto be overed, additional verties an be purhasedat ost �. Whih verties should be purhased inadvane? We give a 4-approximation based on alinear programming relaxation for the ase wherethe probability distribution involves only polyno-mially many distint edge sets, and a ombinato-rial 6.3-approximation for the ase when eah edgemust be overed independently with �xed probabil-ity p.Cheap Path. We are given a graph and told that arandomly seleted pair of verties (or one �xedvertex and one random vertex) will need to beonneted by a path. We an purhase edge eat ost e before the pair is known or at ost �eafter and wish to minimize the expeted total edge

ost. We show that this problem is equivalent tothe multiommodity rent-or-buy problem, so thatpreviously known approximation algorithms apply.Steiner Tree. A graph is given, along with a probabil-ity distribution over sets of terminals that need tobe onneted by a Steiner tree. Edge e an be pur-hased at ost e in advane or at ost �e after theset of terminals is known. We give a onstant fa-tor approximation for the ase where the expetednumber of terminals is onstant (generalizing theCheap Path result). We also give a onstant fatorapproximation for the ase where the edges forman ultrametri and an O(logn) approximation forgeneral edge osts.1.2 Related work. Stohasti programming isa tremendous �eld with a vast literature [14℄. It isappliable whenever probability distributions of inputsare known or an be estimated. One of the most widelyused models in stohasti programming is the two-stage reourse model mentioned earlier. It involves aninitial deterministi deision, an opportunity to observeadditional information, and then a reourse ation inresponse to eah random outome. The two-stagemodel an be naturally generalized by adding additionalreourse stages, eah onsisting of an observation anda deision responding to it. Stohasti linear programsare generally takled via a ombination of mathematialprogramming and advaned probabilisti tehniques. Akey diÆulty in solving these problems is dealing with avery large unertainty spae, as one gets a separate setof onstraints for eah potential outome.Stohasti multiommodity ow is a partiularlywell studied problem in this area (f. [12℄). Whenit is the osts that are stohasti the problem is rela-tively easy as the expetations propagate through, butthe ase of stohasti apaities or demands has notyet been fully solved. Stohasti multiommodity owhas been used extensively as a model for a variety ofreal-world appliations. Reently, Mitra and Wang [10℄derived a ow-based framework for stohasti traÆ en-gineering in whih the objetive is to maximize revenuefrom serving demands that are spei�ed by probabilitydistributions. Their model is similar to ours, in thatit uses a two-tier ost funtion and explores the trade-o� between deterministi alloations and probabilistiprovisioning. They present onditions under whih theproblem an be redued to an instane of onvex pro-gramming.A rather di�erent stohasti optimization frame-work assumes random instanes but requires only thatonstraints be satis�ed with ertain probability. Thisframework is sometimes known as \hane onstrained



programs." For example, Kleinberg, Rabani andTardos [8℄ onsider hane-onstrained knapsak, bin-paking and load-balaning problems. In partiular, inbin-paking, given a probability distribution on the sizesof items, one is onerned with paking all of the itemsinto a minimum number of bins so that it is unlikely thatany one of them overows. Kleinberg et al. provide anapproximation guarantee that is a funtion of log p�1(where p is the probability with whih bin apaity isallowed to be violated).2 PreliminariesIn this setion we give a formal de�nition of the pre-planning framework for stohasti ombinatorial opti-mization problems, disuss a number of basi propertiesshared by the problems in this framework, and presentsome generally appliable tehniques.2.1 Formal Problem Statement. Formally, apreplanning version of a ombinatorial optimizationproblem is spei�ed in our framework by a ground set ofelements e 2 E, a probability distribution on instanesfIg, a ost funtion  : E ! IR, and a penalty fator� � 1. Eah instane I has a orresponding set offeasible solutions FI � 2E assoiated with it. Supposea set of elements A � E is purhased before samplingthe probability distribution. Let A denote the posteriorost funtion, i.e.A(e) = � 0 if e 2 A�(e) otherwiseThe objetive of a preplanning ombinatorial optimiza-tion problem is to hoose a subset of elements A to bepurhased in advane so as to minimize the total ex-peted ost of a feasible solution(A) + E �minS2FI A(S)�over a random hoie of an instane I.2.2 The Threshold Property. Our �rst obser-vation is that optimal preplanning solutions exhibit anatural loal-optimality property.Consider a solution that purhases some set ofelements A � E in advane and then, on samplingproblem instane I, buys additional elements LI . Notethat A [ LI is a feasible solution for the instaneI. Conversely, knowing the omplete feasible solutionFI � E used when eah instane I is sampled, it is easyto determine whih elements are purhased in advane:Theorem 2.1. An element should be purhased in ad-vane if and only if the probability it is used in the so-lution for a randomly hosen instane exeeds 1=�.

The theorem follows immediately from the fat thatthe ost ontribution of an element e is �Pr[e used℄ if itis not purhased in advane. We refer to this theoremas the Threshold Property.2.3 Approximation Algorithms as Subroutines.With the exeption of min-ost ow and heap path,every problem we study is NP-hard even in the tra-ditional, non-stohasti setting [3℄. This immediatelyimplies that the preplanning versions of these problemsare also NP-hard (one an simply de�ne a distributionthat assigns probability one to the unique instane ofinterest). Additionally, it ompliates our task sine wedo not know how to �nd an optimal solution even toa partiular instane. However, we observe that usingan approximation algorithm instead has limited onse-quenes:Theorem 2.2. Given an �-approximation algorithmALG, let A0 be a subset of elements that minimizes theexpeted ost of a solution obtained with ALG over arandom hoie of a instane I, i.e. (A) + E �ALGA (I)�.Then the ost of a preplanning solution that purhaseselements in A0 in advane is at most � times theminimum possible ost whether one uses an exat or anapproximation algorithm to omplete the solution for therandomly sampled instane.The above theorem implies that we an redue thepreplanning version of an NP-hard problem to solvinga preplanning instane of another optimization problemthat has a polynomial-time algorithm. For example,sine in a metri spae an MST over a subset of nodesS provides a 2-approximation for min-ost Steiner treeon S, we an use preplanning to optimize the ost ofan MST (instead of a steiner tree) on the terminals andlose only a fator of 2 in approximating the optimumpreplanning ost.3 Network Predesign for Min-Cost FlowConsider a stohasti min-ost ow problem. We wishto provide apaity on a network suÆient to arry a(random) amount of ow demand D from a soure sto a sink t. We have an option of pre-installing someamount of apaity in advane at some ost per unit.We are also allowed to rent additional apaity one thedemands beome known, but at ost a fator of � largerper unit. The sum of apaity installed in advane andapaity rented must also satisfy a given upper bound(total apaity) for eah edge. The goal is to minimize(over the given probability distribution on demands)the expeted ost of installing suÆient apaity in thenetwork so as to be able to satisfy the demand.
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1Figure 1: Example demonstrating anomalies in min-ostow network predesign.When the probability distribution on D has poly-nomial support (i.e., only polynomially many distintdemands are possible) then the min-ost ow networkpredesign problem is polynomial-time solvable using thestandard \merger of linear programs" approah fromstohasti programming desribed in the introdution.We de�ne a variable aij for the apaity purhased inadvane on edge (i; j), and then write down, for eahpossible demand value, a min-ost ow linear programon a graph where there are aij units of ost-0 apaityon edge (i; j). We then take a weighted (by the proba-bility distribution) ombination of the individual linearprograms' objetives to get our objetive funtion.Although this solution is well known, we disussmin-ost ow beause it demonstrates several interest-ing behaviors in stohasti optimization.Provisioning for expeted demand is unwise.The plausible approah of provisioning for the expetedamount of demand, i.e. buying apaity suÆient toroute the expeted demand in the network, an be farfrom optimal. Consider a network onsisting of a singleedge of base ost 1 between terminal nodes s and t.Suppose the demand D that has to be sent from s to tis d with probability p = (1+�)=2� and zero otherwise.Provisioning for expeted demand means purhasingapaity pd in advane and buying the rest of it laterif the atual demand turns out to be d. The expetedost of this solution is pd + �p(1 � p)d. On the otherhand, a solution that buys apaity d in advane inursa ost of d. The ratio between these two solutions is(1 + �)2=4�, whih grows arbitrarily bad with large �.Flow may be sent on non-shortest paths.Consider the graph G on 4 nodes shown in Figure 1.Suppose that eah edge has maximum allowed apaity1 and that � = 2. Let Pr [D = 0℄ = 1=4, Pr [D = 1℄ =1=4, and Pr [D = 2℄ = 1=2. Note that the only wayto route 2 units of demand is by saturating the edges(s; a); (a; t); (s; b); (b; t). Thus, the probability of usingeah of these edges is at least 1=2 � 1=�, so bythe Threshold Property introdued in Setion 2.2 anyoptimal solution has to buy 1 unit of apaity on eah

of those ars in advane. However, one they areprepurhased, it is unneessary to use ar (a; b). Hene,the shortest s-a-b-t path is never used to route ow,even if only 1 unit of demand needs to be sent.Prepurhases need not form paths. Usingthe same graph G in Figure 1, take � = 2;Pr [D = 0℄ =5=12, Pr [D = 1℄ = 1=4, Pr [D = 2℄ = 1=3. In this asean optimal solution ends up prepurhasing 1 unit ofapaity only on ars (s; a) and (b; t).4 Bin paking with preplanningIn the lassial bin-paking problem, one is given a setof n items of di�erent sizes. The goal is to pak allitems into unit-size bins so as to minimize the ost ofthe paking, namely the total number of bins used. Nowsuppose that the set of items to be paked is hosen atrandom. Bins may be purhased in advane at ost 1 orafter the set of items is known at ost �. Our objetiveis to minimize the ost of bins required for paking inexpetation over a random seletion of a set of items.Sine lassial bin-paking is NP-hard, we an of oursenot expet to �nd an optimal solution. But we showhow to math the approximation ratio ahievable forthe standard bin-paking problem.Bin paking an be brought into our framework bythinking of eah bin as an \element" that may needto be purhased. But the problem is partiularly easybeause all elements are the same. Thus, we need onlyspeify how many of these elements are to be purhasedin advane. For onveniene, we an assume that thebins are numbered b1; : : : ; bn and that any solution buysbins in order|i.e., it buys some pre�x b1; : : : ; bk of thebins. The problem is then essentially solved by invokingthe Threshold Property, whih says that we should buybins in advane only if their probability of use exeeds1=�. Sine the probability of using bi is no greater thanthat of using bi�1, there is some maximum i for whihthe probability of using bi exeeds 1=�, implying weshould buy i bins in advane. Put more diretly:Theorem 4.1. Let B be a random variable denotingthe optimum number of bins used for a partiular (ran-dom) set of items. Then the optimum preplanning algo-rithm is to buy, in advane, the number of bins k suhthat Pr[B � k℄ � 1=� while Pr[B � k + 1℄ < 1=�.This essentially solves our problem, modulo two de-tails: that we annot ompute B (the optimum binpaking size) and that we apparently need to omputethe probability distribution over B. Both these prob-lems are surmountable. In short, we an use an ap-proximation algorithm instead of an exat algorithmto pak the items, inheriting the same approximationbound, and we an use Monte Carlo sampling (repeat-



edly hoose a random set of items and pak them) toget an aurate estimate for Pr[B � k℄ and identify anapproximately optimum value of k to buy in advane.Using Monte Carlo estimation adds another (1+�) fatorto the approximation bound (taking time polynomial in1=�). Details are omitted.Notie that our approah to bin-paking did notmake expliit use of the probability distribution overitems to be paked. It applies to any probabilitydistribution on items and sizes from whih we ansample eÆiently.5 Vertex Cover with preplanning.In the (unweighted) vertex over problem, given anundireted graph, the goal is to �nd a subset of vertiesof minimum ardinality suh that at least one endpointof eah graph edge is in the subset. Now supposethat only a subset of edges needs to be overed, butthat we do not know in advane exatly whih ones.Given a probability distribution on the sets of edgesto be overed, the goal of the preplanning vertex overproblem is to determine an optimum set of vertiesto buy in advane (at ost 1), so as to minimize theexpeted ost of a vertex over for a random subset ofedges, provided that additional verties an be added atost � eah.5.1 Bounded-Support Distributions. In thissetion we show how to obtain a onstant-fator ap-proximation for the ase when the probability distri-bution over problem instanes has bounded support,i.e. the number of possible subsets of edges to be ov-ered is polynomially bounded. As with min-ost ow,we start with the standard stohasti programming ofombining linear programs for individual problem in-stanes. We observe that this tehnique an be extendedto ombinatorial optimization problems that are solvedby rounding frational solutions to linear programmingrelaxations, and apply it to the vertex over problem.Suppose we are given a graph G = (V;E) and aprobability distribution on the polynomial number of\ative" edge sets from F � 2E that might to be overedby the verties. In other words, for eah F 2 F , we haveaess to pF , the probability that we have to onstruta vertex over for exatly the edges in F . For F 62 F ,pF = 0.We an model the preplanning version of the vertexover problem with an integer program. For eah vertexi, let xi = 1 if i is bought in advane, and let yFi = 1if i is added to the vertex over one it is revealed thatF is the set of ative edges that have to be overed.For edge (i; j) 2 F , either i or j has to be in a vertexover for edge set F , i.e. at least one of the variables

xi; xj ; yFi ; yFj has to be 1. Writing this onstraint for alledges in eah of the potential edge sets, we obtain thefollowing integer program:Min Pi2V xi + �Pi2V;F2F pF yFis.t. xi + xj + yFi + yFj � 1 8 (i; j) 2 F 2 Fxi 2 f0; 1g 8 i 2 VyFi 2 f0; 1g 8 F 2 F ; i 2 VSine the number of edge sets F 2 F is polynomial,the orresponding linear programming relaxation anbe solved eÆiently. The value of an optimal solutionto this LP relaxation provides a lower bound on theoptimal integer solution.Next, we onstrut a solution to the vertex overpreplanning problem by rounding an optimal solutionto the LP. Let us buy verties i suh that xi � 1=4, i.e.,we round suh xi to 1. One the set F of edges to beovered is revealed, we purhase the additional vertiesi suh that yFi � 1=4, i.e., we round suh yFi to 1. Letx̂; ŷ be the orresponding integral solution. The analysisgoes exatly as for the standard vertex over problem:at least one of the four variables assoiated with apartiular sampled edge must have value at least 1=4,so the rounded solution is feasible. At the same time,we have multiplied eah frational value by at most 4(from 1/4 to 1) so our solution is a 4-approximation tothe frational solution, and thus to the true optimum.5.2 Independent edge set. In this setion weonsider the version of the problem in whih eah edgeis ative (e.g. has to be overed) independently withprobability p. As before, given a graph G = (V;E),we would like to determine an optimum set of vertiesA � V to buy in advane (at ost 1), so as to minimizethe expeted ost of a vertex over for a random subsetof edges F � E, provided that additional verties anbe added at ost � eah. Note that one verties inthe set A are spei�ed, extending it to a over of theedge set F is equivalent to �nding a vertex over in theV nA-indued subgraph of GF = (V; F ). We assumethat � � �0 where �0 = 3:15. In the event � < �0,we an obtain a trivial 6.3-approximation algorithm bynot purhasing any verties in advane and using a 2-approximation algorithm for vertex over.This problem demonstrates one key idea for taklingstohasti problems: that of onentrating suÆientprobability at one spot to make the Threshold Propertyapply so that we an justify purhasing ertain elementsin advane. In partiular, we fous our attention onertain high-degree verties (in the original graph) andargue that the fat that they are very likely to havean inident edge sampled justi�es purhasing them in



advane. We will use muh the same idea to takleSteiner tree problems in the next setion.Definition 5.1. Given a graph G = (V;E), de�ne ak-mathing to be a subset of edges that indues degreeat most k on every vertex. Call a vertex v 2 V tight ifits degree is exatly k.Our approximation algorithm is as follows. De�nek = log1�p(1 � 1=�), onstrut some maximal k-mathing (greedily), and purhase in advane the setAt of tight verties in the k-mathing.To show that this algorithm yields a onstant-fatorapproximation, we prove two things. First, that thetotal number of verties prepurhased (at ost 1) byour algorithm is proportional to the optimum solution's(expeted) ost (in both stages). Seond, we prove thatin the graph whih remains, it is optimal to prepurhaseno additional verties. Thus, our algorithm's seond-stage purhase ost is optimal and, in partiular, lessthan the both-stages ost of the optimum solution onthe original graph.Lemma 5.1. jAtj � 4:3OPT.Proof. Due to spae limits, we will be sloppy withonstants. In partiular we use the fat that k =�(1=�p), sine 1� � 1�0 .We onsider an instane of the preplanning problemin whih only edges of the hosen k-mathing have tobe overed (e.g. the edge set of the graph from whihsome edges are sampled onsists just of the edges of thek-mathing). Clearly, the ost of an optimal solution tothis instane is no more than OPT.We prove our bound using a surharging sheme.For eah dollar spent by the optimum, our hargingsheme spends at most one additional dollar. At thesame time, it spends 
(1) dollars per tight vertex. Itfollows that the number of tight verties is O(1) timesthe expeted number of dollars spent in our hargingsheme, whih in turn is twie the optimum expetedost.The harging sheme goes as follows. For eahvertex u purhased in advane by OPT, we spend onedollar on u and an extra 1=k = �(�p) dollars on eahneighbor of u. Sine u has degree at most k, this osts atmost one additional dollar. In the seond stage, onsiderthe (random) set of edges atually inluded. If (u; v) isan isolated edge, i.e. there are no other edges inidenton u or v, and neither u nor v has been purhased inadvane, then OPT must spend � dollars purhasing uor v. In this ase, we harge an additional � dollarsto the other endpoint. In this ase as well, we end upspending at most twie what OPT spends.

Now onsider any tight vertex v. If OPT purhasesit in advane we are done as a dollar was spent on it.If not, onsider eah neighbor u of v. If u is purhasedin advane then v reeives 1=k dollars from u. Nowsuppose u is not purhased in advane. Consider theevent Iu that (u; v) is inluded as an isolated edge inthe random problem instane. This event happens when(u; v) is hosen and no other edges inident on u or vare hosen; sine u and v have degree at most k and� > �0, Pr[Iu℄ � p(1� p)2k= p(1� p)�(1=�p)= 
(p):Sine the events Iu are disjoint, and sine v reeives� dollars eah time some event Iu ours, we onludethat vertex v reeives 
(�p) dollars in expetation foreah neighbor u not bought in advane.In summary, we have shown that v reeives 
(�p)dollars from eah neighbor|deterministially whenthat neighbor is bought in advane, in expetation oth-erwise. Sine v is tight, it has k = �(1=�p) neighborsand the lemma follows.Lemma 5.2. Purhasing the tight verties in advane(and deleting their inident edges as overed) leaves agraph in whih it is optimal to prepurhase no verties.Proof. In the original graph, every edge not in the k-mathing must have at least one tight endpoint (other-wise it ould have been added to the k-mathing, on-traditing its maximality), and is therefore overed bythe tight verties. The remaining (k-mathing) edgesindue degree at most k in every vertex. The probabil-ity that any vertex has any inident edge (and is thususeful in the solution) is then less than 1=�. Thus bythe Threshold Property it is optimal to buy no vertiesin advane.Theorem 5.1. Purhasing in advane a set of all tightverties indued by a maximal k-mathing, where k =�log1�p(1� 1� )� yields a solution of ost at most 6:3times the optimum.Proof. The �rst lemma shows that purhasing all thetight verties osts at most 4:3 �OPT. It leaves a graphwhose optimum solution is only heaper, meaning it tooosts at most OPT. And the seond lemma proves thatbuying nothing is an optimal solution. Thus, we spendat most 4:3 �OPT in the �rst stage and at most 2OPT inthe seond stage by using a 2-approximation for vertexover, for a total of 6:3OPT.



6 Steiner Tree PredesignIn the network Steiner tree problem we are given anedge-weighted graph G = (V;E) and a subset of nodesS � V that need to be onneted. The goal is to�nd a minimum ost tree spanning S. We onsiderpreplanning versions of this problem, in whih S is theset of ative lients drawn from some distribution.Formal problem statement. Let G = (V;E)be an undireted edge-weighted graph. Let e � 0denote the ost of an edge e 2 E. We all a subset S ofnodes (lients) ative if all of the nodes in it wish to beonneted. Given a probability distribution over ativesets fSg, the objetive is to minimize the expeted ostof onneting up ative lients. A subset of edges A � Ean be purhased in advane at ost e; additional edgesan be purhased later on at ost �e, where � � 1.One a set S of ative lients is revealed, the heapestway to onnet up all the lients in S is to build amin-ost Steiner tree over the verties of S using theedge ost funtion A, where A(e) = 0 if e 2 A, andA(e) = �e otherwise. Let TST(S) be an optimumSteiner tree over S for the edge ost funtion A. Theobjetive of the network predesign problem is to hooseA to minimize the ost of the solution (A)+A(TST(S))in expetation over S.6.1 Relation to previous problems. A numberof interesting speial ases of this problem are equiv-alent to previously-studied ombinatorial optimizationproblems; we therefore inherit onstant fator approxi-mations from those problems.Cheap path to root. A root is spei�ed in advaneand a single, randomly hosen node wishes to beonneted to that root. This problem is equiva-lent to onneted faility loation, with probability(saled by �) replaing demand, and hene an beapproximated to within a onstant [5, 13℄.Cheap path. A randomly hosen pair of nodes wishesto be onneted. This problem is equivalent to mul-tiommodity rent-or-buy, with probability (saledby �) replaing demand, whih has several onstantfator approximation algorithms [9, 4℄.When nodes beome ative independently, but theexpeted number of ative lients is 1, there is a onstantprobability of having exatly one ative lient. Thisallows a simple redution to the previous problems.Theorem 6.1. If the expeted number of ative lientsis at most 1, an optimal solution for heap path-to-root yields a 2-approximation to the rooted Steiner treepredesign problem.

Sine the heap path-to-root problem an be ap-proximated to within a onstant fator 3:55 [5℄ we geta 7.1-approximation algorithm for our speial ase. Anobvious generalization yields a 7:1k-approximation forthe ase where the expeted number of lients is k > 1.6.2 High probability nodes. We turn to thease of independent lient ativations. In this setionwe show that if all node ativation probabilities arelower-bounded by 1=�, then prepurhasing a minimumspanning of the entire node set is a 2-approximationto the optimum. This result is of limited interest butis an important omponent of our general solution forultrametris in the following setion.We an assume without loss of generality that ourgraph is metri|i.e., that the edge onneting any twoverties is a shortest path|sine adding an edge oflength equal to the shortest path does not hange theoptimum (one an always use the path instead of theimaginary edge). In suh a graph, it is known that theoptimum Steiner tree on any subset of the verties is twoapproximated by the minimum spanning tree (MST) onthe graph indued by those verties.Lemma 6.1. If every vertex in a graph is ative withprobability at least p, then the expeted ost of the MSTon the ative verties is at least p times the ost of theentire MST.Note that this lemma does not distinguish pre- and post-purhase osts.Proof. (Sketh). The basi approah is to analyzePrim's algorithm with deferred deisions to build aminimum spanning tree on the ative nodes. Detailsare similar to the Karger-Klein-Tarjan [7℄ analysis ofminimum spanning tree value using a randomly samplededge subset.Corollary 6.1. If for all lients i, pi � 1f� (wheref � 1), then prepurhasing a minimum spanning treeover all potentially ative lients is a f-approximationto Steiner tree predesign.Proof. Let M be the prepurhase ost of the entireMST. Suppose the optimum buys nothing in advane.Then by the previous lemma, the expeted prepurhaseost of the MST of the ative lients is at least M=f�.Sine the optimum buys late, it would have to multiplythis ost by �, paying M=f|meaning M is an f -approximation to the optimum. The general prooffollows by observing that the spending  in advane anonly redue the ost of the MST by , implying that theoptimum would still expet to pay at least (M � )=fin the seond stage. Thus, the optimum is at least+ (M � )=f �M=f .



6.3 Algorithm for Ultrametri Case. We nowgive a onstant fator approximation algorithm forthe Steiner tree predesign problem for the ase whenthe underlying graph G = (V;E) forms an ultramet-ri | an assignment of edge weights suh that ~uv �max(~uw ; ~wv). This ultrametri property implies thatthe shortest-path distane between any two verties inthe graph is no more than than the weight of the heav-iest edge on a path between them, and is in fat equalto the heaviest edge on the path onneting them in theMST. It is also the ase that in ultrametris, Steinerpoints are never useful in a Steiner tree|i.e., the Steinertree on some nodes is just the MST on those nodes.The basi idea of our algorithm is to luster nodesinto omponents, eah ontaining lients of total prob-ability mass �(1=�). On the one hand, we an think ofeah omponent as a \supernodet" whih, sine it has�(1=�) probability mass, beomes ative with proba-bility �(1=�). Corollary 6.1 lets us onlude that pur-hasing a minimum spanning tree on the supernodes isapproximately optimal. This reates at least one \hub"in eah supernode, onneted to the root. But one hubsare built, sine the probability mass within eah super-lient is not too large, we an show that there is no realbene�t in prepurhasing edges inside any super-lientto onnet verties to hubs.As a �rst step toward demonstrating these ideas,suppose that the MST is a star with the root at theenter, and that eah vertex has ativation probabilityless than 1=�. We prove that purhasing nothing inadvane is approximately optimal.Suppose �rst that the optimum solution purhasessome non-MST edge (u; v) in advane. Verties u and vare onneted to the root by MST edges of ost u andv respetively. Suppose that instead of buying edge(u; v) we buy the two edges onneting u and v to theroot. This an only help our seond stage purhases:u and v are still onneted to eah other, through theroot. From the de�nition of the MST, the weight wof the edge onneting u and v is no less than u orv; thus onneting both diretly to the root osts atmost 2w. We an apply this replaement rule to everyprepurhased non-MST edge. It follows that at osttwie the optimum, we get a prepurhase with the sameseond-stage ost as the optimum, made up entirely ofedges onneted diretly to the root.Given this prepurhase, onsider the seond stage.Again by the MST property, any vertex that beomesative an onnet diretly to the root more heaplythan it an onnet to any other vertex. Thus, in thepostpurhase phase as well, only edges inident to theroot are purhased. Now, however, we an invoke theThreshold Property. Sine only edges inident to the

root are purhased, eah suh edge is only \useful" if itsnon-root endpoint beomes ative. We assumed thateah endpoint ativation probability was less than 1=�.Thus, by the Threshold Property, it makes more sensenot to buy that edge in advane.In order to generalize this argument, we developa lustering algorithm that builds a partiular MSTwith a speial \starlike" struture. This algorithm isvery spei� to ultrametris. Any ultrametri spaehas a bottlenek ut : a partition of the points into twosides suh that the distane between any two pointson opposite sides is the same and is no less than thedistane between any two points on the same side. Themost obvious proof of this fat uses the MST. Considerthe heaviest edge in the MST. Removing it produes thebottlenek ut, as an be seen from the fat that thedistane between two points is equal to the maximum-weight edge on the MST path onneting those points.One an use this bottlenek ut in a reursive MSTalgorithm for ultrametris: �nd the bottlenek ut,reursively �nd MSTs of the two sides, and then onnetthem with an arbitrary edge aross the bottlenek ut(as all have the same length). We will speialize thisgeneri algorithm for our purposes. For the purposes ofthe algorithm, we de�ne the probability mass of a set ofverties to be the probability that some vertex in the setbeomes ative. Our speialization produes a minimumspanning tree in whih some of the verties have beenlabelled \hubs." It has the following properties:1. The hubs form a onneted subgraph of the MST.2. The total probability mass of verties hanging o�eah hub (i.e., whose paths through the MST reahthat hub before any other) is at least 1=�.3. The total probability mass of eah subtree hangingo� a hub is at most 1=�.The type of MST we wish to onstrut is shown inFigure 2.Lemma 6.2. Algorithm Cluster produes an MSTwith the spei�ed properties.Proof. When the algorithm is alled on a graph withprobability mass less than 1=�, it returns an MST withno hubs, vauously ful�lling the properties.If the algorithm is alled on a graph of massexeeding 1=�, it reurses on the two sides of thebottlenek ut. Eah side returns without a hub if andonly if it is small|i.e., has probability mass less than1=�.If both sides are small, we reate one hub at thejoin point of the two sides' MSTs. Sine removing this
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Figure 2: A hub tree. Nodes labelled h are hubs.T = 1=� is the upper bound for individual tree massand lower bound for total mass hanging o� a hub.Cluster(G)Input: ultrametri spae G.if G has probability mass less than 1=� thenreturn an MST of G with no hubselseCompute the bottlenek ut (X;Y ) of GCluster(X)Cluster(Y )if neither X nor Y has a hub thenonnet X and Y with any edge emake one endpoint of e a hubelse Connet X and Y with some edge, using hubsin X and Y as the endpoints if they existFigure 3: Clustering proedure.join point separates the two MSTs (at least|it mayfurther subdivide one side), no \hanging o�" subtreeis too large. However, in total at least 1=� probabilitymass hangs o� the hub (as that is the reason the hubwas reated).If both sides are large, both returned MSTs willhave hubs, so we an onnet a hub on eah side, againful�lling the properties (as this attahment does nothange the set of nodes hanging o� any hub).If one side is large and the other small, then thesmall side gets attahed to (hangs o� of) a hub on thelarge side. But sine the attahed side is small, hangingit o� the hub does not violate the spei�ed properties.Lemma 6.3. The ost of the piee of the MST onnet-ing the hubs is at most OPT.

Proof. Imagine ontrating all verties hanging o� eahhub into their hub reating a \supernode". This is doneby ontratingMST edges, so the MST of the ontratedgraph onsists of the unontrated edges of the originalMST. But these are preisely the MST edges onnetingup the hubs (and the root). In this ontrated graph,the probability that some vertex in a supernode beomesative is (by the de�nition of probability mass) at least1=�. Thus, by Corollary 6.1, purhasing the (remaining)MST edges osts at most OPT. But these are preiselythe edges onneting the hubs to the root.It follows that by paying OPT in advane, we anprepurhase edges that onnet all the representatives(inluding the root). Equivalently, we an ontratall the representatives into the root. Sine what weontrated was a onneted portion of the MST, theMST of the ontrated graph is just the remaining MSTof the original graph. But Property 3 above tells usthe form of this remaining MST: it will onsist of aolletion of subtrees hanging o� the (ontrated) root,eah subtree of size at most 1=�. This is essentially the\starlike" struture we want to redue to.Lemma 6.4. In the starlike ontrated MST just de-sribed, it is within a fator of 2 of optimal to buy noth-ing in advane.Proof. The analysis runs as for the star above: pre- andpost-purhased intra-luster edges an be replaed byedges onneting nodes diretly to the root. One wehave done so, sine eah subtree of the MST has weightless than 1=�, none of the prepurhased edges an beused with probability greater than 1=�, so none is worthbuying in advane.Combining the above arguments, we see that byspending at most OPT, we an redue to a graph inwhih purhasing nothing in advane is within a fatorof 2 of optimum for that graph. Sine that graph'soptimum osts at most OPT, we see that purhasingnothing gives a solution of expeted ost 2 � OPT.Combining, we �nd that our solution has ost at most3 �OPT.6.4 General Metris. Finally, we remark that ifedge osts form a tree metri, we an solve the problemoptimally in polynomial time. In a tree metri minimumost Steiner tree on any subset of nodes is simply aspanning tree on that subset. Thus, for eah edge wean ompute the exat probability of using that edgein the Steiner tree over a random set of ative lients.In partiular for a given edge e, we have Pr[e used℄ =1�Qi2Ue(1� pi), where Ue is the set of lients whose



tree path to the root ontains e. The edge should bepurhased in advane if and only if the probability of itbeing used is at least 1=�.Sine any metri an be embedded into a tree metriwith distanes approximated by a fator of O(logn) inexpetation [2℄, we obtain the following result:Theorem 6.2. There is an O(logn) approximation forthe metri Steiner tree network predesign problem.7 Conlusions and Open ProblemsIn this paper we presented a novel \preplanning" frame-work that allows to study the time-information tradeo�in solving problems with unertainty in the inputs. Wehave examined a number of (generallyNP-hard) ombi-natorial optimization problems in whih it makes to pos-tulate a probability distribution over possible instanesand to speify a portion of the solution in advane, anddeveloped algorithms for omputing approximately op-timal pre- and post-sampling parts of a solution.We leave open a number of questions onerningthe problems we have onsidered. Another interestingopen question is the integrality of the linear programfor the min-ost ow with preplanning. If it ould bein fat shown that there exists an optimal solution thatpre-installs only integral amounts of apaity, then thenext natural question to ask is whether we an solve theproblem using a purely ombinatorial algorithm.We ould also extend our framework to other om-binatorial optimization problems. One natural problemto onsider is faility loation. In the preplanning ver-sion of the problem, given a probability distribution onthe demand of eah lient, we would like to determinewhih failities should be opened in advane, providedthat one an add more failities after the exat demandshave been determined, albeit at a higher prie. The goalis to minimize the overall expeted ost plus the failityopening ost. Reently, it was brought to our attentionthat Gupta et al [6℄ ame up with a onstant fator ap-proximation for the senario based version of this prob-lem in whih the number of possible later senarios ispolynomail. They also designed a onstant fator ap-proximation for the Steiner network predesign problem[6℄. We an also easily formulate a number of stohastisheduling problems in the ontext of our framework.Taking job duration times to be probabilistially dis-tributed, we may ask how many mahines should bereserved in advane in order to omplete all jobs bysome deadline, or how muh proessing time to reservein advane (with an option of extending it later) givena �xed number of mahines.
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