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Abstract

We consider the problem of designing auctions in social networks for goods that exhibit
single-parameter submodular network externalitiesin which a bidder’s value for an outcome
is a fixed private type times a known submodular function of the allocation of hisfriends.
Externalities pose many issues that are hard to address with traditional techniques; our work
shows how to resolve these issues in a specific setting of particular interest.We operate in a
Bayesian environment and so assume private values are drawn according to known distribu-
tions. We prove that the optimal auction is NP-hard to approximate pointwise, and APX-hard
on average. Thus we instead design auctions whose revenue approximates that of the optimal
auction. Our main result considersstep-function externalitiesin which a bidder’s value for
an outcome is either zero, or equal to his private type if at least one friendhas the good. For
these settings, we provide aee+1 -approximation. We also give a0.25-approximation auction
for general single-parameter submodular network externalities, and discuss optimizing over a
class of simple pricing strategies.

1 Introduction

Many goods have higher value when used in conjunction with others. A classic example of this
phenomenon is the telephone, which clearly has positive value for a consumer only if he or she has
people to call. Telephones, and other goods with similar stories, are callednetworked goodsand
said to exhibitnetwork effectsor network externalities. Modern technology has given birth to a new
generation of networked goods. Internet services like email, instant messaging, and online social
networks are used primarily to connect with friends and, as such, have strong network externalities.
But even more significantly, these services, particularly online social networks, provide platforms
upon which developers can generate new applications – applications with very strong networking
components. It is now possible to read articles recommendedby varioussocial readers, or play
games such asFarmVille with friends online social networks like Facebook. Such applications
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are more useful or fun when used with friends, and many such applications even explicitly reward
players with many friends. The unique feature of such modernnetworked goods is that the under-
lying social network isexplicit. This enables application distributors to use the network structures
to market and sell these goods.

In this paper, we leverage explicit network structure to design mechanisms for selling net-
worked goods. We primarily focus on goods that are availablein unlimited supply or, more pre-
cisely, can be produced at zero marginal cost. The network externalities of the good are implied
by the private valuations of the social network users. In themost general case, users have a private
value for each possible allocation of the good to a subset of users. This allows for arbitrary exter-
nalities, enabling say John Doe to value the good only if Kim Kardashian owns it despite having
no direct relationship to her. While this makes sense for somegoods, like fashion, many network
goods like telephones or social network applications have value to a user only if users in his or her
immediate neighborhood also own the good. The main focus of the paper is on a special case of
this sort of direct externality, which we callstep function externalities: that is, we suppose a user’s
value for the good is zero unless at least one of his or her neighbors or friends in the social network
is also allocated the good.

We studyauction mechanisms, or mechanisms that solicit bids from agents indicating their
private value for various allocations, and then determine an allocation and prices in a way that
maximizes expected revenue. As is common in economics, we work in a Bayesian setting where,
while the realization of the private value is known only to the agent, it is drawn according to a
commonly known distribution. Most literature on mechanismdesign assumes that agents value
allocations solely based on the bundle of goods they receive, i.e., they are indifferent about the al-
locations of the other players. This is clearly violated in settings with externalities. Unfortunately,
externalities significantly complicate mechanism design for the following reasons:

1. The efficient representation of values is no longer a trivial task, since in the most general
case each bidder might need to report a value for each subset of allocated bidders.

2. More dimensions make satisfying incentive constraints harder (multi-parameter mechanism
design is not well understood).

3. The space of feasible allocations might be more complex, which can make finding the opti-
mal allocation a computationally hard problem.

4. Furthermore, the complexity of the feasible allocation space can easily cause the setting
to violate downward-closure, i.e., not every subset of a feasible allocation is necessarily
feasible. Thus the few known results for multi-parameter mechanism design can not be
adopted generically.

We circumvent the first two issues by assuming a special structure on the players’ values,
namely that valuations satisfy step function externalities as defined above. Thus our problem is
a single-parameter one, and so the representation and incentive constraints are straight-forward.
Revenue maximization is also well understood for single-parameter settings. The seminal paper
by Myerson [29] fully characterizes mechanisms that maximize revenue in expectation over the
value distributions. By this characterization, the expected revenue of any mechanism is equal to
the expectedvirtual valueof the allocated agents, where the virtual value of an agent is a func-
tion of the valuation and its distribution and may be negative. In our setting, this characteriza-
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tion converts the optimal allocation problem to a combinatorial optimization problem, which is to
maximize the sum of the virtual values over allfeasiblesubsets. For step-function externalities,
the feasibility constraint requires that all allocated agents have a neighbor who is also allocated.
Graph-theoretically, this equates to finding, in a vertex-weighted graph with possibly negative
vertex weights, a maximum-weight subset of vertices whose induced subgraph has no singleton
components.

Although the optimal mechanism is easy to define, the third and fourth issues of mechanism
design with externalities remain in our setting. We observevia reduction to set-buying that ap-
proximating the optimization problem within even a linear factor oneverysampling of the values
is NP-hard. On the other hand, we only need to find algorithms that perform wellin expectation
rather than in worst case: the Myerson mechanism we wish to approximate anyway provides an
optimal average-case guarantee, and there is no mechanism with high revenue for every instantia-
tion of values. Even on average, we prove that our problem remains APX-hard. However, we are
able to design constant approximations for several versions of the problem.

We first note that there’s a simple(1/2)-approximation for our problem. The algorithm divides
the graph into two subsets of vertices, such that each vertexin each set has a neighbor in the
other. This can be done, for example, by constructing a spanning tree of the graph and then taking
a bipartite partitioning of it. The allocation strategy is to then pick the set with better expected
revenue, extract revenue from that set, and allocate to users in the other set in order to maintain
feasibility. This very simple algorithm does not use the structure of the social network in any deep
way, and is therefore unable to give better approximations in even very simple social networks
consisting of a single edge. In order to leverage knowledge of the network structure, we consider
a greedy algorithm that iteratively allocates to influential vertices and their neighbors. Our main
result shows that this can be used to obtain ane

e+1
≈ 0.73-approximation to the optimal revenue

for any distribution of values.
We additionally formulate our problem as a linear program (LP) whose variables represent the

allocation and whose constraints use the network structureto characterize feasibility. We show
how to round this LP to give ae

e+1
-approximation, thereby matching the performance of our main

greedy algorithm. The LP has several advantages however. First, it is hypothetically easy to incor-
porate additional feasibility constraints by simply including additional inequalities in the polytope
and so might be of use in specific externality settings. Second, the LP exhibits some interesting
mathematical properties. Namely, the gap of this LP is linear in the number of agents for a par-
ticular instantiation of values, and nonetheless we manageto prove a constant approximation on
average. We do this through a novel average-case analysis ofthe rounding technique which may
be useful in other applications. We also show that the expected integrality gap of our LP is0.828,
and thereby bound the approximation ratio of any LP-based mechanism.

We extend our setting to the more generalsingle-parameter submodular externalitiesin which
a bidder’s value for an outcome is his private value times a known function of the set of players
who receive the good. For such settings we study a class of mechanisms calledinfluence and ex-
ploit in which some bidders (theinfluencers) are given the good for free and the remainder (the
exploited) are offered an optimal price conditioned on the set of influencers. We show that the
revenue is a submodular function of the set of influencers andhence we can use recent submod-
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ular function maximization results [10, 13] to design an influence-and-exploit mechanism whose
revenue is within a0.41-factor of the optimal influence and exploit mechanism. We also show that
a randomization over influence and exploit mechanisms givesa0.25-approximation to the optimal
expected revenue of any mechanism by further submodularityarguments.

Related Work. Various settings with positive, negative, or mixed externalities have been stud-
ied in economics as well as computer science literature. Rohlfs [30] discusses positive externalities
in the telephone industry in which a person’s value for a telephone increases as more friends use
it. A well-studied scenario with negative externalities isthe allocation of ad slots in which a com-
pany’s valuation for being listed as one of thesponsored searchresults decreases if their competitor
is also listed [1, 5, 14, 16, 20, 25]. Finally, the valuation might have mixed externalities, as in the
sale of nuclear weapons [19], in which countries prefer their allies rather than their foes to win the
auction. Our work can be viewed as another in this line of literature, which addresses the diffi-
culties of externalities in a specific setting of practical importance by making application-specific
assumptions.

Our work considersauction mechanismswith externalities. In contrast, some prior work con-
siders instead the problem of posted price mechanisms [3, 2,7, 18]. Particularly relevant to our
work is that of Hartline, Mirrokni, and Sundararajan [18]. They consider the problem of finding
a revenue-maximizing sequence of prices that are offered sequentially to buyers. They observed
that simple influence and exploit strategies have revenue within a constant factor of the revenue of
any equilibrium of any pricing sequence. They are reminiscent of our auction mechanisms which
subsidize certain subsets of agents, and also our influence and exploit mechanisms for general
single-parameter submodular externalities. However, unlike Hartline, Mirrokni, and Sundarara-
jan [18], we provide approximation results with regards to the optimal auction revenue, which has
a higher value than the optimal pricing strategy.

In addition to the line of work discussed above on marketing strategies in the presence of net-
work externalities, a vast body of work provides theoretical models of externality as well as em-
pirical evidence on the existence of network externalitiesin different markets. Theoretical models
for externalities dates back to the competition of VHS vs. Beta formats in the VCR market [4].
Farrell and Saloner [8] argue that products that exhibit externality have higher tendency towards
monopoly. Katz and Shapiro [23] show that the benefit from such goods depends on the number of
users who adopt partially compatible products in the future. Empirical work shows the existence
of externalities in software [28], DVD players and cellularservices [15], and shared electronic
banking networks [24].

There has recently been a growing attention to the average case modeling of the optimization
problems as opposed to the classical worst-case/adversarial agenda. It has been shown in differ-
ent settings that such stochastic analyses help us achieve stronger guarantees than the worst-case
analysis. An example is the online bipartite matching problem. In the adversarial setting, the cel-
ebrated result due to Karp, Vazirani and Vazirani [22] proves the tight approximation guarantee
of 1 − 1/e for this problem. On the other hand, a sequence of papers initiated by the work of
Feldman et al. [11] show improved guarantees for the stochastic version of the problem in which
either the values are drawn from a known distribution or the sequence of arrivals is a random per-
mutation [21, 26, 27]. Other papers study stochastic optimization problems in other settings such
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as Steiner tree and set cover [12, 17].

2 Preliminaries

We consider a society ofn bidders located on the vertices in a social networkG(V,E), where the
undirected edges modelfriendship. We assume for ease of exposition that the social network is
connected. There is a supplyk of a homogeneous good. Unless otherwise specified, we assume
k ≥ n so that the supply is essentially unlimited (equivalently,the good can be reproduced at zero
marginal cost).

An outcomeo ∈ Ω = {0, 1}n is a distribution of goods among bidders, whereoi = 1 if bidder
i receives a copy of the good and0 otherwise. Bidderi’s typevi : Ω→ R

+ ∪ {0} maps outcomes
to non-negative real numbers, wherevi(o) represents his value for outcomeo and is positive only
if he receives a copy of the good (i.e.,oi = 1). We study Bayesian mechanism design, in which
one assumes that each typevi(·) is drawn independently from a commonly-known distributionFi.
Let F = F1 × . . . × Fn be the product distribution ofFi for all i; v be the vector of types, called
the type profile; v−i be the vector of types of agents other thani, andF−i the distribution ofv−i.
Throughout the paper, our algorithms assume access to expectations defined with respect to the
distributionF . We assume these can be computed to within sufficient accuracy via sampling.

A (direct) mechanism is specified by two functionsχ : Rn2n → Ω andρ : Rn2n → R
n in which

χ(v) is the outcome given the reported type profilev, andρi(v) is thepaymentof agenti given
the reported type profilev.1 The utility of an agent for outcomeo and pricep is his value for the
outcome minus the price he pays,vi(o)− p. We say that a mechanism(χ, ρ) is Bayesian incentive
compatible (BIC) if reporting the true type maximizes any player i’s expected utility assuming that
other players also report their true types, that is for everyagenti and typesvi andv′i,

Ev−i∼F−i
[vi(χ(v))− ρi(χ(v))]

≥ Ev−i∼F−i
[vi(χ(v

′
i, v−i))− ρi(χ(v

′
i, v−i))].

Note that this is an interim notion, i.e., the agents choose the strategy that gives them the highest
expected utility after observing their own private value. Similarly, we assume an interim notion of
individual rationality, i.e., each agent’s expected utility conditioned on their private value should
be non-negative.

We considersingle-parametersettings. In these settings, agents’ values are a function of just
one private parameter, called theirtype. As types are represented by a single parameter,vi, the
Bayesian assumption reduces to assuming thatvi is drawn independently from a distributionFi

over the non-negative reals, henceforth referred to as the type distribution of bidderi. We assume
type distributions areregular and hence the correspondingvirtual valuesare non-decreasing (see
Subsection 2.1 for definitions).2

1Note the domain is exponential in general as types may assigndifferent values to each of the2n possible outcomes.
2If the distributions are not regular, we can still apply our techniques using standard ironing arguments of Myer-

son [29].
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In the following subsection, we discuss optimal auction design for single-parameter settings.
We encourage the reader familiar with these subjects to skipto Subsection 2.2 where we define the
problem studied in this paper.

2.1 Optimal Auction Characterization

In his seminal paper, Myerson characterized the revenue of the optimal (i.e., revenue-maximizing)
auction in terms of thevirtual valuesof the agents [29]. We first define virtual values and then
discuss the characterization result.

Definition 1. Suppose typev is drawn independently from a continuous distribution and let F (v) =
Prz[z ≤ v] be the cumulative function andf(v) = F ′(v) be the density function of the distribution.
Then the virtual value functionφ(v) is v − 1−F (v)

f(v)
.

Virtual values may also be defined for discrete distributions.

Definition 2. Suppose typev is drawn independently from a discrete distribution with support
{v1, . . . , vk}. LetF (vj) = Pr[v ≤ vj] andf(vj) = Pr[v = vj]. Then the virtual value function

φ(vj) is vj − 1−F (vj)
f(vj)

(vj+1 − vj) for j < k andφ(vk) = vk.

Note that virtual values may be negative. However, they are non-negative in expectation, a fact
which enables many of our results.

Fact 1. For any distributionF and valuev, the expected virtual valueφ(v) is non-negative. That
is,

Ev∼F [φ(v)] ≥ 0.

We will further assume that the distributions we study areregular, meaning that the corresponding
virtual value function is non-decreasing in the support ofF .

For a mechanism(χ, ρ) in a single-parameter setting, letxi(v) = vi(χ(v))/vi if vi > 0, and
zero otherwise. In Myerson’s characterization, it is the functionx that is relevant for determining
the revenue of the mechanism, and hence in a slight abuse of terminology we will refer tox as the
allocation functioneven though there may be biddersi with xi(v) = 0 that receive copies of the
good (however they do not value the copy of the good because ofthe externalities). Accordingly
definexi(vi) = Ev−i∼F−i

[xi(vi, v−i)] to be agenti’s expected allocation for typevi, where the
expectation is over the types of other players.

In the single-parameter setting with regular distributions, Myerson showed that for any mono-
tone increasing rulex, there is a unique corresponding payment ruleρ such that the resulting
mechanism(χ, ρ) is BIC (whereχ is any function that induces allocation functionx and is not
necessarily unique). The expected revenue of the mechanismis equal to its expected virtual value,
∑

Evi∼Fi
[xi(vi)φi(vi)]. Furthermore, ifx is not monotone increasing, then there is no payment

rule that makes the corresponding mechanism BIC. Restricting attention to BIC mechanisms is
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without loss of generality due to the revelation principle,and so to maximize revenue, one simply
needs to find a ruleχ satisfying all exogenous constraints (e.g., limited supply) whose correspond-
ing feasible allocation functionx is monotone and maximizes expected virtual value. We can
therefore analyze the revenue of any monotone mechanism without explicitly defining the prices.

2.2 Externality Model

In this setting, we assume that each playeri is assignedlocal influence functiongi : 2V → ℜ
which is common knowledge. Following the previous literature on network influence, we assume
that this local influence function is submodular3 for each player, i.e.,gi(S ∪ {j}) − gi(S) ≥
gi(S

′∪{j})−gi(S
′), for all S ⊇ S ′, andj /∈ S. Without loss of generality assumegi is normalized

such thatgi(V ) = 1. Given this function andi’s type vi, defineS(o) = {j : oj = 1} to be the
set of players that are given the good in an outcomeo. Then the value ofi for o is defined to be
vi(o) = vi · gi(S(o)).

For a mechanism(χ, ρ), the allocation functionxi(v) is, by definition,xi(v) = vi(χ(v))/vi =
gi(S(χ(v))) and, invoking Myerson’s characterization, we can write theexpected revenue of the
mechanism as

∑

i E[xi(v)φi(vi)].
We consider two special cases of submodular externalities:concave externalitiesand step-

function externalities.

2.2.1 Concave Externalities

LetN(i) be the neighborhood ofi in G, i.e.,N(i) = {j : (i, j) ∈ E}. In concave externalities, for
each playeri and subsetS, gi(S) = G(|S ∩N(i)|) for some concave functionG(.) if i ∈ S. That
is, the valuation of each bidderi depends onthe numberof his neighbors who have the good but
not their identity, and also the local influence function is the same among all players.

2.2.2 Step-Function Externalities

Step-function externalitiesare a special case of submodular externalities in which the value of the
influence function is 0 if the set of neighbors who receive thegood is empty, and 1 otherwise. Let
N(i) be the neighborhood ofi in G, i.e., N(i) = {j : (i, j) ∈ E}. Formally, bidderi’s local
influence function for an outcomeo in which playersS(o) receive the good is:

gi(S(o)) =

{

1 : i ∈ S(o), |S(o) ∩N(i)| ≥ 1
0 : otherwise

We say that a bidderi is satisfiedby an allocation ifgi(S(o)) = 1, in which casevi(o) =
vi. Otherwise we havegi(S(o)) = vi(o) = 0, and we sayi is not satisfied byo. This models
applications that require just one friend to be of value.

In this setting, for any mechanism(χ, ρ), we havexi(v) = gi(S(χ(v))) = 1 if outcomeχ(v)
satisfies bidderi and zero otherwise. As a result, allocation functionsx must satisfy the condition

3Submodularity is used to model settings in which influence exerts diminishing returns.
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thatxi(v) = 1 only if for at least one (more generally,s) neighborj ∈ N(i) of i, we also have
xj(v) = 1. This means that in the subgraph induced by the allocated agents, every vertex must
have degree at least1 (more generally,s). Call such a subset of agentsfeasible. By the Myerson
characterization discussed above, the optimal auction is thus specified by an allocation function
that, given a type profile, allocates to a feasible subset of agents with maximum sum of virtual
values (note this rule is necessarily monotone). We define our problem formally as follows,

Definition 3. The step-function revenue maximization problem (SFRM) is to find a feasible and
monotone allocation function that maximizes

∑

i E[xi(v)φi(vi)].

Graph-theoretically, the problem of finding an optimal allocation function equates to finding
a subset of vertices of maximum weight whose induced subgraph has no isolated vertices. Un-
fortunately, we show in Section 3 that this problem is more general than theset buyingproblem,
and therefore approximating it within a linear factoron everysampling of values is hard. We also
show that the problem of maximizing theexpectedrevenue (over randomness of values), SFRM,
is APX-hard.

As SFRM is NP-hard to solve optimally, we instead design a polynomial-time monotone allo-
cation function whose expected revenue (as defined by the sumof virtual values) is close to the
optimal expected revenueOPT , where the expectations are over the type distributions. Wesay an
auction is anα-approximationif its expected revenue is at leastα×OPT .

3 Hardness

By Myerson’s characterization of optimal allocations, the problem of finding an optimal allocation
function equates to finding a subset of vertices of maximum weight whose induced subgraph has no
isolated vertices. Unfortunately, since virtual values and hence vertex weights might be negative,
this problem is more general than the set buying problem (see, e.g., Feige et. al. [9]). We prove this
formally in Lemma 1. We next show that SFRM is APX-hard. Therefore SFRM does not admit a
PTAS unless P=NP, which justifies the search for constant factor approximations to the problem in
later sections. The reduction is from a special case of set buying, which we call theprize collecting
set cover problem(PCSC).

Definition 4. A set-buying instanceis specified by a set of elementsU and a collectionF of subsets
ofU . There is a non-negative costc(S) associated with each setS ∈ F , and a non-negative value
v(u) associated with each elementu ∈ U . Theset-buying problemis to pick some subsetsS ⊆ F
to maximize the value of the elements covered by those sets minus the total cost of those sets, that
is
∑

u∈Span(S) v(u)−
∑

S∈S c(S), where Span(S) = ∪S∈SS.

Theorem 2(Feige et al [9]). It is NP-hard to approximate the set-buying problem to within alinear
factor.

Lemma 1. The optimal auction with step-function externalities is NP-hard to approximate to
within a linear factor on every instantiation of values.
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Proof. For any instanceI = (U,S) of the set-buying problem we construct a bipartite graph
GI = ((L,R), E) with a vertexlu ∈ L for eachu ∈ U and a vertexrS ∈ R for eachS ∈ F . We
introduce an edge(lu, rS) ∈ E for any elementu and setS such thatu ∈ S.

Consider an instanceI and social network defined by the corresponding bipartite graphGI .
Let the type distribution of bidderlu bev(u) with probability 1; and let the type distribution4 of
bidderrS be 0 with probability 1/2 andc(S) with probaiblity 1/2. Consider an instantiation of
types in which each bidderlu has typev(u) and each bidderrS has type0. The induced virtual
values arev(u) for each bidderlu and−c(S) for each bidderrS. For any feasible subset of bidders,
include, without loss of generality, all bidderslu ∈ L with an allocated neighborrS ∈ R. Note
that any feasible solution thus corresponds to a solution ofthe set-buying instance with the same
value. The lemma then follows from the inapproximability ofset buying.

The prize-collecting set cover problem (PCSC) is a type of set cover problem in which all sets
and all elements have equal costs and values, respectively.The problem seeks to maximize the
value of covered elements plus the cost of unused sets.

Definition 5. In theprize collecting set cover problem(PCSC), we are given a collection ofn sets
{S1, S2, . . . , Sn} over a universeU . For a collectionC of sets, letQC = ∪i∈CSi. The goal is to
find a collectionC∗ that maximizesα|QC∗ |+ n− |C∗| for someα > 0.

While this is equivalent, in optimality, to the set-buying problem of maximizing the value
of covered elementsminusthe cost of the used sets, the two problems differ in approximability.
The PCSC is easier to approximate: although, as we show, it is APX-hard, there is ae/(e + 1)-
approximation for it. On the other hand, set-buying is not approximable to within a linear factor.
We will show an approximation-preserving reduction from PCSC to SFRM, implying its APX-
hardness. We will then give ane/(e+ 1)-approximation for SFRM.

Lemma 2. There is an approximation preserving reduction from the prize collecting set cover
problem to SFRM.

Proof. Given an instance of the prize collecting set cover problem,where the sets are denoted
{S1, S2, . . . , Sn} and the elements are denotede1, e2, . . . , em, we construct a graph where there
is a vertex for each set and each element, and an edge betweenSi andej if ej ∈ Si. For each
elementej, the value isα with probability1. LetL≫ mnα. For each setSi, the valuation follows
distribution Bernoulli(L − 1, 1/L), so that the virtual valuation is−1 w.p. 1 − 1/L and(L − 1)
w.p. 1/L. To compute the revenue, we letL→∞. There are two events:

1. If at least one set has positive virtual valuation, the solution chooses all such sets and the
corresponding covered elements. The revenue from each set is (L− 1) with probability1/L
for a total contribution to the expected revenue approaching n asL → ∞. To compute the
revenue from the elements, note that there is a set with positive virtual value with probability

4Note this type distribution is not regular (and indeed our positive results hold for arbitrary distributions). For a
reduction using regular distributions, consider drawing types uniform[0, c(S)] and then consider the same instantion
of values as before. The dissatisfying aspect of this proof,and the reason we do not include it, is that the required
instantiation of types is a zero probability event.

9



n/L, in which case the revenue of the elements is at mostαm. Therefore, the contribution to
the expected revenue from the elements isαmn/L → 0 asL → ∞. Therefore, the optimal
solution has contributionn from this event asL→∞, and this solution is trivial to compute.

2. If no set has positive virtual valuation (which happens w.p. 1 − n/L → 1), the solution
chooses the sets (and the elements they cover) of the optimalPCSC solution to get the value
preciselyα|QC∗ | − |C∗|, and this is the contribution from this event.

Therefore, the value of the optimal revenue solution isα|QC∗ | + n − |C∗| asL → ∞, and this
completes the reduction.

Theorem 3. The prize collecting set cover problem (PCSC) isAPX-complete.

Proof. We start with a4-regular graph. On such a graph withn = 152k nodes, for anyǫ > 0, it is
NP-HARD to decide if there is an independent set of size at least(74 − ǫ)k or at most(73 + ǫ)k
(see [6]). Given such a graphG, construct the following prize collecting set cover instance: there
is a setSv for every vertexv, and an elementue for every edgee. Each setSv contains the four
elementsue such that vertexv is adjacent to edgee in G. We further setα = 1/3.

We first note that we can assume, without loss of generality, that any optimal solutionC∗ to
the induced PCSC instance uses only disjoint sets: i.e.,∀i, j ∈ C∗, Si ∩ Sj = ∅. Assume not and
let i, j ∈ C∗ be two sets such thatSi ∩ Sj 6= ∅. Consider the alternative solutionC = C∗ \ {j}.
Since each set contains exactly four elements,QC contains at least|QC∗| − 3 elements, and so the
value ofC is (1/3)|QC |+n−|C| ≥ (1/3)(|QC∗|− 3)+n− (|C∗|− 1) = (1/3)|QC∗ |+n−|C∗|.
Therefore,C is optimal as well.

Now consider a solution in which the chosen setsC are disjoint. Any such solution covers4|C|
vertices and so has valuen+(1/3)|C|, and it corresponds to an independent set of vertices inG of
size|C|. Thus it is NP-hard to distinguish between instances with anoptimal solution of value at
least152k + (1/3)(74− ǫ)k or at most152k + (1/3)(73 + ǫ)k, so it is NP-hard to approximation
PCSC to within a factor of152+(1/3)(74)

152+(1/3)73
≈ 1.002.

Corollary 4. The problem of maximizing the expected revenue is APX-hard.

4 Step-Function Externalities

Although the optimal auction is NP-hard to compute and NP-hard to approximate oneveryinstan-
tiation of values, it is in fact easy to approximate on average. The following very simple allocation
function has expected revenue within a factor1/2 of the optimal expected revenue. In Appendix B,
we show that this can be generalized to a(1/4)-approximation for the limited-supply setting.

Divide vertices into two setsS0 andS1 such that each vertexi ∈ S0 (respec-
tively S1) has a neighbor in the opposing setS1 (respectivelyS0). Note that this can
be done efficiently, e.g. by computing a spanning tree ofG and considering an ar-
bitrary 2-coloring of it. SupposeS0 has higher expected positive virtual value, i.e.,
∑

i∈S0
E[max(φi(vi), 0)] ≥

∑

i∈S1
E[max(φi(vi), 0)]. For each vertexi ∈ S0, choose

10



an arbitrary neighborji ∈ S1. These vertices will be used to make our desired alloca-
tion feasible. LetS+

0 = {i ∈ S : φ(vi) ≥ 0} be the bidders with positive virtual value
in setS0 for a particular instantiation of values, andS ′

1 = {j : j = ji, i ∈ S+
0 } be their

designated neighbors. Then allocate to every bidder inS+
0 ∪ S ′

1.

To see that this is a(1/2)-approximation, note that the expected optimum revenue is at most
∑

i E[max(φi(vi), 0)] since at best a mechanism can extractφi(vi) from all biddersi with pos-
itive virtual value. The above mechanism gets expected revenue

∑

i∈S+

0
E[max(φi(vi), 0)] from

the bidders inS+
0 , which is at least half the optimum expected revenue by linearity of expecta-

tion and our choice ofS+
0 . For biddersj ∈ S ′

1, note thatj’s expected allocation is independent
of its value, i.e., we havexi(vi) = xi for some constantxi. As a result, the revenue fromi is
E[xiφi(vi)] = xiE[φi(vi)]. Thus, since the expected virtual value of any bidder is non-negative
(see Fact 1), the expected revenue of bidders inS ′

1 is non-negative.
Further note that this analysis is tight, as shown by the simple example of a single edge whose

endpoints have value1 with probabilityp and0 with probability1− p for some0 < p < 1. Then
the virtual value is1 with probabilityp and −p

1−p
with probability1 − p. Consider the mechanism

which allocates to both nodes when at least one of them has positive value. The expected revenue
of this mechanism is2p2 + 2p(1 − p)(1 + −p

1−p
) = 2p − 2p2 whereas the(1/2)-approximation

described above has expected revenuep. The ratio of the two approaches1/2 asp→ 0.
The main reason why our analysis can not guarantee better than a 0.5-approximation is that

the upper bound is quite loose. In fact, we show in Example A.1in Appendix A that there exists
a gap of0.75 between the value of the upper bound and the optimum solution. Furthermore, our
mechanism is “close to” athreshold strategyin which each player receives the good whenever
his value surpasses a pre-defined threshold.5 Using thresholds of0 for players inS0 andφ−1(0)
for players inS1 yields a mechanism with the same revenue as that outlined above. We show in
Appendix C that no threshold strategy can have better than0.5 approximation.

In order to improve this approximation ratio, we need to leverage our detailed knowledge
of the graph structure. In the remainder of this section, we present both a greedy and a linear-
programming-based approach that get a0.73-approximation for general distributions. Both ap-
proaches follow the same general auction scheme.

4.1 General Auction Scheme

The key observation is that any auction gets positive contributions from two types of nodes: those
with positive virtual value who also have a neighbor with positive virtual value, and those with
positive virtual value whose neighbors all have negative virtual value. Our general auction scheme
first estimates the relative contributions of these two types and then tailors its strategy accordingly.
In the extremes, where one type contributes most of the revenue, a simple deterministic scheme
has a good approximation. When the contributions are more-or-less equal, we use either a greedy
or LP-based algorithm to get a constant approximation.

5Whether he is thenallocateddepends on whether any of his friends also pass their thresholds and receive the
good.
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To define the auction, we first introduce some notation to capture the contribution from the
types discussed above. For an instantiation of valuesv, let x∗

i (v) be the optimum allocation to
agenti. Then optimal expected revenue isEv[

∑

i x
∗
i (v)φi(vi)]. Fix a playeri and define the

following events:

• P+
i is the event thatφi(vi) ≥ 0 and there existsj ∈ N(i) such thatφj(vj) ≥ 0.

• P−
i is the event thatφi(vi) ≥ 0 and all neighbors ofi have negative virtual value.

• Ni is the event thatφi(vi) < 0.

Observe that the expected revenue of the optimum allocationfrom agenti can be written as

Ev[xi(v)φi(vi)] = Ev[x
∗
i (v)φi(vi)|P+

i ]Pr(P+
i )

+Ev[x
∗
i (v)φi(vi)|Ni]Pr(Ni)

+Ev[x
∗
i (v)φi(vi)|P−

i ]Pr(P−
i )

Define
A∗

i = Ev[x
∗
i (v)φi(vi)|P−

i ]Pr(P−
i ),

B∗
i = Ev[x

∗
i (v)φi(vi)|P+

i ]Pr(P+
i ),

and
C∗

i = Ev[x
∗
i (v)φi(vi)|Ni]Pr(Ni)

(noteC∗
i is negative). LetA∗ =

∑

i A
∗
i , B

∗ =
∑

i B
∗
i , andC∗ =

∑

i C
∗
i (note we do not need to

compute these values in our auction scheme). The auction scheme runs three algorithms and then
takes the best solution, breaking ties randomly. The first algorithm tries to extract a revenue ofA∗;
the second aims for a revenue ofB∗; the third aims for a revenue of(1− 1/e)A∗ + B∗ + C∗.

General Auction Scheme. Run the following three algorithms and output the one
with highest virtual value. In case of a tie, break the tie randomly.

1. Allocate to all nodesi for whichφi(vi) ≥ 0 as well as all nodesi for whichNi

happensandfor some neighborj of i, φj(vj) ≥ 0.
2. Allocate to all nodes for whichP+

i happens.
3. Use one of the below subroutines.

The subroutines are discussed in the following sections. The combinatorial subroutine is greedy
and uses intuition from the greedy algorithm for set cover. The LP-based subroutine uses a depen-
dent randomized rounding scheme. The key property of each subroutine, proved in lemmas in the
corresponding sections, is that each generates revenueR = (1− 1/e)A∗+B∗+C∗. We show that
this implies ane/(e + 1)-approximation for our general auction scheme (the monotonicity of the
auction scheme is discussed at the end of this subsection).

Theorem 5. For any subroutine with expected revenue at least equal toR = (1−1/e)A∗+B∗+C∗,
the approximation guarantee of the general auction scheme is e/(e+ 1) ≈ 0.73.
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Proof. For an instantiation of valuesv, let xi(v) be the expected allocation ofi (over the ran-
domization in the auction scheme). Correspondingly, defineA,B,C for the auction’s allocation
function, and note that the auction scheme’s expected revenue isA+B+C. There are three cases
depending on which algorithm the auction scheme selects. Ifthe auction scheme selects the first
algorithm, thenxi(v) = 1 for all i for whichφi(vi) ≥ 0 soA ≥ A∗ (conditioned on the selection
of the first algorithm). Lemma 3 further shows thatB + C ≥ 0 and so the total revenue of the
auction in this case is at leastA ≥ A∗. If the auction scheme selects the second algorithm, then
xi(v) = 1 for all i such thatP+

i happens, and so the revenue of the scheme is at leastB. In
the optimal allocation,x∗

i (v) also equals1 for all suchi and hence the revenue of the auction is
at leastB = B∗. Finally, if the subroutine is invoked, by assumption it guarantees a revenue of
R = (1− 1/e)A∗ +B∗ + C∗.

The optimal expected revenue is at mostA∗ + B∗ + C∗, and so the approximation ratio of the
auction is at least

min
max(A∗, B∗, (1− 1/e)A∗ +B∗ + C∗)

A∗ + B∗ + C∗
.

For computing the above minimum, normalizeA∗ = 1 and supposeB∗ = x andB∗+C∗ = rx for
0 ≤ r ≤ 1 (suchr exists sinceB∗ + C∗ ≥ 0 by Lemma 3 andC∗ ≤ 0). Thus we want to compute
the minimum ofmax(1, x, 1 − 1/e + xr)/(1 + xr) where0 ≤ r ≤ 1. We can do a case analysis
on the maximum:

1. xr ≤ 1/e. Then, we are minimizingmax(1, x)/(1 + xr). We can setxr = 1/e, so that the
lowest possible value ise/(e+ 1).

2. xr ≥ 1/e andx(1− r) ≤ 1−1/e. Then we have(1−1/e+xr)/(1+xr). Settingxr = 1/e
impliese/(e+ 1).

3. x ≥ 1 andx(1 − r) ≥ 1 − 1/e. Then we havex/(1 + xr). But xr ≤ x + 1/e − 1, so that
we are minimizingx/(x+ 1/e) for x ≥ 1, so that we again havee/(e+ 1).

Thus the approximation ratio ise/(e+ 1) ≈ 0.73.

The proof of the approximation guarantee requires the following technical lemma which shows
that the contribution of a nodei whenP+

i happens outweighs his contribution whenNi happens
(for reasonable allocation rules).

Lemma 3. For any monotone non-decreasing allocation functionx that allocates to nodesi with
φi(vi) < 0 only if there is a neighborj with φj(vj) ≥ 0, and correspondingB,C, we have
B + C ≥ 0.

Proof. We prove the inequality for each nodei separately. LetN(i) be the neighborhood ofi and
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note that:

Bi + Ci = Evi [xi(vi)φi(vi)|P+]Pr(P+)

+Evi [xi(vi)φi(vi)|N ]Pr(N)

= Evi [xi(vi)φi(vi)|P+]Pr(P+)

+(Evi [xi(vi)φi(vi)|N, ∃j ∈ N(i), φj(vj) ≥ 0]

·Pr(∃j ∈ N(i), φj(vj) ≥ 0)Pr(N)

+Evi [xi(vi)φi(vi)|N, ∀j ∈ N(i), φj(vj) < 0]

·Pr(∀j ∈ N(i), φj(vj) < 0))Pr(N).

But by assumption conditioned onN and the event[∀j ∈ N(i), φj(vj) < 0], xi(vi) = 0, and
therefore, lettingE be the event[∃j ∈ N(i), φj(vj) ≥ 0], we have

B + C = Evi [xi(vi)φi(vi)|P+]Pr(φi(vi) ≥ 0) Pr(E)

+Evi [xi(vi)φi(vi)|N,E] Pr(N) Pr(E)

= (Evi [xi(vi)φi(vi)|P+, E]Pr(φi(vi) ≥ 0)

+Evi [xi(vi)φi(vi)|N,E]Pr(N)) Pr(E)

= Evi [xi(vi)φi(vi)|E] Pr(E)

≥ 0,

where the second equality follows because the eventP+
i implies eventE and the last inequality

follows becausex(vi) is a monotone non-decreasing function ofvi asφ(·) is regular and also that
Evi [φi(vi)] ≥ 0 (see Fact 1).

The last step is to show that our auction scheme is BIC by proving that it is monotone. It is easy
to check the monotonicity of the first two algorithms, and also both subroutines used as the third
algorithm. Some attention has to be payed to the cases in which we switch between algorithms
when an agent changes his value. One can check that as a playerincreases his value, if the value
of any of the algorithms increase, that player has to be allocated in the new solution. Thus, when
we consider the set of algorithms that produce the maximum value, the algorithms that are added
to the set of maximizers (if any) allocate that player (possibly some algorithms are dropped out of
the set of maximizers). By our random tie-breaking among algorithms, this does not decrease the
probability of allocation.

4.2 Greedy Subroutine

The greedy subroutine follows intuition from the greedy algorithm for set cover. LetP be the
set of agentsi with non-negative virtual valueφi(vi) ≥ 0 who have neighbors with non-negative
virtual value, i.e.,{i : φi(vi) ≥ 0 and ∃i′ ∈ N(i), φi′(vi′) ≥ 0}. For each nodej with negative
virtual valueφj(vj) < 0, associate a setQj = {i : i ∈ N(j), i /∈ P, φi(vi) ≥ 0}, i.e., Qj is
the set of neighbors ofj with non-negative virtual value who are not inP . If we selectj (which
comes at a cost ofφj(vj)), then we coverQj (gaining revenue equal to the sum of virtual values of
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agentsi ∈ Qj). The greedy subroutine initially selectsP and then iteratively select setsQj whose
marginal “bang-per-buck” is maximized.

Greedy Subroutine.

1. Initialize the set of allocated nodesS ← P .
2. Initialize the bang-per-buck of eachQj to bj = −

∑

i∈Qj
φi(vi)/φj(vj).

3. Repeat until for allQj, bj < 1:

(a) Letj∗ be the node withbj∗ = maxj bj.
(b) SetS ← S ∪ {j∗} ∪Qj∗.
(c) For allQj, updatebj = −

∑

i∈Qj∩(V−S) φi(vi)/φj(vj).

Lemma 4. The expected value of greedy is at least(1− 1/e)A∗ +B∗ + C∗.

Proof. Note that bothOPT and the greedy algorithm select all the vertices inP , and therefore get
revenue ofB∗ from them.

Without loss of generality, assume that the rest of the positive elements all have unit value by
replicating them. Letnj be thenumberof elements (after replication) inQj and letQ∗ be the set
of nodes with negative virtual value thatOPT picks. Therefore,

OPT =
∑

j∈Q∗

(nj − φj(vj))

For eachQj, sort the elements by the decreasing order of the time step greedy covers them (i.e.,
the elements that are covered later have lower ranks). Let the time stamp be some very small value
for any element not covered (i.e., the elements that are not covered have lowest ranks). Notice that
we sort the elements of each set independently, and therefore an element which is in multiple sets
is going to have a possibly different index in each of them. Sowhen greedy covers thei’th element
of a setQj, all the elements1, . . . , i − 1 of that set are uncovered. Note that ifφj(vj) ≤ i then
i is covered by greedy since otherwiseQj has positive value. At the timei is covered by greedy,
the option of picking setQj gives the per-element reward of1 − φj(vj)/i. So we can write the
following lower bound for the value that greedy gets:

∑

j∈Q∗

nj
∑

cj≤i

(1− φj(vj)/i) =
∑

j∈Q∗

(nj − φj(vj)− φj(vj) ln(nj/φj(vj)))

=
∑

j∈Q∗

(φj(vj)(
nj

φj(vj)
− ln(

nj

φj(vj)
))− φj(vj))

≥
∑

j∈Q∗

(φj(vj)(
nj

φj(vj)
(1− 1/e))− φj(vj))

=
∑

j∈Q∗

(nj(1− 1/e)− φj(vj)),

where the inequality followed because for anya ≥ 1, a− ln(a) ≥ a(1− 1/e).
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4.3 LP-Based Subroutine

As discussed above, the main hurdle in the analysis of the simple auction schemes was the loose
upper bound on the optimal expected revenue. In this section, we use a linear program whose
constraints characterize the feasible allocation rules asan upper bound. We then use this LP to
bound the expected revenue of an LP-based subroutine for theauction scheme.

Recall that for each profile of typesv with virtual valuation functions{φi(·)}, the optimal
revenue is equal to the maximum sum of virtual values among feasible allocations. In step-function
externalities, an allocationx(·) is feasible if each vertexi with xi(v) = 1 had a neighborj with
xj(v) = 1. Hence we can write the following LP relaxation of the optimum revenue:

max
x

∑

i xi(v)φi(vi) (1)

s.t. xi(v) ≤
∑

j∈N(i) xj(v) ∀i
0 ≤ xi(v) ≤ 1 ∀i.

Each instantiation of types induces one such LP. As discussed in Section 3, given the instanti-
ation of types, our problem is more general than the set-buying problem studied in Feige et. al. [9]
whose LP-relaxation is shown to have linear gap. Hence the LPvalue might seem like a very loose
upper bound. However, recall that we only require our auction to have close-to-optimal revenue
on average. In other words, we need a rounding scheme whose expected value, over the distribu-
tion of LPs induced by the type distributions, is close to theexpected value of the LPs. Thus we
can perform poorly on hard instances so long as we do well on average, and so LPs with linear
worst-case integrality gaps might still be useful in designing an LP-based subroutine with good
approximation ratios.

LP-Based Subroutine.Solve LP 1 for the instantiation of typesv and letx∗
i (v) be an

optimal solution.
1. For eachi with φi(vi) < 0, give i a copy of the good with probabilityx∗

i (v).
2. For eachi with φi(vi) ≥ 0, give i a copy of the good if it has a neighborj that

either

(a) has non-negative virtual valueφj(j) ≥ 0, or
(b) has negative virtual valueφj(j) < 0 and received the good in step 1.

To use this subroutine in our auction scheme, we must argue its expected revenue is at least
R = (1 − 1/e)A∗ + B∗ + C∗. The analysis of the randomized rounding requires a key lemma:
the LP constraints corresponding to an agenti with positive virtual value must be tight in an
optimal solutionx∗(v). Namely,x∗

i (v) = min(1,
∑

j∈N(i) x
∗
j(v)). Hence to round and get constant

contribution from these agents, we can round the nodes with negative virtual value with probability
equal to their LP values and then round nodes with positive virtual value to one if some neighbor
was rounded to one. To bound the expected allocation of such an agenti in the rounding, we note
that in the worst-case all neighbors ofi have negative virtual value. However, even in this case,
i is allocated so long as at least onej ∈ N(i) receives the good. This happens with probability
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x∗
j for neighborj and so the allocation probability ofi from the rounding scheme is at least1 −

∏

j∈N(i)(1− x∗
j). This is within a(1− 1/e) fraction ofx∗

i .
Let xi(v) be the expected allocation ofi in the subroutine, and defineA,B,C as the expected

revenue contributions from nodes of each type accordingly.

Lemma 5. A ≥ (1− 1/e)A∗.

Proof. First note that conditioned on eventP−, we havex∗
i (v) = min(1,

∑

j∈N(i) x
∗
j(v)), and

xi(v) = 1 −∏

j∈N(i)(1 − x∗
j(v)). Let y =

∑

j∈N(i) x
∗
j(v) andd = |N(i)|. Fixing the value of

∑

j∈N(i) x
∗
j(v), the minimum of1−∏

j∈N(i)(1− x∗
j(v)) happens when all the variables are equal,

in which case we havexi(v) = 1− (1− y
d
)d ≥ 1− 1

ey
. Thus wheny ≤ 1, we havex∗

i (v) = y and

so xi(v)
x∗
i (v)

is at least1−e−y

y
, whose minimum value is equal to1− 1

e
. Wheny ≥ 1, we havex∗

i (v) = 1

and soxi(v)
x∗
i (v)

is at least1− e−y, whose minimum value is again1− 1
e
. Therefore we have

Ai = Evi [xi(vi)φi(vi)|P−]Pr(P−)

≥ (1− 1

e
)Evi [x

∗
i (vi)φi(vi)|P−]Pr(P−)

= (1− 1

e
)A∗

i

Summing overi yields the result.

Theorem 6. The expected revenue of the LP-based subroutine isR = (1− 1/e)A∗ + B∗ + C∗.

Proof. Lemma 5 showsA ≥ (1 − 1/e)A∗. Furthermore, from the construction ofx we see that
conditioned onP+ andN , x andx∗ are equal soB + C = B∗ + C∗. Therefore the total revenue
of the subroutine is at least(1− 1/e)A∗ + B∗ + C∗.

We now prove that the above LP has integrality gap at most0.828. This means that we can not
use the LP solutions as an upper bound in order to get approximation guarantees better than0.828.
We show the gap by proving the gap on the analogous LP for the PCSC, which using the reduction
in Lemma 1 implies the gap on the original LP.

Theorem 7. The above LP has integrality gap at most0.828.

Proof. We construct an LP gap instance for the prize collecting set cover problem. In our instance,
the input is a graph; the sets are vertices and the elements are edges, so that each edge is present
in the sets corresponding to its incident vertices. For ann-vertex graph, the goal is to choose a
subsetX of vertices to maximizeα|E(X)|+ n− |X|, whereE(X) is the subset of edges incident
to some vertex inX.

The LP has a variablexe for each edge, which is1 if the edge is selected in the event that all
vertices in the graph have negative virtual valuation. Similarly, yv is the variable denoting whether
vertexv is selected in the same event. The LP can be reformulated as:

Maximize n−
∑

v

yv + α
∑

e

xe
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xe ≤ yu + yv ∀e = (u, v) ∈ E
xe, yu ∈ [0, 1] ∀e ∈ E, u ∈ V

Consider a complete graph onn vertices, for largen. Defineβ = 1/(αn). Scale the objective
and rewrite it as|E(X)|+(n−|X|)/α = |E(X)|+βn(n−|X|). Set allyv = 1/2 andxe = 1. For
this fractional solution, the objective is approximatelyn2(1 + β)/2. Suppose the optimal integer
solution choosesk vertices and all incident edges. Its value is approximatelynk−k2/2+βn(n−k).
Optimizing overk, we obtaink = n(1 − β), so that the optimal value isn2(1 + β2)/2. The ratio
is therefore(1 + β2)/(1 + β), so thatβ =

√
2− 1. This yields a ratio of2(

√
2− 1) = 0.828.

5 Submodular Externalities

In order to design an approximately optimal mechanism for the more general problem with sub-
modular externalities, we identify a set of mechanisms, called influence-and-exploitmechanisms.
In the following, we first show that a simple random-samplingmechanism which belongs to this
category of mechanisms achieves a0.25-approximate mechanism for this problem. Then, we fo-
cus on optimizing over these mechanisms and design improvedapproximation algorithms for this
problem. We start by defining influence and exploit-mechanisms:

Definition 6. For a fixed pricep and any set of playersS, define the Influence-and-Exploit Mech-
anism IE(S) as follows. Give the good to anyi ∈ V \S regardless of its value and to anyi ∈ S if
his value is more than the thresholdp.

5.1 Constant Approximation

First, we observe that a simple IE mechanism gives a0.25-approximation to the optimal revenue
for the setting of single-parameter submodular externalities. Consider the following algorithm:

• Let S be a random subset of bidders where eachi ∈ S is chosen independently with proba-
bility 1

2
.

• Influence:Give the good to alli ∈ V \ S regardless of the value.
• Exploit: Give the good to a bidderj ∈ S if vj ≥ pj(S), wherepj(S) = φ−1

j,S(0) is the inverse
virtual value of zero for the distributionFj,S.

In order to prove the approximation guarantee, we make use ofthe following lemma.

Lemma 6 ([10]). For a ground setV , let f : 2V → ℜ be a monotone submodular set function.
Form setS by picking elementsi ∈ V independently at random with some fixed probabilityp. Then

E[f(S)] ≥ pE[f(V )]

Define therevenue functionRi(S) = maxp p(1−Fi,S(p)), whereFi,S(p) = Prvi∈Fi
(vigi(S) ≤

p). We first prove that
∑

i Ri(V ) is an upper bound on the revenue of any mechanism.
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Lemma 7. The expected revenue of any Bayesian incentive compatible mechanism is at most
∑

i Ri(V ).

Proof. Recall that we normalizedgi(V ) = 1. As a result,Fi,V (p) = Fi(p). So by definition
Ri(V ) = maxp p(1 − F (p)). Consider any mechanism with allocation functionxi(vi) ≤ 1. By
Myerson’s characterization, the expected revenue of the mechanism is

∑

i Evi [xi(vi)φi(vi)] ≤
∑

i E[max(0, φi(vi))] =
∫∞

φ−1(0)
φi(x)f(x)dx =

∫∞

φ−1(0)
(xf(x) − (1 − F (x)))dx = −x(1 −

F (x))|∞φ−1(0) = pi(S)(1− Fi,S(pi(S))) = Ri(V ).

Lemma 8. If the revenue function is submodular for all agents, then the above mechanism is a
4-approximation of the optimal mechanism.

Proof. Consider any agenti. With probability 1/2, it chosen to be inS. Fixing the setS, the
expected revenue we get fromi is Ri(S) = pi(S)(1 − Fi,S(pi(S))). Now note that each agent is
independently sampled, so over the random choices of the mechanism, and by submodularity of
Ri(S) (proved in lemma 9), the expected revenue fromi (conditioned on being inS) is at least
Ri(V )/2. Since we get this revenue with probability 1/2, the expected revenue fromi is at least
Ri(V )/4. This gives a 4-approximation.

Similar to [18], we may simply assume that the revenue functionRi is monotone and submod-
ular for each bidder, and indeed our result holds for any settings that induce monotone submodular
revenue functions. Interestingly, for the single-parameter submodular setting, the submodularity
of the revenue function follows from the submodularity of the local influence function.

Lemma 9. The revenue function is submodular for the single-parameter submodular externality
setting, and the concave externality setting.

Proof. Consider a playeri with distributionFi overvi. Then

Ri(S) = max
p

p(1− Fi,S(p))

= max
p

p(1− Fi(p/g(S)))

= g(S)max
p′

p′(1− F (p′))

wherep′ = p/g(S). Submodularity ofRi(.) then follows directly from submodularity ofg(.).

Applying the above two lemmas, we conclude that the following:

Theorem 8. There exists a1
4
-approximate IE mechanism to the optimum revenue in the single-

parameter submodular externality model, and thus in the concave externality model.
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5.2 Optimizing over IE Mechanisms

Now that we proved that IE mechanisms achieve a constant-factor approximation to the optimal
revenue, it would be interesting to optimize among IE mechanisms. To do so we need to find a set
V \ S of initial (influential) bidders to get the good regardless of their value, and then exploit the
remaining bidders by setting optimal thresholds as above. Letχ(v) be the outcome of this strategy,
that is,χi(v) = 1 if the good is given toi for the profile of typesv in IE(S). Let Φ(S) be the
expected revenue of IE(S) over the randomization of types. Our goal is to find a subsetS of bidders
that maximizesΦ(S). We do so by arguing thatΦ(S) is a (not necessarily monotone) submodular
function and then using submodular function maximization results. We present the results in this
section with regard to concave externalities in order to keep notation simple; the results extend
easily to the more general submodular externalities. We first characterize the expected revenue of
any IE strategy.

Lemma 10. Let Xi,S(v) = |{j ∈ N(i) : χj(v) = 1}| whereN(i) is the neighborhood ofi
in G. Then the expected revenue of any IE strategy, IE(S), for eachi ∈ S is equal top(1 −
Fi(p))Ev[h(Xi,S(v))] whereh(·) is the concave function defining the externality (i.e.,gi(o) =
oi · h(|{j ∈ N(i) : oj = 1}|)).

Proof. Consider IE(S) with allocation functionx and outcome functionχ. By Myerson’s charac-
terization, we can write the expected revenue ofi in IE(S) as

Ev[xi(v)φi(vi)] = Ev[gi(χ(v))φi(v)]
= Ev[χi(v)h(Xi,S(v))φi(v)].

Note in any IE strategy,χi(v) andχj(v) are independent random variables (whenv is drawn from
F ) for any i 6= j. Thusχi(v) is also independent fromXi,S(v). So we can write the revenue ofi
asE[h(Xi,S(v))]E[χi(v)φi(vi)]. Since we setχi(vi) = 1 whenφ(vi) ≥ 0, E[χi(v)φ(vi)] is equal
to the optimum revenue from distributionFi, which is equal top(1− Fi(p)).

We next prove the key structural property of the revenue function Φ(S) for IE mechanisms,
namely that it is submodular.

Lemma 11. The set functionΦ is a non-negative submodular function ofS.

Proof. First note that each agenti ∈ V \S contributes0 to the revenue, and eachi ∈ S contributes
Φi(S) = p(1− Fi(p))Ev[h(Xi,S(v))], whereXi,S(v) is a random variable denoting the number of
i’s neighbors that are given the good to at profilev, that isXi,S(v) = |{j ∈ N(i) : χj(v) = 1}|. For
all i, S, letFi,S be the discrete distribution (with density functionfi,S) of Xi,S(v) whenv is drawn
from the joint distribution of types. We show submodularityof Φ(.) by proving submodularity of
all Φi(.) for all i, that isΦi(S ∪ {j}) − Φi(S) ≤ Φi(S

′ ∪ {j}) − Φi(S
′), for all S ′ ⊆ S and alli

andj. Submodularity ofΦ(.) follows from submodularity ofΦi(.)’s, sinceΦ(S) =
∑

i 6∈S Φi(S).
Formally forS ⊇ S ′ andj /∈ S,
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Φ(S ∪ {j})− Φ(S) =
∑

i/∈(S∪{j})

Φi(S ∪ {j})−
∑

i/∈S

Φi(S)

=
∑

i/∈(S∪{j})

(Φi(S ∪ {j})− Φi(S))− Φj(S)

=
∑

i/∈(S′∪{j})

(Φi(S ∪ {j})− Φi(S))

−
∑

i∈(S\S′)

(Φi(S ∪ {j})− Φi(S))− Φj(S)

≤
∑

i/∈(S′∪{j})

(Φi(S
′ ∪ {j})− Φi(S

′))

−
∑

i∈(S\S′)

(Φi(S ∪ {j})− Φi(S))− Φj(S)

≤
∑

i/∈(S′∪{j})

(Φi(S
′ ∪ {j})− Φi(S

′))− Φj(S)

≤
∑

i/∈(S′∪{j})

(Φi(S
′ ∪ {j})− Φi(S

′))− Φj(S
′)

= Φ(S ′ ∪ {j})− Φ(S ′),

in which the first inequality follows becauseΦi(.) is submodular, and the second and third inequal-
ities follow becauseΦi(S) is monotone as long asi /∈ S (in contrast toΦ(S)).

In the rest we prove submodularity ofΦi(.). First note that ifi is not a neighbor ofj, then we
have0 = Φi(S ∪ {j})− Φi(S) ≤ Φi(S

′ ∪ {j})− Φi(S
′) = 0. Now assume thati is a neighbor of

j. DefineΦ = Φi(S ∪ {j})− Φi(S). Now we have

Φ = p(1− Fi(p))(Ev[h(Xi,S∪{j}(v))]− Ev[h(Xi,S(v))])

= p(1− Fi(p))(Ek∼Fi,S∪{j}
[h(k)]− Ek∼Fi,S

[h(k)])

= p(1− Fi(p))
∑

k

h(k)(fi,S∪{j}(k)− fi,S(k))

First we show thatfi,S∪{j}(k) = Fj(p)fi,S(k + 1) + (1 − Fj(p))fi,S(k). To compute the
probability thati hask neighbors using strategy IE(S ∪ {j}), we consider two events. First is the
event in whichvj < p, which happens with probabilityFj(p). In this case, we needk − |V \(S ∪
{j})| neighbors ofi in setS to have value more thanp. If this happens when using strategy IE(S),
i is going to havek−|V \(S∪{j})|+ |V \(S∪{j})|+1 = k+1 neighbors that are allocated (note
thatj is in the influence set and therefore allocated). The probability of this event isfi,S(k+1) by
definition. The second event is the event in whichvj ≥ p, which happens with probability1−Fj(p).
In this case, we needk−|V \(S∪{j})|−1 neighbors ofi in setS to have value more thanp. If this
happens when using strategy IE(S), i is going to havek−|V \(S∪{j})|−1+|V \(S∪{j})|+1 = k
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neighbors that are allocated. The probability of this eventis fi,S(k) by definition. Summing up,
we conclude our desired equation,fi,S∪{j}(k) = Fj(p)fi,S(k + 1) + (1− Fj(p))fi,S(k).

As a result,

Φ = p(1− Fi(p))Fj(p)
∑

k

h(k)(fi,S(k + 1)− fi,S(k))

= p(1− Fi(p))Fj(p)
∑

k

fi,S(k)(h(k − 1)− h(k))

Now recall thath is a concave function ofk. As a result,H(k) = h(k − 1) − h(k) is a
non-decreasing function ofk. Therefore,

Φi(S
′ ∪ {j})− Φi(S

′)− (Φi(S ∪ {j})− Φi(S))

= p(1− Fi(p))Fj(p)
∑

k

H(k)(fi,S′(k)− fi,S(k))

= p(1− Fi(p))Fj(p)
∑

k

H(k)(Fi,S′(k)−

Fi,S′(k − 1)− (Fi,S(k)− Fi,S(k − 1)))

= p(1− Fi(p))Fj(p)

·
∑

k

(Fi,S′(k)− Fi,S(k))(H(k)−H(k + 1))

Note that forS ′ ⊃ S,Fi,S′(k) ≥ Fi,S(k). This is because any vertex inS ′\S is always allocated
in IE(S), but only with some probability in IE(S ′), and therefore the probability thati hask or less
allocated neighbors in IE(S) is only less than in IE(S ′). SoFi,S′(k)− Fi,S(k) ≥ 0 for all k. Also,
sinceH is a non-decreasing function,H(k)−H(k + 1) ≤ 0.

It only remains to consider the revenue function ofj when we addj to sets. ForS such that
j /∈ S, we have

Φj(S ∪ {j})− Φj(S) = p(1− Fj(p))Ev[h(Xj,S(v))]

Again, note that forS ′ ⊃ S, Fj,S(k) ≤ Fj,S′(k), therefore

EFj,S′ [h(k)] − EFj,S
[h(k)]

=
∑

k

h(k)(fj,S′(k)− fj,S(k))

=
∑

k

(Fj,S′(k)− Fj,S(k))

·(h(k)− h(k + 1)) ≤ 0

FunctionΦ(.) as described above is non-negative and submodular, but not necessarily mono-
tone. In order to obtain a constant-factor approximation for maximizing over IE mechanisms, we
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can simply apply non-monotone submodular maximization algorithms for this problem [10, 13].
For example, the following simple local search algorithm gives a0.33-approximation to this prob-
lem [10]: (i) Let S = {i|i = argmaxi′∈V (Φ({i′})}, and (ii) at each step either add or remove a
bidderi from S if this adding or removing increases the value ofΦ(S) by a1 + ǫ

n
factor, (ii) After

reaching a local optimalL, output the better ofL and L̄. The above simple algorithm acheives
0.33-approximation for the problem of maximizing over IE strategies. One can apply a recently-
developed randomized local search algorithm to acheive a0.41-approximation of Oveis Gharan
and Vondrak [13] for this problem. We conclude with the following theorem:

Theorem 9. The problem of optimizing over IE mechanisms can be approximated within a factor
0.41 in polynomial time.
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A Loose upper bound

Consider an upper bound on the optimal expected revenue whichis equal to the sum of positive
virtual values. The following example shows that the optimal expected revenue can be just a3/4-
fraction of this upper bound, indicating that better approximations require better upper bounds.

Example A.1. Consider the following tree: there is a root vertex; the root hasn children, called
level1 nodes; and each level 1 node has one child, the level2 nodes. Assume that the distribution
on values is such that the virtual value is1 with probabilityp = 1/2, and−1 with probability1/2.
The upper bound’s value is

∑

i E[max(0, φ(vi))] = (2n + 1)/2. Now consider any pairv1 and
v2. Assuming that the root is always allocated (the best case forthe pair), the optimum solution
is to allocate both when they are positive, onlyv1 when it is the only one with positive value, and
neither otherwise. The expected value of this allocation is3/4. There aren pairs and at best the
optimum can get revenue1 from the root, and so the optimum revenue is at most3

4
n + 1. Hence

the ratio of the optimum to the upper bound is at most
3n
4
+1

2n+1

2

→ 3/4.

B Limited-Supply Setting

All auctions discussed so far assume the auctioneer has an unlimited supply of the good. When
there is a limited supply, we must modify the above techniques to satisfy the supply constraint. The
below theorem shows how to extend our simple(1/2)-approximation presented at the beginning
of Section 4 to get a(1/4)-approximation with limited supply. The LP-based auction also has a
natural extension to the limited-supply setting. Namely, we can add a constraint to the LP forcing
the total number of distributed goods to be at most the supplylimit. However, we can not apply
our rounding scheme directly to this altered LP: it does not satisfy supply constraints (even in
expectation). We leave the problem of rounding this alteredLP as an open question.

Theorem 10. There is a(1/4)-approximation auction for the limited-supply setting.

Proof. Suppose the auctioneer hask copies of the good. Compute a spanning tree of the social
network and color the nodes red and blue such that each red node has a blue neighbor in the
spanning tree (and vice versa). Pick a color uniformly at random and name the nodes of this color
S1 and nodes of the other colorS2. Allocate to thek/2 highest positive virtual values inS1, and
their neighbors inS2 to ensure feasibility. We now compute the expected virtual value of this
allocation for the red nodes. We condition on the eventE that the red nodes were chosen to be set
S1.

Ev[
∑

i red

xi(v)φi(vi)] = Ev[
∑

i red

xi(v)φi(vi)|E] Pr[E]

+Ev[
∑

i red

xi(v)φi(vi)|E] Pr[E]

≥
(

1

2

)

Ev[
∑

i red

xi(v)φi(vi)|E]
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=

(

1

2

)

Ev[ max
S⊆ red:|S|≤k/2

∑

i∈S

φi(vi)]

where the second step follows since the expected allocationof any red nodei is independent of its
value conditioned onE. Therefore by fact 1 each such vertex contributes a non-negative amount
to the revenue. The third step follows since conditioned onE we picked the best set of size at most
k/2 from the red nodes.

Now to prove the approximation guarantee first defineX = E[maxS:|S|≤k

∑

i∈S φ(vi)], and
note this is an upper bound on the optimum revenue, since in the best case we can allocate the
highest (positive)k virtual values. But we know that for any sampling of the values,

max
S:|S|≤k

∑

i∈S

φ(vi) ≤ max
S⊆ red:|S|≤k

∑

i∈S

φ(vi)

+ max
S⊆ blue:|S|≤k

∑

i∈S

φ(vi)

≤ 2 · ( max
S⊆ red:|S|≤k/2

∑

i∈S

φ(vi)

+ max
S⊆blue:|S|≤k/2

∑

i∈S

φ(vi)),

and therefore,

X = E[ max
S:|S|≤k

∑

i∈S

φ(vi)]

≤ 2(E[ max
S⊆S1:|S|≤k/2

∑

i∈S

φ(vi)]

+E[ max
S⊆S2:|S|≤k/2

∑

i∈S

φ(vi)]),

by linearity of expectation. Recalling that the expected value of our allocation is at least

E[ max
S⊆S1:|S|≤k/2

(
∑

i∈S

φi(vi))],

and noting that we picked each of the two sets with probability 1/2 to beS1, we conclude that the
expected revenue of our allocation (over the randomness of the algorithm and sampling of values),
is at least1/4 of the upper bound.

C Threshold Strategies

In this section, we observe that no threshold strategy can have better than0.5 approximation. Our
example compares the value of all possible strategies to theoptimum value, and therefore the
result holds for any upper bound on optimum. Consider a pair ofvertices and assume that the
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virtual value is1 with probabilityp and−p/(1 − p) with probability1 − p. Also assume thatp
is very small. Consider the strategy in which we allocate bothnodes of a pair when at least one
of them has positive value. The value that we get is2p2 + 2p(1 − 2p). Now consider any pricing
strategy. The value we get when we set one of the thresholds equal to −p

1−p
is at mostp. If we set

both thresholds top we getp2. In any case, the ratio of optimum to any pricing strategy goes to 2
asp→ 0.
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