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Abstract

We consider the problem of converting an arbitrary approximation algorithm for a single-
parameter social welfare problem into a computationally efficient incentive compatible mecha-
nism. We ask for reductions that are black-box, meaning that they require only oracle access
to the given algorithm and (in particular) do not require explicit knowledge of the problem
constraints. We demonstrate that, while such transformations are known to exist in Bayesian
settings of partial information, any computationally efficient transformation that guarantees
deterministic ex post incentive compatibility or universal truthfulness must sometimes incur a
polynomially large loss in worst-case performance.

1 Introduction

In problems of social welfare maximization, a central authority wishes to assist a group of individuals
in choosing from among a set of outcomes with the goal of maximizing the total outcome value to
all participants. The classic result of Vickrey, Clarke and Groves demonstrates that for any such
problem, there exists an ex post incentive compatible mechanism that maximizes social welfare.
However, this construction requires that the mechanism optimize social welfare precisely, which
may be computationally infeasible for large, complex problem instances. A primary open problem
in algorithmic mechanism design is to understand the power of computationally efficient incentive
compatible mechanisms to maximize social welfare.

It has recently been established that in Bayesian settings of partial information, there are
general reductions that convert an arbitrary approximation algorithm into an incentive compatible
mechanism with arbitrarily small loss in expected performance [8, 7, 2]. Moreover, such reductions
are black-box, meaning that they require only oracle access to the prior type distributions and
the algorithm, and proceed without knowledge of the feasibility constraints of the problem to be
solved. Thus, in the Bayesian setting, the requirement that an approximation algorithm be incentive
compatible is essentially without loss for a very broad class of social welfare problems.

While Bayesian settings are ubiquitous in the economics literature, much of the existing work
in theoretical computer science is focused on an alternative goal of designing computationally effi-
cient mechanisms that are incentive compatible ex post (i.e. without Bayesian priors) and achieve
good worst-case approximations to the optimal social welfare. In light of the success with which
algorithms can be converted into mechanisms in Bayesian settings, one might ask whether there
exist reductions that transform approximation algorithms into ex post incentive compatible mech-
anisms without loss in worst-case approximation ratio. Note that this strengthens the demands of
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the reduction in two significant ways. First, it requires the stronger solution concept of ex post
incentive compatibility, rather than Bayesian incentive compatibility. Second, it requires that the
approximation factor of the original algorithm be preserved in the worst case over all possible
inputs, rather than in expectation.

It is already known that such reductions are not possible for general multi-parameter social
welfare problems. For some multi-parameter problems, no deterministic ex post incentive compat-
ible mechanism can match the worst-case approximation factors achievable by algorithms without
game-theoretic constraints [10]. Thus, for general social welfare problems, the relaxation from an
ex post, worst-case setting to a Bayesian setting provably improves one’s ability to implement al-
gorithms as mechanisms. However, for the important special case of single-parameter problems, it
is not known whether such a gap exists, and hence whether a Bayesian setting is required in or-
der to convert algorithms to incentive compatible mechanisms without loss. We ask: does lossless
reduction from mechanism design to algorithm design for single-parameter social welfare problems
depend crucially on access to prior distributions?

One way to establish that the Bayesian setting is essential would be to demonstrate the existence
of single-parameter social welfare problems for which there is a gap in the approximating power
of arbitrary algorithms and ex post incentive compatible algorithms. This is an important open
problem which has resisted much effort by the algorithmic mechanism design community, and is
beyond the scope of our work.

Instead, we will focus upon the black-box nature of the reductions possible in the Bayesian
setting. Does there exist a polytime transformation that implements an ex post incentive compat-
ible mechanism, given access to an arbitrary approximation algorithm, without loss in worst-case
approximation?

Results We provide a partial answer to the above question by first focusing on deterministic ex
post incentive compatible mechanisms. For deterministic mechanisms, we answer our question in
the negative by showing that any transformation that guarantees ex post incentive compatibility
must incur a very large loss in worst-case performance for some algorithms and problem instances.
Thus, any method of converting approximation algorithms into deterministic mechanisms that are
ex post truthful must rely upon some extrinsically guaranteed property of the given algorithm or
the problem to be solved.

We can extend our lower bound to randomized mechanisms that are universally truthful, mean-
ing that each deterministic algorithm in the support of the transformed algorithm is itself ex post
incentive compatible. We leave open the question of whether there exists a randomized transfor-
mation that guarantees truthfulness in expectation, which is a standard notion of ex post incentive
compatibility for randomized mechanisms.

The main idea behind our impossibility result is to design a problem instance such that we
can “hide” a non-monotonicity in an approximation algorithm. Roughly speaking, we consider a
feasibility condition in which there are two different large allocations that can be made to certain
sets of agents. When both allocations would result in high social welfare, our algorithm will choose
between them in a non-incentive compatible way. In order for a transformation to fix these non-
monotonicities without impacting the performance of the algorithm, it must switch the outcome
from one to the other on some inputs; but to do so it must first determine what these allocations
are, and hence find them by querying the original algorithm. However, our algorithm will have
the property that, for many inputs, it is exponentially unlikely that the transformation would find
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both of the large allocations after polynomially many queries.
An implication for Bayesian mechanism design is that the reductions of [8, 7, 2] cannot be made

into deterministic, prior-free reductions to Bayesian incentive compatible mechanims. In other
words, it is crucial that the transformation be able to sample randomly from the distributions over
agent types. It is therefore not only the relaxation of solution concept, but also the extra power of
being able to sample typical inputs that makes such black-box reductions possible.

1.1 Related Work

Reductions from mechanism design to algorithm design in the Bayesian setting were first studied by
Hartline and Lucier [8], who showed that any approximation algorithm for a single-parameter social
welfare problem can be converted into a Bayesian incentive compatible mechanism with arbitrarily
small loss in expected performance. This was extended to multi-parameter settings by Hartline,
Kleinberg and Malekian [7] and Bei and Huang [2].

Some reductions from mechanism design to algorithm design are known for prior-free settings,
for certain restricted classes of algorithms. Lavi and Swamy [9] consider mechanisms for multi-
parameter packing problems and show how to construct a (randomized) β-approximation mech-
anism that is truthful in expectation, from any β-approximation that verifies an integrality gap.
Dughmi, Roughgarden and Yan [6] extend the notion of designing mechanisms based upon ran-
domized rounding algorithms, and obtain truthful in expectation mechanisms for a broad class of
submodular combinatorial auctions. Dughmi and Roughgarden [5] give a construction that converts
any FPTAS algorithm for a social welfare problem into a mechanism that is truthful in expectation,
by way of a variation on smoothed analysis. Babaioff et al. [1] consider the equilibrium notion of al-
gorithmic implementation in undominated strategies and give a technique for turning a β-algorithm
into a β(log vmax)-approximation mechanism.

Many recent papers have explored limitations on the power of deterministic ex post incentive
compatible mechanisms to approximate social welfare. Papadimitriou, Schapira and Singer [10] gave
an example of a social welfare problem for which constant-factor approximation algorithms exist,
but any polytime ex post incentive compatible mechanism attains at best a polynomial approxi-
mation factor. A similar gap for the submodular combinatorial auction problem was established
by Dobzinski [4]. For the general combinatorial auction problem, such gaps have been established
for the restricted class of max-in-range mechanisms by Buchfuhrer et al. [3].

2 Definitions

In a single-parameter, real-valued social welfare maximization problem, we are given an input
vector v = (v1, v2, . . . , vn), where each vi is assumed to be drawn from a known set Vi ⊆ R. The
goal is to choose some x ∈ Γ ⊆ Rn such that v · x is maximized, where Γ ⊆ Rn is a space of
allowable outcomes. We think of the feasibility set Γ as defining an instance of the social welfare
maximization problem. We will write x = (x1, x2, . . . , xn), where each xi ∈ R.

Given an instance Γ of the social welfare problem, we will write OPTΓ(v) for the allocation in
Γ that maximizes v ·x. We will take the convention that the social welfare for an allocation outside
Γ is −∞.

An algorithm A defines a mapping from input vectors v to outcomes x. In general an algorithm
can be randomized, though in our construction we will use only deterministic algorithms. Given
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algorithm A, we will write approxΓ(A) for the worst-case approximation ratio of A for problem Γ.

That is, approxΓ(A) = minv∈V
A(v)

OPTΓ(v) . Note that approxΓ(A) ≤ 1 for all Γ and A.
We will consider such a social welfare optimization problem in a mechanism design setting with

n rational agents, where each agent possesses one value from the input vector as private information.
We think of an outcome x as representing an allocation to the agents, where xi is the allocation to
agent i. A (direct-revelation) mechanism for our optimization problem then proceeds by eliciting
declared values b ∈ Rn from the agents, then applying an allocation rule A : Rn → Γ that maps
b to an allocation x, and a payment rule that maps b to a payment vector p. We will write x(b)
and p(b) for the allocations and payments that result on input b. The utility of agent i, given that
the agents declare b and his true private value is vi, is taken to be vixi(b)− pi(b).

A deterministic mechanism is ex post incentive compatible (EPIC) if each agent maximizes
its utility by reporting its value truthfully, regardless of the reports of the other agents. That is,
vixi(vi,b−i)− pi(vi,b−i) ≥ vixi(bi,b−i)− pi(bi,b−i) for all i, all vi, bi ∈ Vi, and all b−i ∈ V−i. We
say that an algorithm is EPIC if there exists a payment rule such that the resulting mechanism
is EPIC. It is known that an algorithm is EPIC if and only if, for all i and all v−i, xi(vi,v−i) is
monotone non-decreasing as a function of vi.

We say that a randomized mechanism is universally truthful if every deterministic mechanism
in its support is EPIC. Likewise, a randomized algorithm is universally truthful if its support is
composed entirely of EPIC algorithms.

In a Bayesian setting, the true values of the agents are drawn independently from publicly
known distributions: vi ∼ Fi for each i. Write xi(vi) = Ev−i∼F−i [xi(vi,v−i)] and pi(vi) =
Ev−i∼F−i [pi(vi,v−i)] to be the expected allocation and payment to agent i if he declares vi,
given that other agents report their values truthfully. We say that a mechanism is Bayesian
incentive compatible (BIC) if reporting values truthfully is a Bayes-Nash equilibrium; that is,
vixi(vi) − pi(vi) ≥ vixi(vi

′) − pi(vi′) for all vi, vi
′. We say allocation rule A is BIC if there ex-

ists a payment rule such that the resulting mechanism is BIC. It is known (Myerson, 81) that an
allocation rule A is BIC if and only if the function xi(vi) is monotone non-decreasing for each i.

A polytime transformation T is a social welfare algorithm that is given black-box access to an
algorithm A. We will write T (A,v) for the allocation returned by T on input v, given that its
black-box access is to algorithm A. Then, for any A, we can think of T (A, ·) as an algorithm for
social welfare maximization; we think of this as the algorithm A transformed by T . We write T (A)
for the allocation rule that results when A is transformed by T . Note that T is not parameterized
by Γ; informally speaking, T has no knowledge of the feasibility constraint Γ being optimized by a
given algorithm A.

We say that transformation T is ex post incentive compatible if, for all A, T (A) is an EPIC
allocation rule. Similarly, we say T is universally truthful if T (A) is universally truthful for all A.
Note that this incentive compatibility is independent of the problem instance Γ.

3 A Lower Bound for Ex Post IC Transformations

In this section we show that, for any ex post IC transformation T , there is some allocation problem
Γ and algorithm A for Γ such that T degrades the worst-case performance of A by a polynomially
large factor.

Theorem 3.1. There is a constant c > 0 such that, for any polytime universally truthful transfor-
mation T , there is an algorithm A and problem instance Γ such that approxΓ(A)

approxΓ(T (A)) ≥ n
c.
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The high-level idea behind our proof of Theorem 3.1 is as follows. We will construct an algorithm
A and input vectors v and v′ such that, for each agent i in some large subset of the players, vi

′ > vi
but Ai(v′) < Ai(v). This does not immediately imply that A is non-truthful, but we will show
that it does imply non-truthfulness under a certain feasibility condition Γ. Thus, any ex post IC
transformation T must alter the allocation of A either on input v or on input v′. However, we will
craft our algorithm in such a way that, on input v, the only allocations that the transformation will
observe given polynomially many queries of A will be A(v), plus allocations that have significantly
worse social welfare than A(v), with high probability. Similarly, on input v′, with high probability
the transformation will only observe allocation A(v′) plus allocations that have significantly worse
social welfare than A(v′). Thus, in order to guarantee that it generates an ex post IC allocation
rule, the transformation will be forced to choose an outcome with poor social welfare for either
input v or v′, reducing the worst-case performance of the algorithm A.

We now turn to a formal proof of Theorem 3.1 by first describing a family of feasibility con-
straints and algorithms, then showing that for each T there is a feasibility constraint and algo-
rithm from this family that satisfies the requirements of the theorem. This proof will be limited
to deterministic transformations; at the end of the section we discuss extensions to randomized
transformations that generate universally truthful mechanisms.

3.1 Construction

In the problems we consider, each private value vi is chosen from {0, 1}. That is, we will set
Vi = {0, 1} for all i ∈ [n]. We can therefore interpret an input vector as a subset y ⊆ [n],
corresponding to those agents with value 1. We can therefore define A(y), OPTΓ(y), etc., for a
given subset y ⊆ [n]. Also, for a ≥ 0 and y ⊆ [n], we will write xay for the allocation in which each
agent i ∈ y is allocated a, and each agent i 6∈ y is allocated 0.

Feasible Allocations We will first define a family of feasibility constraints. Roughly speaking,
we will choose some α ∈ (0, 1) and sets S, T ⊆ [n] of agents. The feasible allocations will then be
xα

2

[n], x
1
S , xαT , and xαW for all sufficiently small sets W . That is, we can allocate α2 to every agent,

1 to all agents in S, α to all agents in T , or α to each of any small number of agents. We will also
require that S and T satisfy certain properties, which essentially state that S and T are sufficiently
large and have a sufficiently large intersection.

More formally, define parameters α ∈ (0, 1), r ≥ 1, and t ≥ 1 (which we will fix later), such
that r5t ≤ n and r ≥ max{2α−1, 6α−2/3}. We think of t as a bound on the size of “small” sets, and
we think of r as a ratio between the sizes of “small” and “large” sets. Write Ψ = {xαW | |W | ≤ t}
to be all subsets of agents of size at most t.

Suppose that V , S, and T are subsets of [n]. We say that the triple V , S, T is admissible if the
following conditions hold:

1. V ⊂ S ∩ T ,

2. |V | = rt,

3. |S ∩ T | = r2t, and

4. |S| = |T | = r3t.
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Figure 1: (a) Visualization of typical admissible sets of bidders V , S, and T , given size parameters r and t,
and (b) the corresponding allocations of algorithm A = AV,S,T .

In general, for a given admissible V , S, and T , we will tend to write U = S ∩ T for notational
convenience. See Figure 1(a) for an illustration of the relationship between the sets in an admissible
triple. For each admissible tuple V , S, T , we define a corresponding feasibility constraint

ΓV,S,T = {x1
S , x

α
T , x

α2

[n]} ∪Ψ.

Note that ΓV,S,T does not depend on V ; we include set V purely for notational convenience.

The Algorithm We now define the algorithmAV,S,T corresponding to an admissible tuple V, S, T .
We think of AV,S,T as an approximation algorithm for the social welfare problem ΓV,S,T and later
show that there is no EPIC transformation of AV,S,T without a significant loss in worst-case ap-
proximation. Given y ⊂ [n], let W (y) denote the first (up to) t agents in set y, in order of agent
index. The algorithm AV,S,T is then described as Algorithm 1.

Algorithm 1: Allocation Algorithm AV,S,T
Input: Subset y ∈ [n] of agents with value 1
Output: An allocation x ∈ ΓV,S,T

1 if |y| < α−1/3t then
2 return xαW (y)

3 else if |y ∩ V | > α|y| then
4 return x1

S

5 else if |y ∩ T | > α2/3|y| then
6 return xαT
7 else if |y ∩ S| > α1/3|y| then
8 return x1

S

9 else

10 return xα
2

[n]

11 end
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Note that AV,S,T always returns an outcome from ΓV,S,T . For example, if we let U = S ∩ T ,
we have that A(S) = x1

S , A(T ) = xαT , A(U) = xαT , and A(V ) = x1
S . See Figure 1(b) for an

illustration of the relationship between these sets. The idea underlying the algorithm is that AV,S,T
returns x1

S if y is an approximate subset of S, and returns xαT if y is an approximate subset of T .
Otherwise, AV,S,T allocates α2 to all players. However, this allocation rule is ambiguous whenever
y is approximately a subset of both S and T ; in this case, the algorithm will “break the tie” by
returning xαT , except when y is an approximate subset of V , in which case the algorithm returns
x1
S . Finally, in the special case that y is very small, AV,S,T will return an allocation from Ψ.

3.2 Analysis

For the remainder of this section we will write β = α1/3 for notational convenience. We begin by
bounding the approximation ratio of AV,S,T for problem ΓV,S,T , for any admissible tuple V, S, T .

Lemma 3.2. approxΓV,S,T
(AV,S,T ) ≥ α5/3.

Proof. Choose any admissible tuple V, S, T and fix some y ⊆ [n]. We will show
AV,S,T (y)

OPTΓV,S,T
(y) ≥ α

5/3

by considering various cases for y.

Case 1: |y| < β−1t. Then A obtains social welfare αmin{|y|, t} ≥ αβ|y|, whereas OPT (y) ≤ |y|,
so A(y)

OPT (y) ≥ αβ > α5/3.

Case 2: |y∩V | ≥ β3|y|. Then A gets social welfare |y∩S| ≥ |y∩V | ≥ β3|y|, whereas OPT (y) ≤ |y|,
so A(y)

OPT (y) ≥ β
3 > α5/3.

Case 3: |y∩T | ≥ β2|y|, but |y∩V | < β3|y|. Then A gets social welfare α|y∩T | ≥ αβ2|y|, whereas

OPT (y) ≤ |y|, so A(y)
OPT (y) ≥ αβ

2 = α5/3.

Case 4: |y ∩ S| ≥ β|y|. Then A gets social welfare |y ∩ S| ≥ β|y|, whereas OPT (y) ≤ |y|, so
A(y)

OPT (y) ≥ β > α5/3.

Case 5: |y ∩ S| < β|y|, |y ∩ T | < β2|y|, and |y| ≥ β−1t. Then A gets social welfare α2|y|.
The alternative x1

S receives welfare at most |y ∩ S| < β|y| and the alternative xαT receives welfare
at most α|y ∩ T | < αβ2|y| < β|y|. Any alternative xαW for |W | ≤ t receives welfare at most

αt ≤ αβ|y| < β|y|. We conclude OPT (y) < β|y|, so A(y)
OPT (y) ≥ α

2/β = α5/3.

Suppose now that A′ is any algorithm for problem ΓV,S,T , and suppose that A′ has approxi-
mation ratio better than α2. We will show that A′ is then very restricted in the allocations it can
return on input y = V . We also show that if A′ is EPIC, then the allocations on inputs y = V
and y = U are restricted further still. As any EPIC transformation of A is itself an algorithm for
problem ΓV,S,T , these claims will later play a key role in our impossibility result.

Claim 3.3. If algorithm A′ is such that approxΓV,S,T
(A′) > α2, then A′(V ) ∈ {x1

S ,x
α
T }.

Proof. For y = V , the best possible allocation is x1
S , for a social welfare of |y|. Allocation xα

2

[n] is off

by a factor of α2. Also, for any W with |W | ≤ t, we have |W | ≤ |V |/r ≤ |y|/r, so allocation xαW
receives social welfare at most α|y|/r ≤ α2|y| by our choice of r which is also off by a factor of α2.
So the required two allocations are the only ones the lead to an approximation factor better than
α2.
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Claim 3.4. Suppose A′ is an algorithm for problem ΓV,S,T . If A′(V ) = x1
S and A′(U) 6= x1

S then
A′ is not ex post IC.

Proof. Take any set W with V ⊆ W ⊆ U , |W | = |V | + 1. Then, on input W , A′ must return
allocation x1

S by monotonicity: from input V to input W a single agent’s declaration increased,
and that agent received an allocation of 1, so since his allocation cannot decrease it must remain
1, and the only allocation in which any agent receives 1 is x1

S . By the same argument, A′ returns
allocation x1

S for all W such that V ⊆ W ⊆ U , and in particular for W = U . This contradicts the
fact that A′ does not return x1

S on input U .

In light of these claims, our strategy for proving Theorem 3.1 will be to show that a polytime
transformation T is unlikely to encounter the allocation xαT during its sampling when the input
is V , given that the sets V , S, and T are chosen uniformly at random over all admissible tuples.
Similarly, a transformation is unlikely to encounter the allocation x1

S during its sampling on input
U . Since T is EPIC, Claim 3.4 will imply that T (A) returns an allocation outside {x1

S ,x
α
T } on

input V . Claim 3.3 then implies that T (A) has approximation ratio less than α2.
The following technical lemmas bound the likelihood that a polytime transformation will en-

counter the relevant allocations during its sampling, given a uniformly random choice of admissible
tuples V, S, T .

Lemma 3.5. Fix V and S satsifying the requirements of admissibility, and choose any y such that

|y| > β−1t and |y ∩ V | < β3|y|. Then PrT [|y ∩ T | > β2|y|] ≤ e−
1

r+1
(1−β3)β−1t, with probability taken

over all choices of T that are admissible given V and S.

Proof. Since |y ∩ V | < β3|y|, at least (1 − β3)|y| elements of y lie outside V . For the event
|y ∩ T | > β2|y| to occur, it must be that at least (β2 − β3)|y| of these elements lie in T . Thus, of

the elements of y chosen outside V , the fraction that fall in T must be β2−β3

1−β3 = β2

1+β+β2 >
β2

3 .

Any element chosen from S−V has probability |U |−|V ||S|−|V | = 1
r+1 of being in T . Any element chosen

from [n]−S has probability |T |−|U |[n]−|S| ≤
|U |(r−1)
|S|(r2−1)

< 1
r+1 of being in T (recalling that n ≥ r2|S|). Thus,

each element of y outside V has chance at most 1
r+1 of being in T .

Thus, if we think of the elements of y lying outside V as (1 − β3)|y| independent events, each
with success (i.e. lying in T ) at most 1

r+1 , and we write X for the random variable denoting the
number of such events that are successful, Chernoff bounds imply

Pr

[
X >

β2

3
|y|(1− β3)

]
≤ Pr

[
X > 2

1

r + 1
|y|(1− β3)

]
< e−

1
r+1
|y|(1−β3) < e−

1
r+1

(1−β3)β−1t.

Note that the first inequality holds because of our assumption that r > 6α−2/3 = 6β−2. Since the

event that X > β2

3 |y|(1−β
3) dominates the event |y ∩T | > β2|y|, we obtain the desired result.

Lemma 3.6. Fix T and U satisfying the requirements of admissibility (i.e. so that there are ad-
missible tuples such that U = S ∩ T ), and choose any y such that |y| > β−1t and |y ∩ T | < β2|y|.
Then PrS [|y ∩ S| > β|y|] ≤ e−

1
r+1

(1−β2)β−1t, with probability taken over all choices of S consistent
with U and T .
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Proof. Since |y∩T | < β2|y|, at least (1−β2)|y| elements of y lie outside T . For the event |y∩S| > β|y|
to occur, it must be that at least (β − β2)|y| of these elements lie in S. Thus, of the elements of y

chosen outside T , the fraction that fall in S must be at least β−β2

1−β2 >
β
2 .

Any element chosen from [n]−T has probability |S|−|U |[n]−|T | ≤
|U |(r−1)
|T |(r2−1)

< 1
r+1 of being in S (recalling

that n ≥ r2|T |). Thus, each element of y outside T has chance at most 1
r+1 of being in S.

Thus, if we think of the elements of y lying outside T as (1−β2)|y| independent events, each of
which occurs with probability at most 1

r+1 , and we write X for the random variable denoting the
number of such events that are successful, Chernoff bounds imply

Pr

[
X >

β

2
|y|(1− β2)

]
≤ Pr

[
X > 2

1

r + 1
|y|(1− β2)

]
< e−

1
r+1
|y|(1−β2) < e−

1
r+1

(1−β2)β−1t.

Note that the first inequality holds because of the assumption that r ≥ 6β−2 ≥ 4β−1. Since event

X > β2

3 |y|(1−β
2) is only more likely than the event |y∩S| > β|y|, we obtain the desired result.

Lemma 3.7. Fix T and U satisfying the requirements of admissibility, and choose any y such that
|y| > β−1t. Then PrV [|y ∩ V | > β3|y|] ≤ e−

1
r
β−1t.

Proof. For the event |y ∩ V | > β3|y| to occur, it must be that β3|y| of the elements in y lie in V .
Thus, the fraction of elements of y that fall in V must be at least β3. Any element chosen from U
has probability 1

r of being in V , and any element chosen from outside U has probability 0 of lying
in V . Thus, each element of y has chance at most 1

r of being in V .
Thus, if we think of the elements of y as |y| independent events, each with success (i.e. lying

in S) at most 1
r , and we write X for the random variable denoting the number of such events that

are successful, Chernoff bounds imply

Pr
[
X > β3|y|

]
≤ Pr

[
X > 2

1

r
|y|

]
< e−

1
r
|y| < e−

1
r
β−1t.

Note that the first inequality holds because of the assumption that r ≥ 2α−1 = 2β−3. Since event
X > β3|y| is only more likely than the event |y ∩ V | > β3|y|, we obtain the desired result.

3.3 Proof of Main Theorem

We can now set our parameters t, r, and α. We will choose t = n1/5, r = 2n3/20, and α = n−3/20.
Note that β = n−1/20. We then note that, for sufficiently large n,

• r5t ≤ n,

• r ≥ max{2α−1, 6α−2/3}, and

• e−
1

r+1
β−1(1−β2)t < e−

1
r
β−1t < e−n

1/20
.

All of the restrictions we required of our parameters are therefore satisfied, and the probabilities
from Lemmas 3.5, 3.6 and 3.7 are exponentially small.

Proof of Theorem 3.1 : For each admissible V, S, T , write A′V,S,T for T (AV,S,T ). Suppose for

contradiction that, for every V, S, T , A′V,S,T has approximation ratio better than α2. By Claim 3.3,

A′V,S,T (V ) ∈ {xαT ,x1
S}.
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For any given V, S, T , consider the sequence of queries of algorithm A performed by T on input
y1 = V . Suppose z ⊆ [n] is one such query. Then if |z| < β−1t, the transformation will observe
an allocation in ψ. If |z ∩ V | ≥ β3|z|, the transformation will observe allocation x1

S . For any other
query, Lemma 3.5 implies that if T has no knowledge of T , then it is exponentially unlikely (over
all choices of T ) that T will observe an allocation other than xα

2

[n]. Thus, by the union bound, it is
exponentially unlikely that any of a polynomial number of queries reveals any information about
the set T , and in particular it is exponentially unlikely that T will observe allocation xαT after
polynomially many queries.

Next consider the sequence of queries of algorithm A performed by T on input y2 = U . Again,
if z ⊆ [n] is one such query, then if |z| < β−1t the transformation will observe an allocation in ψ.
If |z ∩ U | ≥ β2|z|, Lemma 3.7 implies that if T has no knowledge of V , then it is exponentially
unlikely (over all choices of V ) that T will observe an allocation other than xαT . Likewise, if
|z∩U | < β2|z|, Lemma 3.6 implies that it is exponentially unlikely that T will observe an allocation
other than xα

2

[n], over all choices of S. It is therefore exponentially unlikely that any query reveals
any information about the set V or S beyond the identity of set U , and therefore by the union bound
it is exponentially unlikely that T will observe allocation x1

S after polynomially many queries.
We conclude that, by the union bound and the probabilistic method, there is some choice of

V, S, T such that T (AV,S,T ) does not encounter allocation x1
S on input U and does not encounter

allocation xαT on input V . Therefore A′V,S,T (U) = xαT and A′V,S,T (V ) = x1
S . However, Claim 3.4

then implies that A′V,S,T is not ex post IC, contradicting the fact that T is an EPIC transformation.
We therefore conclude that, for any EPIC transformation T , there is some admissible V, S, T

such that approxΓV,S,T
(A′V,S,T ) ≤ α2. Since approxΓV,S,T

(AV,S,T ) = α5/3 for all admissible V, S, T ,

we have that
approxΓV,S,T

(AV,S,T )

approxΓV,S,T
(T (AV,S,T )) ≥ α

−1/3 = n1/20.

3.4 Discussion

We now make note of a few simple extensions of Theorem 3.1. First, while we proved Theorem 3.1
for deterministic transformations, the result extends to randomized transformations that generate
universally truthful allocation rules. Indeed, suppose that transformation T is such that A′V,S,T =

T (AV,S,T ) is a universally truthful algorithm with E[A′V,S,T (V )] > α2. Then there is a deterministic

ex post IC algorithm A′′ in the support of A′V,S,T such that A′′V,S,T (V ) > α2. This then leads to
a contradiction in precisely the same manner as the proof of Theorem 3.1. We must therefore
conclude that any such transformation satisfies E[A′V,S,T (V )] ≤ α2, and hence degrades the worst-
case approximation factor of the algorithm AV,S,T by a polynomially large factor.

Second, a corollary of Theorem 3.1 is that any deterministic transformation that converts ap-
proximation algorithms into BIC mechanisms without access to the prior distribution must degrade
the expected performance of the approximation algorithm by a polynomially large factor for some
distributions. This follows from two observations: first, if a transformation is Bayesian IC for every
distribution F then it must be ex post IC; and second, if a transformation degrades the expected
social welfare of an algorithm by a factor of at most c for every distribution of inputs then it must
degrade the worst-case approximation ratio by a factor of at most c.

It is therefore the case that no deterministic prior-free reduction can convert algorithms to BIC
mechanisms without loss. The restriction to deterministic transformations is admittedly strong,
though we note that existing black-box reductions for Bayesian mechanisms use randomization only
to sample from the distributions of agent values, and are otherwise deterministic [8, 7].
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4 Conclusions and Future Directions

We have demonstrated that any prior-free polytime method for converting approximation algo-
rithms into universally truthful mechanisms must incur a large loss in social welfare for some al-
gorithms. We conclude that a relaxation of the solution concept of dominant strategy truthfulness
(e.g. to Bayesian incentive compatibility) is a crucial requirement for general black-box reductions.

Our impossibility result applies to randomized mechanisms that are universally truthful, but
not to transformations that guarantee only truthfulness in expectation. We leave open the question
of whether there exist lossless black-box transformations from algorithms to mechanisms that are
truthful in expectation.

While we have shown that general reductions are not possible when one’s goals are ex post
incentive compatibility and worst-case approximation, there are numerous relaxations of these
requirements that may allow black-box transformations to exist. For example, one might have access
to a prior distribution on agent types, and wish to generate a mechanism that is ex post incentive
compatible but only preserves expected performance over the type distribution. Alternatively, one
may wish to generate a mechanism that is Bayesian incentive compatible, but preserves worst-case
approximation.

Our construction required that we allow for very general feasibility constraints. It may be pos-
sible to obtain transformations for natural classes of social welfare problems, such as the important
subclass of downard-closed feasibility constraints.
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