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Abstract

We consider the problem of designing auctions in social networks fodgytieat exhibit
single-parameter submodular network externalitiesvhich a bidder’s value for an outcome
is a fixed private type times a known submodular function of the allocation offilisds.
Externalities pose many issues that are hard to address with traditionaligesinour work
shows how to resolve these issues in a specific setting of particular intévestperate in a
Bayesian environment and so assume private values are drawn agctardinown distribu-
tions. We prove that the optimal auction is NP-hard to approximate pointwideARKX-hard
on average. Thus we instead design auctions whose revenue appesxihra of the optimal
auction. Our main result considesgep-function externalities which a bidder’s value for
an outcome is either zero, or equal to his private type if at least one fniasdhe good. For
these settings, we provide_&;-approximation. We also give @25-approximation auction
for general single-parameter submodular network externalities, anasdisptimizing over a
class of simple pricing strategies.

1 Introduction

Many goods have higher value when used in conjunction witlerst A classic example of this
phenomenon is the telephone, which clearly has positiveeMar a consumer only if he or she has
people to call. Telephones, and other goods with similaiegpare callechetworked goodand
said to exhibihetwork effectsr network externalitiesModern technology has given birth to a new
generation of networked goods. Internet services like enmatant messaging, and online social
networks are used primarily to connect with friends andpuas shave strong network externalities.
But even more significantly, these services, particularlynersocial networks, provide platforms
upon which developers can generate new applications —capipins with very strong networking
components. It is now possible to read articles recommebgedrioussocial readersor play
games such aBarmVille with friends online social networks like Facebook. Suchli@pfions
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are more useful or fun when used with friends, and many sughcagions even explicitly reward
players with many friends. The unique feature of such modetworked goods is that the under-
lying social network isexplicit This enables application distributors to use the netwtitictures
to market and sell these goods.

In this paper, we leverage explicit network structure toigiesnechanisms for selling net-
worked goods. We primarily focus on goods that are availablenlimited supply or, more pre-
cisely, can be produced at zero marginal cost. The netwdesrdities of the good are implied
by the private valuations of the social network users. Imtlost general case, users have a private
value for each possible allocation of the good to a subses@fsu This allows for arbitrary exter-
nalities, enabling say John Doe to value the good only if Kiardashian owns it despite having
no direct relationship to her. While this makes sense for sgowels, like fashion, many network
goods like telephones or social network applications hakeevto a user only if users in his or her
immediate neighborhood also own the good. The main focuseopaper is on a special case of
this sort of direct externality, which we caltep function externalitieghat is, we suppose a user’s
value for the good is zero unless at least one of his or hehbeig or friends in the social network
is also allocated the good.

We studyauction mechanism®r mechanisms that solicit bids from agents indicatingrthe
private value for various allocations, and then determimeléocation and prices in a way that
maximizes expected revenue. As is common in economics, wie wa Bayesian setting where,
while the realization of the private value is known only te thgent, it is drawn according to a
commonly known distribution. Most literature on mechanidesign assumes that agents value
allocations solely based on the bundle of goods they recediethey are indifferent about the al-
locations of the other players. This is clearly violatedettings with externalities. Unfortunately,
externalities significantly complicate mechanism desartlie following reasons:

1. The efficient representation of values is no longer aaritask, since in the most general
case each bidder might need to report a value for each suts&icated bidders.

2. More dimensions make satisfying incentive constraiatsiér (multi-parameter mechanism
design is not well understood).

3. The space of feasible allocations might be more compléiciwcan make finding the opti-
mal allocation a computationally hard problem.

4. Furthermore, the complexity of the feasible allocatipace can easily cause the setting
to violate downward-closurgi.e., not every subset of a feasible allocation is necégsar
feasible. Thus the few known results for multi-parameteca@ism design can not be
adopted generically.

We circumvent the first two issues by assuming a special tstieion the players’ values,
namely that valuations satisfy step function externaias defined above. Thus our problem is
a single-parameter one, and so the representation andireceonstraints are straight-forward.
Revenue maximization is also well understood for singlexpeater settings. The seminal paper
by Myerson [29] fully characterizes mechanisms that maz@nwevenue in expectation over the
value distributions. By this characterization, the expgctyenue of any mechanism is equal to
the expectedirtual value of the allocated agents, where the virtual value of an ageatfunc-
tion of the valuation and its distribution and may be negatin our setting, this characteriza-
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tion converts the optimal allocation problem to a combinat@mptimization problem, which is to
maximize the sum of the virtual values over fdhsiblesubsets. For step-function externalities,
the feasibility constraint requires that all allocatedratigehave a neighbor who is also allocated.
Graph-theoretically, this equates to finding, in a verteighited graph with possibly negative
vertex weights, a maximum-weight subset of vertices whodeded subgraph has no singleton
components.

Although the optimal mechanism is easy to define, the thidifanrth issues of mechanism
design with externalities remain in our setting. We obsefigereduction to set-buying that ap-
proximating the optimization problem within even a lineactbr oneverysampling of the values
is NP-hard. On the other hand, we only need to find algorithmas perform weliin expectation
rather than in worst case: the Myerson mechanism we wishpgoapmate anyway provides an
optimal average-case guarantee, and there is no mechatiiisrigh revenue for every instantia-
tion of values. Even on average, we prove that our problenamesyAPX-hard. However, we are
able to design constant approximations for several vessibthe problem.

We first note that there’s a simpl&/2)-approximation for our problem. The algorithm divides
the graph into two subsets of vertices, such that each verteach set has a neighbor in the
other. This can be done, for example, by constructing a spgrtree of the graph and then taking
a bipartite partitioning of it. The allocation strategy esthen pick the set with better expected
revenue, extract revenue from that set, and allocate t urseéhe other set in order to maintain
feasibility. This very simple algorithm does not use thedture of the social network in any deep
way, and is therefore unable to give better approximationsvien very simple social networks
consisting of a single edge. In order to leverage knowleddgkeonetwork structure, we consider
a greedy algorithm that iteratively allocates to influentiertices and their neighbors. Our main
result shows that this can be used to obtain-gn~ 0.73-approximation to the optimal revenue
for any distribution of values.

We additionally formulate our problem as a linear prograrm)(lvhose variables represent the
allocation and whose constraints use the network stru¢tuoharacterize feasibility. We show
how to round this LP to give & -approximation, thereby matching the performance of ounma
greedy algorithm. The LP has several advantages howevst, iFis hypothetically easy to incor-
porate additional feasibility constraints by simply indilng additional inequalities in the polytope
and so might be of use in specific externality settings. Seécthe LP exhibits some interesting
mathematical properties. Namely, the gap of this LP is linedahe number of agents for a par-
ticular instantiation of values, and nonetheless we matageove a constant approximation on
average. We do this through a novel average-case analyie obunding technique which may
be useful in other applications. We also show that the expdategrality gap of our LP i8.828,
and thereby bound the approximation ratio of any LP-basezhar@sm.

We extend our setting to the more geneiagle-parameter submodular externalitiesvhich
a bidder’s value for an outcome is his private value times@wnfunction of the set of players
who receive the good. For such settings we study a class dianeans calledhfluence and ex-
ploit in which some bidders (thimfluencer$ are given the good for free and the remainder (the
exploited are offered an optimal price conditioned on the set of imftggs. We show that the
revenue is a submodular function of the set of influencersheemde we can use recent submod-



ular function maximization results [10, 13] to design anuefice-and-exploit mechanism whose
revenue is within &.41-factor of the optimal influence and exploit mechanism. Vé® show that

a randomization over influence and exploit mechanisms gie&s-approximation to the optimal
expected revenue of any mechanism by further submodukgiyments.

Related Work. Various settings with positive, negative, or mixed extéties have been stud-
ied in economics as well as computer science literature.fRf{80] discusses positive externalities
in the telephone industry in which a person’s value for aptietene increases as more friends use
it. A well-studied scenario with negative externalitieshie allocation of ad slots in which a com-
pany’s valuation for being listed as one of #§@nsored searatesults decreases if their competitor
is also listed [1, 5, 14, 16, 20, 25]. Finally, the valuatioight have mixed externalities, as in the
sale of nuclear weapons [19], in which countries preferthkies rather than their foes to win the
auction. Our work can be viewed as another in this line ofdiiere, which addresses the diffi-
culties of externalities in a specific setting of practicaportance by making application-specific
assumptions.

Our work considergauction mechanismwith externalities. In contrast, some prior work con-
siders instead the problem of posted price mechanisms [B, 18]. Particularly relevant to our
work is that of Hartline, Mirrokni, and Sundararajan [18]h€ly consider the problem of finding
a revenue-maximizing sequence of prices that are offergdeseially to buyers. They observed
that simple influence and exploit strategies have reventiema constant factor of the revenue of
any equilibrium of any pricing sequence. They are remimsoé our auction mechanisms which
subsidize certain subsets of agents, and also our influeamtexploit mechanisms for general
single-parameter submodular externalities. Howeveikeartfartline, Mirrokni, and Sundarara-
jan [18], we provide approximation results with regardsh® optimal auction revenue, which has
a higher value than the optimal pricing strategy.

In addition to the line of work discussed above on marketingtegies in the presence of net-
work externalities, a vast body of work provides theorédtinadels of externality as well as em-
pirical evidence on the existence of network externalitiedifferent markets. Theoretical models
for externalities dates back to the competition of VHS vs.aBetmats in the VCR market [4].
Farrell and Saloner [8] argue that products that exhibiemlity have higher tendency towards
monopoly. Katz and Shapiro [23] show that the benefit fronhg@mods depends on the number of
users who adopt partially compatible products in the futimepirical work shows the existence
of externalities in software [28], DVD players and cellukervices [15], and shared electronic
banking networks [24].

There has recently been a growing attention to the averaggermadeling of the optimization
problems as opposed to the classical worst-case/adaragenda. It has been shown in differ-
ent settings that such stochastic analyses help us achrewger guarantees than the worst-case
analysis. An example is the online bipartite matching peobl In the adversarial setting, the cel-
ebrated result due to Karp, Vazirani and Vazirani [22] psotlee tight approximation guarantee
of 1 — 1/e for this problem. On the other hand, a sequence of paperatadtby the work of
Feldman et al. [11] show improved guarantees for the stéicheersion of the problem in which
either the values are drawn from a known distribution or #gugnce of arrivals is a random per-
mutation [21, 26, 27]. Other papers study stochastic ogaition problems in other settings such



as Steiner tree and set cover [12, 17].

2 Preliminaries

We consider a society of bidders located on the vertices in a social netw@(k’, £), where the
undirected edges mod#&lendship We assume for ease of exposition that the social network is
connected. There is a supplyof a homogeneous good. Unless otherwise specified, we assume
k > n so that the supply is essentially unlimited (equivaleritig, good can be reproduced at zero
marginal cost).

An outcomeo € = {0, 1}" is a distribution of goods among bidders, wheye- 1 if bidder
i receives a copy of the good afidtherwise. Biddef’s typewv; : Q@ — R* U {0} maps outcomes
to non-negative real numbers, wheféo) represents his value for outcorm@nd is positive only
if he receives a copy of the good (i.e;,= 1). We study Bayesian mechanism design, in which
one assumes that each typé) is drawn independently from a commonly-known distributign
Let ' = F; x ... x F, be the product distribution af; for all 7; v be the vector of types, called
thetype profile v_; be the vector of types of agents other thaand F_; the distribution ofv_;.
Throughout the paper, our algorithms assume access totetipes defined with respect to the
distribution F'. We assume these can be computed to within sufficient agcur@asampling.

A (direct) mechanism is specified by two functiops R"?" — Q andp : R"?" — R" in which
x(v) is the outcome given the reported type profileandp;(v) is the paymentof agenti given
the reported type profile.! The utility of an agent for outcome and pricep is his value for the
outcome minus the price he payg,o) — p. We say that a mechanisfy, p) is Bayesian incentive
compatible (BIC) if reporting the true type maximizes any plays expected utility assuming that
other players also report their true types, that is for eeggnt; and types); andv;,

Ey_~r_ [vi(x(v)) = pi(x(v))]
> By or [vi(x(vi, vi)) — pilx (v, vi))]-

Note that this is an interim notion, i.e., the agents chobsestrategy that gives them the highest
expected utility after observing their own private valueniarly, we assume an interim notion of
individual rationality, i.e., each agent’s expected utility conditioned on theigte value should
be non-negative.

We considesingle-parametesettings. In these settings, agents’ values are a funcfiprsb
one private parameter, called thgype As types are represented by a single parametethe
Bayesian assumption reduces to assumingdheg drawn independently from a distributian
over the non-negative reals, henceforth referred to ag/geedistribution of biddei. We assume
type distributions areegular and hence the correspondingtual valuesare non-decreasing (see
Subsection 2.1 for definitions).

INote the domain is exponential in general as types may adifgrent values to each of tf# possible outcomes.
2If the distributions are not regular, we can still apply cechniques using standard ironing arguments of Myer-
son [29].



In the following subsection, we discuss optimal auctionigie$or single-parameter settings.
We encourage the reader familiar with these subjects totskfubsection 2.2 where we define the
problem studied in this paper.

2.1 Optimal Auction Characterization

In his seminal paper, Myerson characterized the revenugeddptimal (i.e., revenue-maximizing)
auction in terms of theirtual valuesof the agents [29]. We first define virtual values and then
discuss the characterization result.

Definition 1. Suppose typeis drawn independently from a continuous distribution andlé) =
Pr.[z < v] be the cumulative function anlv) = F’(v) be the density function of the distribution.

Then the virtual value functiop(v) isv — 1}5)()”).

Virtual values may also be defined for discrete distribugion

Definition 2. Suppose type is drawn independently from a discrete distribution with sopp
{v', ... v} Let F(v?) = Prlv < o] and f(v/) = Pr[v = v7]. Then the virtual value function

o(v?) is v — %ﬁ(vﬁl —v9) for j < k andg(v*) = v*.

Note that virtual values may be negative. However, they aremegative in expectation, a fact
which enables many of our results.

Fact 1. For any distributionF’ and valuev, the expected virtual valug(v) is non-negative. That
is,

EUNF[¢(U)] Z 0.

We will further assume that the distributions we studyragrilar, meaning that the corresponding
virtual value function is non-decreasing in the supporf'of

For a mechanisniy, p) in a single-parameter setting, let(v) = v;(x(v))/v; if v; > 0, and
zero otherwise. In Myerson’s characterization, it is thection x that is relevant for determining
the revenue of the mechanism, and hence in a slight abuser@htdogy we will refer tox as the
allocation functioneven though there may be biddémwith =;(v) = 0 that receive copies of the
good (however they do not value the copy of the good becaueaxternalities). Accordingly
definez;(v;) = E,_.~r_.[z:(vi;,v_;)] to be agent’s expected allocation for type;, where the
expectation is over the types of other players.

In the single-parameter setting with regular distribusioklyerson showed that for any mono-
tone increasing rule;, there is a unique corresponding payment rulsuch that the resulting
mechanismx, p) is BIC (wherey is any function that induces allocation functierand is not
necessarily unique). The expected revenue of the mechasmsqual to its expected virtual value,
Y Ey.~r[zi(vi)¢i(v;)]. Furthermore, ifr is not monotone increasing, then there is no payment
rule that makes the corresponding mechanism BIC. Restrictiegteon to BIC mechanisms is
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without loss of generality due to the revelation princi@ed so to maximize revenue, one simply
needs to find a rulg satisfying all exogenous constraints (e.g., limited sypphose correspond-
ing feasible allocation function is monotone and maximizes expected virtual value. We can
therefore analyze the revenue of any monotone mechanidmutiexplicitly defining the prices.

2.2 Externality Model

In this setting, we assume that each playés assignedocal influence functiony; : 2V — R
which is common knowledge. Following the previous literatan network influence, we assume
that this local influence function is submoddldor each player, i.e.g;(S U {j}) — ¢:(S) >
g:(S"U{j})—g:(5"), forallS O S, andj ¢ S. Without loss of generality assurggis normalized
such thaty;(V') = 1. Given this function and's type v;, defineS(o) = {j : 0o; = 1} to be the
set of players that are given the good in an outcem&hen the value of for o is defined to be
vi(0) = i - i(5(0))-

For a mechanisny, p), the allocation functiomn:;(v) is, by definition,x;(v) = v;(x(v))/v; =
9:(S(x(v))) and, invoking Myerson’s characterization, we can write ékpected revenue of the
mechanism a . E[z;(v)¢;(v;)].

We consider two special cases of submodular externalitescave externalitieand step-
function externalities

2.2.1 Concave Externalities

Let N (z) be the neighborhood afin G, i.e.,N(i) = {j : (i,7) € E}. In concave externalities, for
each playei and subseg, ¢;(S) = G(|S N N(¢)|) for some concave functiofi(.) if i € S. That
is, the valuation of each biddeémdepends orthe numbeiof his neighbors who have the good but
not their identity, and also the local influence functionhie same among all players.

2.2.2 Step-Function Externalities

Step-function externalitiesre a special case of submodular externalities in which ahgevof the
influence function is 0 if the set of neighbors who receivegbed is empty, and 1 otherwise. Let
N (i) be the neighborhood afin G, i.e., N(i) = {j : (i,j) € E}. Formally, bidder:'s local
influence function for an outcomein which playersS(o) receive the good is:

o= {3 Aoz

We say that a biddet is satisfiedby an allocation ifg;(S(0)) = 1, in which casev;(0) =
v;. Otherwise we have;(S(0)) = v;(0) = 0, and we say is not satisfied by. This models
applications that require just one friend to be of value.

In this setting, for any mechanisfy, p), we haver;(v) = ¢;(S(x(v))) = 1 if outcomex(v)
satisfies biddei and zero otherwise. As a result, allocation functiemaust satisfy the condition

3Submodularity is used to model settings in which influenaatsxdiminishing returns.



thatx;(v) = 1 only if for at least one (more generally) neighborj € N(i) of i, we also have
zj(v) = 1. This means that in the subgraph induced by the allocatedtsigevery vertex must
have degree at least(more generallys). Call such a subset of agerfesasible By the Myerson
characterization discussed above, the optimal auctiohnuis $pecified by an allocation function
that, given a type profile, allocates to a feasible subsegehts with maximum sum of virtual
values (note this rule is necessarily monotone). We defin@mllem formally as follows,

Definition 3. The step-function revenue maximization problem (SFRM) fsxtd a feasible and
monotone allocation function that maximizes E[z;(v)¢:(v;)].

Graph-theoretically, the problem of finding an optimal e#lton function equates to finding
a subset of vertices of maximum weight whose induced subghag no isolated vertices. Un-
fortunately, we show in Section 3 that this problem is moneegal than theset buyingproblem,
and therefore approximating it within a linear factor everysampling of values is hard. We also
show that the problem of maximizing tlexpectedevenue (over randomness of values), SFRM,
is APX-hard.

As SFRM is NP-hard to solve optimally, we instead design ampatyial-time monotone allo-
cation function whose expected revenue (as defined by theo$wirtual values) is close to the
optimal expected revenu@PT’, where the expectations are over the type distributionssayean
auction is anv-approximationif its expected revenue is at leastx O PT'.

3 Hardness

By Myerson’s characterization of optimal allocations, tihelppem of finding an optimal allocation
function equates to finding a subset of vertices of maximuightevhose induced subgraph has no
isolated vertices. Unfortunately, since virtual valued dence vertex weights might be negative,
this problem is more general than the set buying problem ésge Feige et. al. [9]). We prove this
formally in Lemma 1. We next show that SFRM is APX-hard. TherefSFRM does not admit a
PTAS unless P=NP, which justifies the search for constatdrfapproximations to the problem in
later sections. The reduction is from a special case of s@hgwhich we call theorize collecting
set cover probleniPCSC).

Definition 4. A set-buying instancis specified by a set of elemebtand a collectionF of subsets
of U. There is a non-negative castS) associated with each sgte F, and a non-negative value
v(u) associated with each element U. Theset-buying problenis to pick some subsefsC F

to maximize the value of the elements covered by those sais thie total cost of those sets, that

is ZueSpar(S) U(u) - ZSGS C(S>’ where Spa(‘JS) = UgesS.

Theorem 2(Feige et al [9]) It is NP-hard to approximate the set-buying problem to withiimaar
factor.

Lemma 1. The optimal auction with step-function externalities is N&ehto approximate to
within a linear factor on every instantiation of values.



Proof. For any instanc& = (U,S) of the set-buying problem we construct a bipartite graph
Gz = ((L, R), FE) with a vertex/,, € L for eachu € U and a vertexs € R for eachS € F. We
introduce an edg€.,,rs) € E for any element: and setS such that: € S.

Consider an instanc€ and social network defined by the corresponding bipartigplgt:~.
Let the type distribution of bidddr, be v(u) with probability 1; and let the type distributibmof
bidderrg be 0 with probability 1/2 and¢(S) with probaiblity 1/2. Consider an instantiation of
types in which each biddéy, has typev(u) and each bidders has typed. The induced virtual
values are (u) for each biddet, and—c(.S) for each bidderg. For any feasible subset of bidders,
include, without loss of generality, all biddeks € L with an allocated neighbors € R. Note
that any feasible solution thus corresponds to a solutidh@fet-buying instance with the same
value. The lemma then follows from the inapproximabilityset buying. ]

The prize-collecting set cover problem (PCSC) is a type of @&ticproblem in which all sets
and all elements have equal costs and values, respectiVbl.problem seeks to maximize the
value of covered elements plus the cost of unused sets.

Definition 5. In theprize collecting set cover proble(RCSC), we are given a collectionofsets
{S1,S,,...,5,} over a universd/. For a collectionC' of sets, letQ- = U,;c¢.S;. The goal is to
find a collectionC* that maximizes|Q¢c+| + n — |C*| for somex > 0.

While this is equivalent, in optimality, to the set-buyingoplem of maximizing the value
of covered elementiinusthe cost of the used sets, the two problems differ in apprakifity.
The PCSC is easier to approximate: although, as we show, iP}s-ard, there is a/(e + 1)-
approximation for it. On the other hand, set-buying is ngiragimable to within a linear factor.
We will show an approximation-preserving reduction from SFRM, implying its APX-
hardness. We will then give afi (e + 1)-approximation for SFRM.

Lemma 2. There is an approximation preserving reduction from thez@rcollecting set cover
problem to SFRM.

Proof. Given an instance of the prize collecting set cover problemmere the sets are denoted
{51, S, ...,S,} and the elements are denotede,, ..., e,,, we construct a graph where there
is a vertex for each set and each element, and an edge befyegule; if e; € S;. For each
element;, the value isy with probability 1. Let L > mna. For each se$;, the valuation follows
distribution Bernoull{Z — 1,1/L), so that the virtual valuation is1 w.p. 1 —1/L and(L — 1)
w.p. 1/L. To compute the revenue, we let— oo. There are two events:

1. If at least one set has positive virtual valuation, theisoh chooses all such sets and the
corresponding covered elements. The revenue from each(deti1l) with probability1/L
for a total contribution to the expected revenue approachias — oo. To compute the
revenue from the elements, note that there is a set withipmsittual value with probability

“Note this type distribution is not regular (and indeed ousifiee results hold for arbitrary distributions). For a
reduction using regular distributions, consider drawiyyes uniform[0, ¢(S)] and then consider the same instantion
of values as before. The dissatisfying aspect of this praad, the reason we do not include it, is that the required
instantiation of types is a zero probability event.



n/L, in which case the revenue of the elements is at most Therefore, the contribution to
the expected revenue from the elementsrisn/L — 0 asL — oo. Therefore, the optimal
solution has contribution from this event ag, — oo, and this solution is trivial to compute.

2. If no set has positive virtual valuation (which happeng.w. — n/L — 1), the solution
chooses the sets (and the elements they cover) of the oRIGRC solution to get the value
preciselya|Qc+| — |C*|, and this is the contribution from this event.

Therefore, the value of the optimal revenue solution|@.-| + n — |C*| asL — oo, and this
completes the reduction. n

Theorem 3. The prize collecting set cover problem (PCSCARX-complete.

Proof. We start with at-regular graph. On such a graph with= 152k nodes, for any > 0, it is
NP-HARD to decide if there is an independent set of size at |g&ist- €)k or at most(73 + €)k
(see [6]). Given such a graph, construct the following prize collecting set cover ingtanthere
is a setS, for every vertexv, and an element, for every edge:. Each setS, contains the four
elements., such that vertex is adjacent to edgein G. We further setv = 1/3.

We first note that we can assume, without loss of generatiiit, any optimal solutio* to
the induced PCSC instance uses only disjoint sets:viigj,c C*,S; N S; = (). Assume not and
leti,7 € C* be two sets such that; N S; # (). Consider the alternative solutian = C* \ {;}.
Since each set contains exactly four elemeftscontains at leagt)-| — 3 elements, and so the
value ofC'is (1/3)|Qc|+n —|C| > (1/3)(|Qc+| — 3) +n— (|C*| — 1) = (1/3)|Qc+| +n — |C*].
Therefore (' is optimal as well.

Now consider a solution in which the chosen s&tare disjoint. Any such solution covety’|
vertices and so has valuet (1/3)|C|, and it corresponds to an independent set of verticésah
size|C|. Thus it is NP-hard to distinguish between instances witbtimal solution of value at
least152k + (1/3)(74 — €)k or at mostl52k + (1/3)(73 + €)k, so it is NP-hard to approximation
PCSC to within a factor of?2EUAT 1 o2, O

152+(1/3)73

Corollary 4. The problem of maximizing the expected revenue is APX-hard.

4 Step-Function Externalities

Although the optimal auction is NP-hard to compute and NRHb@approximate oeveryinstan-
tiation of values, it is in fact easy to approximate on averafhe following very simple allocation
function has expected revenue within a fadt@ of the optimal expected revenue. In Appendix B,
we show that this can be generalized td A1)-approximation for the limited-supply setting.

Divide vertices into two set$, and.S; such that each vertex € S, (respec-
tively S;) has a neighbor in the opposing sgt(respectivelyS,). Note that this can
be done efficiently, e.g. by computing a spanning tre€/adnd considering an ar-
bitrary 2-coloring of it. Suppose, has higher expected positive virtual value, i.e.,
> ies, Emax(é;(v;), 0)] > > ., E[max(¢i(vs),0)]. For each vertex € Sy, choose
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an arbitrary neighbaoj; € S;. These vertices will be used to make our desired alloca-
tion feasible. LetSy = {i € S : ¢(v;) > 0} be the bidders with positive virtual value
in setS, for a particular instantiation of values, affl= {j : j = j;,i € Sy } be their
designated neighbors. Then allocate to every biddéfin S;.

To see that this is &1/2)-approximation, note that the expected optimum revenue st
> Elmax(¢;(v;),0)] since at best a mechanism can extragi;) from all biddersi with pos-
itive virtual value. The above mechanism gets expectemmgiesg E[max(¢;(v;),0)] from

the bidders inS;, which is at least half the optimum expected revenue by tityeaf expecta-
tion and our choice of;". For biddersj € S}, note thatj's expected allocation is independent
of its value, i.e., we have;(v;) = z; for some constant;. As a result, the revenue fromis
Elz;¢;(v;)] = x;E[¢:(v;)]. Thus, since the expected virtual value of any bidder is megative
(see Fact 1), the expected revenue of bidders iis non-negative.

Further note that this analysis is tight, as shown by the lerapample of a single edge whose
endpoints have valuewith probabilityp and0 with probability 1 — p for some0 < p < 1. Then
the virtual value isl with probability p andl‘%; with probability 1 — p. Consider the mechanism
which allocates to both nodes when at least one of them hdisvposlue. The expected revenue
of this mechanism i€p* + 2p(1 — p)(1 + =) =2p— 2p? whereas the1/2)-approximation
described above has expected revemughe ratio of the two approachég2 asp — 0.

The main reason why our analysis can not guarantee betterath&®-approximation is that
the upper bound is quite loose. In fact, we show in Exampleid\Appendix A that there exists
a gap of0.75 between the value of the upper bound and the optimum solukarthermore, our
mechanism is “close to” ¢hreshold strategyn which each player receives the good whenever
his value surpasses a pre-defined threshdltsing thresholds of for players inS, and¢=1(0)
for players inS; yields a mechanism with the same revenue as that outlineckalMye show in
Appendix C that no threshold strategy can have better @hiaapproximation.

In order to improve this approximation ratio, we need to tege our detailed knowledge
of the graph structure. In the remainder of this section, vesgnt both a greedy and a linear-
programming-based approach that get&-approximation for general distributions. Both ap-
proaches follow the same general auction scheme.

4.1 General Auction Scheme

The key observation is that any auction gets positive dautions from two types of nodes: those
with positive virtual value who also have a neighbor with ipes virtual value, and those with
positive virtual value whose neighbors all have negativiigi value. Our general auction scheme
first estimates the relative contributions of these two $ygued then tailors its strategy accordingly.
In the extremes, where one type contributes most of the teyesn simple deterministic scheme
has a good approximation. When the contributions are metessrequal, we use either a greedy
or LP-based algorithm to get a constant approximation.

SWhether he is theallocateddepends on whether any of his friends also pass their thidslhnd receive the
good.
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To define the auction, we first introduce some notation touwrapthe contribution from the
types discussed above. For an instantiation of valydst =} (v) be the optimum allocation to
agent:. Then optimal expected revenue i[>, z; (v)¢;(v;)]. Fix a playeri and define the
following events:

e P is the event thap;(v;) > 0 and there existg € N (i) such thatp;(v;) > 0.
e P isthe event thap;(v;) > 0 and all neighbors of have negative virtual value.
e N, is the event thab;(v;) < 0.

Observe that the expected revenue of the optimum alloc&tbomagent; can be written as

E,[zi(0)i(vi)] = [:@)@@»!W]Pr@*)
E, [z} (v)gi(vi) | N;] Pr(N;)
Ey [z} (v)gi(vi) | P71 Pr(P;)
Define
A7 = B[z} (v)éi(v:) | P71 Pr(Py),
B = B[} (0):(vi)| P Pr(P),
and

C; = Bula (0)i(vs) [N Pr(Ny)

(noteC; is negative). Letd* = Y. Af, B* = ). B}, andC* = ). C! (note we do not need to
compute these values in our auction scheme). The aucti@msehuns three algorithms and then
takes the best solution, breaking ties randomly. The figgirithm tries to extract a revenue 4f;
the second aims for a revenue®f; the third aims for a revenue 6f — 1/e)A* + B* + C*.

General Auction Scheme. Run the following three algorithms and output the one
with highest virtual value. In case of a tie, break the tied@nly.

1. Allocate to all nodes for which ¢;(v;) > 0 as well as all nodesfor which N;
happensndfor some neighboy of i, ¢;(v;) > 0.

2. Allocate to all nodes for whicl?;" happens.

3. Use one of the below subroutines.

The subroutines are discussed in the following sections.cbmbinatorial subroutine is greedy
and uses intuition from the greedy algorithm for set covée LP-based subroutine uses a depen-
dent randomized rounding scheme. The key property of eamtostine, proved in lemmas in the
corresponding sections, is that each generates reveruél — 1/e) A* + B* + C*. We show that
this implies are/(e 4 1)-approximation for our general auction scheme (the mornoityrof the
auction scheme is discussed at the end of this subsection).

Theorem 5. For any subroutine with expected revenue at least equAlto (1—1/e) A*+ B*+C*,
the approximation guarantee of the general auction schemgé + 1) ~ 0.73.
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Proof. For an instantiation of values, let x;(v) be the expected allocation of(over the ran-
domization in the auction scheme). Correspondingly, defin8, C' for the auction’s allocation
function, and note that the auction scheme’s expected vevisal + B + C'. There are three cases
depending on which algorithm the auction scheme selectbelauction scheme selects the first
algorithm, thenz;(v) = 1 for all ¢ for which ¢;(v;) > 0 so A > A* (conditioned on the selection
of the first algorithm). Lemma 3 further shows that+ C' > 0 and so the total revenue of the
auction in this case is at leadt > A*. If the auction scheme selects the second algorithm, then
z;(v) = 1 for all 7 such thatP," happens, and so the revenue of the scheme is at f2adh
the optimal allocationg(v) also equald for all suchi and hence the revenue of the auction is
at leastB = B*. Finally, if the subroutine is invoked, by assumption it gardees a revenue of
R=(1-1/e)A* + B* + C*.
The optimal expected revenue is at mdst+ B* + C*, and so the approximation ratio of the
auction is at least
max(A*, B*, (1 —1/e)A* + B* 4+ C*)
min A+ i B T C* .
For computing the above minimum, normalizé = 1 and suppos&* = z andB* + C* = rx for
0 <r <1 (suchr exists sinceB* + C* > 0 by Lemma 3 and’™* < 0). Thus we want to compute
the minimum ofmax(1,z,1 — 1/e + xr)/(1 + xr) where0 < r < 1. We can do a case analysis
on the maximum:

1. zr < 1/e. Then, we are minimizinghax(1,z)/(1 + xr). We can setr = 1/e, so that the
lowest possible value is/(e + 1).

2. zr > 1/eandz(1—r) < 1—1/e. Thenwe havél —1/e+xr)/(1+xr). Settingzr = 1/e
impliese/(e + 1).

3.z >1landz(l —r) > 1—1/e. Then we have: /(1 + zr). Butzr < z + 1/e — 1, so that
we are minimizinge/(x + 1/e) for x > 1, so that we again have/ (e + 1).

Thus the approximation ratio is/(e + 1) ~ 0.73. O

The proof of the approximation guarantee requires theviatg technical lemma which shows
that the contribution of a nodewhen P;" happens outweighs his contribution whahhappens
(for reasonable allocation rules).

Lemma 3. For any monotone non-decreasing allocation functiotinat allocates to nodeswith
¢i(v;) < 0 only if there is a neighbor with ¢;(v;) > 0, and corresponding3, C, we have
B+C >0.

Proof. We prove the inequality for each nodseparately. LetV (i) be the neighborhood a@fand
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note that:

Bi+C; = BE,[xi(v)g;(v;)|PT]Pr(PY)
+Ey, [2;(vi) @i (vi) [N Pr(N)
= By [xi(vi)¢i(vi)|PT]Pr(PT)
+( B [2i(vi)gi(vi) [N, 35 € N(i), ¢;(v;) > 0]
-Pr(3j € N(i),¢;(vj) = 0)Pr(N)
+ By, [2:i(vi)$i(vi) [N, Vi € N(i), ¢ (v;) < 0]
-Pr(¥j € N(i),¢j(v;) <0))Pr(N).

But by assumption conditioned aN and the even{Vj € N(i), ¢;(v;) < 0], z;(v;) = 0, and
therefore, letting? be the even3j € N (i), ¢,(v;) > 0], we have

B+ C = E,[z;(v;)¢i(vi)|PT|Pr(¢;(v;) > 0) Pr(E)
+E,, [zi(v;)¢i(v;)|N, E] Pr(N) Pr(E)
= (By[2i(vi)gi(vi)| P, E]Pr(¢i(vi) > 0)
+Ey, [z:(v) @i (v;) [N, E]Pr(N)) Pr(E)
= By [zi(vi)gi(v)| E] Pr(E)
> 0,

where the second equality follows because the entmplies eventE and the last inequality
follows because(v;) is a monotone non-decreasing functiorvpéis¢(-) is regular and also that
E,,[¢i(v;)] > 0 (see Fact 1). O

The last step is to show that our auction scheme is BIC by pga¥iat it is monotone. Itis easy
to check the monotonicity of the first two algorithms, andasth subroutines used as the third
algorithm. Some attention has to be payed to the cases imwacswitch between algorithms
when an agent changes his value. One can check that as a iplengarses his value, if the value
of any of the algorithms increase, that player has to be atiéatin the new solution. Thus, when
we consider the set of algorithms that produce the maximuaeyghe algorithms that are added
to the set of maximizers (if any) allocate that player (plolyssome algorithms are dropped out of
the set of maximizers). By our random tie-breaking amongrélgos, this does not decrease the
probability of allocation.

4.2 Greedy Subroutine

The greedy subroutine follows intuition from the greedyaaithm for set cover. Let” be the
set of agents with non-negative virtual value;(v;) > 0 who have neighbors with non-negative
virtual value, i.e.{i : ¢;(v;) > 0and 3i' € N(i), s (vi) > 0}. For each nodg with negative
virtual value¢,(v;) < 0, associate a s&p; = {i : i € N(j),i ¢ P, ¢;(v;) > 0}, i.e.,Q; is
the set of neighbors of with non-negative virtual value who are notin If we select; (which
comes at a cost af;(v;)), then we covet); (gaining revenue equal to the sum of virtual values of
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agents € ();). The greedy subroutine initially seledtsand then iteratively select sefs whose
marginal “bang-per-buck” is maximized.

Greedy Subroutine.

1. Initialize the set of allocated nod&s«— P.
2. Initialize the bang-per-buck of eacly tob; = — 3~ di(vi)/9;(v)).
3. Repeat until for alR);, b; < 1:

(a) Letj* be the node witlh;« = max; b;.

(b) SetS « SU{j*} UQ;-.

(c) ForallQ;, updateh; = — >, ~_g) @i(vi)/d;(v;).

Lemma 4. The expected value of greedy is at le@dst- 1/e¢)A* + B* + C*.

Proof. Note that bottO PT and the greedy algorithm select all the vertice®jrand therefore get
revenue ofB* from them.

Without loss of generality, assume that the rest of the pestiements all have unit value by
replicating them. Let; be thenumberof elements (after replication) i@; and letQ)* be the set
of nodes with negative virtual value thatPT picks. Therefore,

OPT = Z — 6;(v;))

JjeQ*

For eachy);, sort the elements by the decreasing order of the time sesulgrcovers them (i.e.,
the elements that are covered later have lower ranks). kdirtte stamp be some very small value
for any element not covered (i.e., the elements that areavared have lowest ranks). Notice that
we sort the elements of each set independently, and therafoelement which is in multiple sets
is going to have a possibly different index in each of themw8en greedy covers th&h element
of a set();, all the elements, ..., i — 1 of that set are uncovered. Note thapif(v;) < i then
i is covered by greedy since otherwi9e has positive value. At the timeis covered by greedy,
the option of picking se@; gives the per-element reward of- ¢;(v;)/i. So we can write the
following lower bound for the value that greedy gets:

> Z —¢i(v)/1) = Y (nj—&;(v;) = 6;(v;) In(n;/6;(vy)))

jeqr =i jea-
= j%(%( )(%( 5 —In (%(%))) ;(v;))
> j;}:*((éj@j)(%( S 1) = 05(w))
= J;Q*(nj(l —1/e) = ¢i(v;)),

where the inequality followed because for ang 1, a — In(a) > a(1 — 1/e). 0
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4.3 LP-Based Subroutine

As discussed above, the main hurdle in the analysis of thplsiauction schemes was the loose
upper bound on the optimal expected revenue. In this seotenuse a linear program whose
constraints characterize the feasible allocation rulesnaspper bound. We then use this LP to
bound the expected revenue of an LP-based subroutine fauttieon scheme.

Recall that for each profile of typeswith virtual valuation functions{¢;(-)}, the optimal
revenue is equal to the maximum sum of virtual values amoagjliée allocations. In step-function
externalities, an allocation(-) is feasible if each vertekwith z;(v) = 1 had a neighboy with
zj(v) = 1. Hence we can write the following LP relaxation of the optimtevenue:

mjx Zl zi(v)pi(v;) 1)

st xi(v) D jene xi(v) Vi
0<uzw)<1 Vi.

Each instantiation of types induces one such LP. As disduss8ection 3, given the instanti-
ation of types, our problem is more general than the setAgugroblem studied in Feige et. al. [9]
whose LP-relaxation is shown to have linear gap. Hence theallte might seem like a very loose
upper bound. However, recall that we only require our aacttohave close-to-optimal revenue
on average In other words, we need a rounding scheme whose expectae, waler the distribu-
tion of LPs induced by the type distributions, is close toeakpected value of the LPs. Thus we
can perform poorly on hard instances so long as we do well erage, and so LPs with linear
worst-case integrality gaps might still be useful in desigran LP-based subroutine with good
approximation ratios.

LP-Based Subroutine.Solve LP 1 for the instantiation of typesand letz} (v) be an
optimal solution.

1. For each with ¢;(v;) < 0, givei a copy of the good with probability! (v).

2. For each with ¢;(v;) > 0, givei a copy of the good if it has a neighbgthat
either
(a) has non-negative virtual valge(j) > 0, or
(b) has negative virtual valug;(j) < 0 and received the good in step 1.

To use this subroutine in our auction scheme, we must arguexgected revenue is at least
R = (1—-1/e)A* + B* + C*. The analysis of the randomized rounding requires a key lamm
the LP constraints corresponding to an agemtith positive virtual value must be tight in an
optimal solutionz*(v). Namely,z; (v) = min(1, >,y z;(v)). Hence to round and get constant
contribution from these agents, we can round the nodes wghtive virtual value with probability
equal to their LP values and then round nodes with positieial value to one if some neighbor
was rounded to one. To bound the expected allocation of suelgent; in the rounding, we note
that in the worst-case all neighborsofave negative virtual value. However, even in this case,
i is allocated so long as at least ofe N (i) receives the good. This happens with probability
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x; for neighborj and so the allocation probability éffrom the rounding scheme is at ledst-
[Tjene)(1 — 23). Thisis within a(l — .1/6) fraction ofz}. _ .

Let z;(v) be the expected allocation 6fn the subroutine, and defing B, C' as the expected
revenue contributions from nodes of each type accordingly.

Lemmab5. A > (1 —1/e)A".

Proof. First note that conditioned on evefit', we havez;(v) = min(1,> ;. j(v)), and
zi(v) = 1= [ljene( — 2j(v). Lety = 3y 2j(v) andd = |[N(i)|. Fixing the value of

> jent) T (v), the minimum oft — [T, ;) (1 — 2}(v)) happens when all the variables are equal,
in which case we have;(v) =1 — (1 — ¥)¢ > 1 — & Thus whery < 1, we haver(v) = y and
502 is at least=:—, whose minimum value is equal to- ;. Wheny > 1, we haver;(v) = 1

x; (U)

and so% is at leastl — e~¥, whose minimum value is again— % Therefore we have

z; (v)

Ai = By [zi(vi)gi(vi) [P~ Pr(P7)

1
> (1- E)Evi[ﬁf(vi)ﬁbi(viﬂp_]PT(P_)
1 *
= (1-2)4
Summing ovet yields the result. n

Theorem 6. The expected revenue of the LP-based subroutife=s(1 — 1/e)A* + B* 4+ C*.

Proof. Lemma 5 showsd > (1 — 1/e)A*. Furthermore, from the construction ofwe see that
conditioned onP* and NV, z andz* are equal s@ + C = B* + C*. Therefore the total revenue
of the subroutine is at least — 1/e)A* + B* + C*. O

We now prove that the above LP has integrality gap at m&88. This means that we can not
use the LP solutions as an upper bound in order to get appatikimguarantees better theu2s.
We show the gap by proving the gap on the analogous LP for th&€€P@sich using the reduction
in Lemma 1 implies the gap on the original LP.

Theorem 7. The above LP has integrality gap at mos32s.

Proof. We construct an LP gap instance for the prize collecting@eticproblem. In our instance,
the input is a graph; the sets are vertices and the elementdges, so that each edge is present
in the sets corresponding to its incident vertices. Fonamrtex graph, the goal is to choose a
subsetX of vertices to maximizer|E(X)|+n — | X|, whereE(X) is the subset of edges incident
to some vertex inX.

The LP has a variable, for each edge, which i if the edge is selected in the event that all
vertices in the graph have negative virtual valuation. irtyi, v, is the variable denoting whether
vertexv is selected in the same event. The LP can be reformulated as:

Maximize n— Y "y, +a )
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Te < Yuty, Ve=(u,v) €FE
Tey Yy € [0,1] Vee E,ueV

Consider a complete graph arvertices, for large:. Defines = 1/(an). Scale the objective
and rewrite itasE (X )|+ (n—|X|)/a = |E(X)|+ Bn(n—|X|). Setally, = 1/2andz, = 1. For
this fractional solution, the objective is approximateR(1 + 3)/2. Suppose the optimal integer
solution choosek vertices and all incident edges. Its value is approximatéhy k2 /2+n(n—k).
Optimizing overk, we obtaink = n(1 — 3), so that the optimal value is*(1 + 3?)/2. The ratio
is thereforg(1 + 3%)/(1 + B3), so that3 = /2 — 1. This yields a ratio oR(v/2 — 1) = 0.828. [

5 Submodular Externalities

In order to design an approximately optimal mechanism ferrttore general problem with sub-
modular externalities, we identify a set of mechanismdedahfluence-and-exploinechanisms.

In the following, we first show that a simple random-samplingchanism which belongs to this
category of mechanisms achieve8.25-approximate mechanism for this problem. Then, we fo-
cus on optimizing over these mechanisms and design impwebximation algorithms for this
problem. We start by defining influence and exploit-mectranis

Definition 6. For a fixed pricep and any set of playerS, define the Influence-and-Exploit Mech-
anism IEQ) as follows. Give the good to anye 1\ S regardless of its value and to ariye S if
his value is more than the threshqid

5.1 Constant Approximation

First, we observe that a simple IE mechanism givé2&-approximation to the optimal revenue
for the setting of single-parameter submodular exteiiralitConsider the following algorithm:

e Let S be arandom subset of bidders where eaehS is chosen independently with proba-
bility 3.

¢ Influence:Give the good to all € V' \ S regardless of the value.

e Exploit: Give the good to a biddegre S if v; > p;(S), wherep;(S) = ¢jj§(0) is the inverse
virtual value of zero for the distributiof; s.

In order to prove the approximation guarantee, we make ugeedbllowing lemma.

Lemma 6 ([10]). For a ground sefl/, let f : 2 — R be a monotone submodular set function.
Form setS by picking elementse V' independently at random with some fixed probabjlitfhen

E[f(9)] = pE[f(V)]

Define therevenue functio®; (S) = max, p(1 — F; s(p)), whereF; s(p) = Pry,er, (vig:(S) <
p). We first prove thad _. R;(V') is an upper bound on the revenue of any mechanism.
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Lemma 7. The expected revenue of any Bayesian incentive compatidt@anism is at most
Zi Ri(v)-

Proof. Recall that we normalized;(V') = 1. As a result,F;(p) = F;(p). So by definition
R,(V) = max, p(1 — F(p)). Consider any mechanism with allocation functiofv;) < 1. By
Myerson’s characterization, the expected revenue of thehaemésm is) . E,, [x;(v;)¢i(vi)] <

3 Elmax (0, 6i(v))] = [ 6i@)fla)ds = [, (@f (@) = (1= Fla)de = —a(1 -
Fla)) [0 = p(S)(1 = Fuspi(S))) = Ri(V), =

Lemma 8. If the revenue function is submodular for all agents, thesdbove mechanism is a
4-approximation of the optimal mechanism.

Proof. Consider any agent With probability 1/2, it chosen to be if. Fixing the setS, the
expected revenue we get franis R;(S) = p:(S)(1 — F, s(pi(S))). Now note that each agent is
independently sampled, so over the random choices of théameszn, and by submodularity of
R;(S) (proved in lemma 9), the expected revenue frooonditioned on being irb) is at least
R;(V)/2. Since we get this revenue with probability 1/2, the expécevenue from is at least
R;(V')/4. This gives a 4-approximation. O

Similar to [18], we may simply assume that the revenue feomch; is monotone and submod-
ular for each bidder, and indeed our result holds for anyngstthat induce monotone submodular
revenue functions. Interestingly, for the single-paramstbmodular setting, the submodularity
of the revenue function follows from the submodularity of tbcal influence function.

Lemma 9. The revenue function is submodular for the single-parammibmodular externality
setting, and the concave externality setting.

Proof. Consider a player with distribution £; overv;. Then
R(S) = maxp(l—Fys(p))
= mgXp(l — Fi(p/9(5)))
= 9(5) Irg;txp/(l — F(p")

wherep’ = p/g(S). Submodularity ofR;(.) then follows directly from submodularity @f(.). [
Applying the above two lemmas, we conclude that the follgwin

Theorem 8. There exists %-approximate IE mechanism to the optimum revenue in thdesing
parameter submodular externality model, and thus in thecava externality model.
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5.2 Optimizing over IE Mechanisms

Now that we proved that IE mechanisms achieve a constatdrfapproximation to the optimal
revenue, it would be interesting to optimize among IE mems. To do so we need to find a set
V'\ S of initial (influential) bidders to get the good regardle$sheir value, and then exploit the
remaining bidders by setting optimal thresholds as abogey (v) be the outcome of this strategy,
that is, x;(v) = 1 if the good is given ta for the profile of types in IE(S). Let ®(S) be the
expected revenue of IE] over the randomization of types. Our goal is to find a suSs#tbidders
that maximizesb(.S). We do so by arguing that(.S) is a (not necessarily monotone) submodular
function and then using submodular function maximizatiesuits. We present the results in this
section with regard to concave externalities in order tgpkeetation simple; the results extend
easily to the more general submodular externalities. Wediraracterize the expected revenue of
any |E strategy.

Lemma 10. Let X, s(v) = |[{j € N(i) : x;(v) = 1}| whereN(:) is the neighborhood of
in G. Then the expected revenue of any IE strategyS)Efor each: € S is equal top(1 —
Fi(p))E,[h(X;s(v))] whereh(-) is the concave function defining the externality (ig(p) =

0 - h([{j € N(i) : 0; = 1}])).

Proof. Consider IEF) with allocation functionz and outcome functiory. By Myerson’s charac-
terization, we can write the expected revenueioflE(S) as

Eyfzi(v)gi(vi)] = Eygi(x(v))9i(v)]
= Eulxi(0)h(X;s(v))¢i(v)].

Note in any IE strategy;(v) andy,(v) are independent random variables (whésa drawn from
F) for anyi # j. Thusy;(v) is also independent fronY; s(v). So we can write the revenue of
asE[h(X; s(v))]Exi(v)¢i(v;)]. Since we sek;(v;) = 1 wheng(v;) > 0, E|x;(v)¢(v;)] is equal
to the optimum revenue from distributidn, which is equal tg(1 — F;(p)). N

We next prove the key structural property of the revenuetfaneb(S) for IE mechanisms,
namely that it is submodular.

Lemma 11. The set functior® is a non-negative submodular functionsf

Proof. First note that each agent '\ S contributed) to the revenue, and eacle S contributes
®,(S) = p(1 — F;(p))E,[h(Xi 5(v))], whereX; s(v) is a random variable denoting the number of
i's neighbors that are given the good to at prafil¢hat isX; s(v) = |[{j € N(i) : x;,(v) = 1}|. For

all 7, S, let F; ¢ be the discrete distribution (with density functigyy) of X; s(v) whenwv is drawn
from the joint distribution of types. We show submodulaofyd(.) by proving submodularity of
all @,(.) for all 4, that is®;(S U {j}) — ®;(5) < &;(S" U {j}) — ®:(5"), forall " C S and alli
and;j. Submodularity ofb(.) follows from submodularity ofb;(.)'s, since®(S) = >, ®;(5).
Formally forS © S"andj ¢ S,
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SSULH—8(S) = 3 @(SULH - D ai(S

i¢(SU{s}) i¢S
= Y @S U{)) - Bi(9)) - B,(S)
i¢(SU{s})
=Y @USU{G)) - 8(9)
i¢(S'U{j})
= Y @(SU{)) - D))~ 9y(S)
1€(S\S7)
< Y @S U{)) - a(S)
i¢(S'U{j})
= Y @S U{)) - 8i(9) - ,(8)
1€(S\S7)
< Y @(5TUG)) - DS - By(S)
i¢(S'U{j})
< Y (@5 UL)) - D)) — ()
i¢(S'U{j})

= (S'U{j}) — 25,

in which the first inequality follows becaudg(.) is submodular, and the second and third inequal-
ities follow becaus@;(.S) is monotone as long as# S (in contrast tad(.5)).

In the rest we prove submodularity @f(.). First note that ifi is not a neighbor of, then we
have0 = ¢,(SU{j}) — ©;(S ) < 9, (S"U{j}) — @:(5") = 0. Now assume thatis a neighbor of
j. Define® = &,(SU{j}) — ®;(S). Now we have

o = p(1— F(p)(Eu[h(Xisug(v)] = Euo[h(Xis(v))])
= p(l = E())(Brwr, 505, [h(k)] = Eir, 5 [D(F)])

= Fi(p) Zh (fi,sugy(k) — fis(k))

First we show thatf; sy (k) = Fi(p)fis(k + 1) + (1 — Fj(p))fis(k). To compute the
probability thati hask neighbors using strategy IE(U {j}), we consider two events. First is the
event in whichv; < p, which happens with probability/; (p). In this case, we need— |V\ (S U
{j})| neighbors of in setS to have value more than If this happens when using strategy $(
iis going to have: — |V\(SU{j})|+|V\(SU{j})|+1 = k+ 1 neighbors that are allocated (note
that; is in the influence set and therefore allocated). The prdibabf this event isf; s(k + 1) by
definition. The second event s the event in whi¢hk> p, which happens with probability— F; (p).

In this case, we nedd— |V'\(SU{j})| — 1 neighbors of in setS to have value more than If this
happens when using strategy H(: is going to have: — [V\ (SU{j })|—1+|V\(SU{j })|+1 =k
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neighbors that are allocated. The probability of this everft s(k) by definition. Summing up,
we conclude our desired equatiofisug,y (k) = F(p) fi,s(k + 1) + (1 — Fj(p)) fi,s (k).
As aresult,

o = p(l- Zh )(fis(k+1) = fis(k))
= p(1— Fi(p))Fj(p Zfz’,s — 1) = h(k))
k

Now recall thath is a concave function of. As a result,H(k) = h(k — 1) — h(k) is a
non-decreasing function & Therefore,

(S’U{j}) ©;(5) — (@ (SU{j})—CI%(S))

— p( ZHk fzS/ fz,S(k))

= p(1-F ZH Figr(k) —
Fig(k—=1) = (F, s(k) — Fis(k—1)))

= p(1 - F(p)F;(p)

Y (Frsi(k) = Fys(k)(H(k) — H(k + 1))

k

Note that forS’ © S, F; ¢:(k) > F; s(k). This is because any vertex$i\ S is always allocated
in IE(S), but only with some probability in IE{’), and therefore the probability thahask or less
allocated neighbors in IE[) is only less than in IEY’). SoF; s/ (k) — F; s(k) > 0 for all k. Also,
sinceH is a non-decreasing functiof (k) — H(k+ 1) < 0.

It only remains to consider the revenue functionjafthen we addj to sets. ForS such that
Jj ¢S, we have

©;(SU{j}) = 2;(5) = p(1 = F;(p))Eu[h(Xs(v))]
Again, note that fols” O S, F; s(k) < F; ¢/(k), therefore
Er, (k)] — Ep,o[h(k)]
= th (Frs0(K) = f1.5(k))

— Z(Eﬁ'(k) — Fjs(k))
(h(k) = h(k+1)) <0
]

Function®(.) as described above is non-negative and submodular, buegessarily mono-
tone. In order to obtain a constant-factor approximatiomiaximizing over IE mechanisms, we
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can simply apply non-monotone submodular maximizatiowordgms for this problem [10, 13].
For example, the following simple local search algorithmegia0.33-approximation to this prob-
lem [10]: (i) LetS = {i|i = argmaxycy(P({'})}, and (ii) at each step either add or remove a
bidder: from S'if this adding or removing increases the valuegf) by al + < factor, (i) After
reaching a local optimal, output the better of. and L. The above simple algorithm acheives
0.33-approximation for the problem of maximizing over IE stgiés. One can apply a recently-
developed randomized local search algorithm to acheiwe rapproximation of Oveis Gharan
and Vondrak [13] for this problem. We conclude with the fallog theorem:

Theorem 9. The problem of optimizing over IE mechanisms can be appateidwithin a factor
0.41 in polynomial time.
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A Loose upper bound

Consider an upper bound on the optimal expected revenue vughadual to the sum of positive
virtual values. The following example shows that the optiexgected revenue can be just al-
fraction of this upper bound, indicating that better apjpr@ations require better upper bounds.

Example A.1. Consider the following tree: there is a root vertex; the rooshachildren, called
level1 nodes; and each level 1 node has one child, the [2veldes. Assume that the distribution
on values is such that the virtual valuelisvith probabilityp = 1/2, and—1 with probability 1 /2.
The upper bound’s value is’, F[max(0, ¢(v;))] = (2n + 1)/2. Now consider any pair; and
v. Assuming that the root is always allocated (the best caséhopair), the optimum solution
is to allocate both when they are positive, onjywhen it is the only one with positive value, and
neither otherwise. The expected value of this allocatiddyis There aren pairs and at best the
optimum can get revenuefrom the root, and so the optimum revenue is at nimstk 1. Hence

3n
the ratio of the optimum to the upper bound is at m@iﬁi — 3/4.
2

B Limited-Supply Setting

All auctions discussed so far assume the auctioneer haslamtad supply of the good. When
there is a limited supply, we must modify the above techrsdqaesatisfy the supply constraint. The
below theorem shows how to extend our simglg2)-approximation presented at the beginning
of Section 4 to get &1/4)-approximation with limited supply. The LP-based auctitsoéhas a
natural extension to the limited-supply setting. Namelg,can add a constraint to the LP forcing
the total number of distributed goods to be at most the sulpply. However, we can not apply
our rounding scheme directly to this altered LP: it does rais/ supply constraints (even in
expectation). We leave the problem of rounding this altéfe@és an open question.

Theorem 10. There is a(1/4)-approximation auction for the limited-supply setting.

Proof. Suppose the auctioneer hagopies of the good. Compute a spanning tree of the social
network and color the nodes red and blue such that each resl masl a blue neighbor in the
spanning tree (and vice versa). Pick a color uniformly atican and name the nodes of this color
S1 and nodes of the other coldk. Allocate to thek/2 highest positive virtual values if;, and
their neighbors inS, to ensure feasibility. We now compute the expected virt@dlie of this
allocation for the red nodes. We condition on the evénhat the red nodes were chosen to be set
Sl.

B> zi()gi(vi)] = BEo[Y_ xi(v)¢i(v:)| E] Pr[E]

i red i red

+E,[Y_ wi(v)i(v;)|E] Pr[E]

i red

> (%) B3 w:(0)6:(0)| E)

i red
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1
N <§) Ytsc rgil?s}\(<k/2 Z Pi(vi)]

where the second step follows since the expected allocatiany red node is independent of its
value conditioned oiZ. Therefore by fact 1 each such vertex contributes a nontivegamount
to the revenue. The third step follows since conditioned’ome picked the best set of size at most
k/2 from the red nodes.

Now to prove the approximation guarantee first defie= E[maxg. sj<x > _;cq #(vi)], and
note this is an upper bound on the optimum revenue, sinceeibéist case we can allocate the
highest (positivek virtual values. But we know that for any sampling of the values

max o(v;) < max Z(b(%)

S:1S|<k 4 SC red:|S|<k 4
€S €S

+ max Z o(v;)

SC blue: \S|<k

2-( max 3 6wy
es

VAN

SC red: |S|<k/2
SCblue |S|<k/2 Z

and therefore,

X = E[S%?;(kies o(v;)]

2(E[ max Y (v

SCS1:|S|<k/2 4
€S
E
FE[ _max > o(w)])
€S
by linearity of expectation. Recalling that the expectedigaif our allocation is at least

E[scsn.‘\%fim(z i(vi))]
== ieS

IN

and noting that we picked each of the two sets with probghilie to be.S;, we conclude that the
expected revenue of our allocation (over the randomnes$gdlgorithm and sampling of values),
is at leastl /4 of the upper bound. m

C Threshold Strategies
In this section, we observe that no threshold strategy cee better thar.5 approximation. Our

example compares the value of all possible strategies t@phienum value, and therefore the
result holds for any upper bound on optimum. Consider a pawedices and assume that the
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virtual value is1 with probability p and —p/(1 — p) with probability 1 — p. Also assume that

is very small. Consider the strategy in which we allocate matties of a pair when at least one
of them has positive value. The value that we gepis+ 2p(1 — 2p). Now consider any pricing
strategy. The value we get when we set one of the thresholdsd &, is at mosip. If we set

both thresholds tp we getp?. In any case, the ratio of optimum to any pricing strategysgoe?
asp — 0.
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