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ABSTRACT
We consider the problem of designing auctions in social net-
works for goods that exhibit single-parameter submodular
network externalities in which a bidder’s value for an out-
come is a fixed private type times a known submodular func-
tion of the allocation of his friends. Externalities pose many
issues that are hard to address with traditional techniques;
our work shows how to resolve these issues in a specific set-
ting of particular interest. We operate in a Bayesian envi-
ronment and so assume private values are drawn according
to known distributions. We prove that the optimal auction
is APX-hard. Thus we instead design auctions whose rev-
enue approximates that of the optimal auction. Our main
result considers step-function externalities in which a bid-
der’s value for an outcome is either zero, or equal to his
private type if at least one friend has the good. For these
settings, we provide a e

e+1
-approximation. We also give

a 0.25-approximation auction for general single-parameter
submodular network externalities, and discuss optimizing
over a class of simple pricing strategies.

Categories and Subject Descriptors
H.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Economics
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1. INTRODUCTION
Many goods have higher value when used in conjunction

with others. A classic example of this phenomenon is the
telephone, which clearly has positive value for a consumer
only if he or she has people to call. Telephones, and other
goods with similar stories, are called networked goods and
said to exhibit network effects or network externalities. Mod-
ern technology has given birth to a new generation of net-
worked goods. Internet services like email, instant messag-
ing, and online social networks are used primarily to connect
with friends and, as such, have strong network externalities.
But even more significantly, these services, particularly on-
line social networks, provide platforms upon which develop-
ers can generate new applications – applications with very
strong networking components. It is now possible to play
poker in Texas HoldEm, visit cafes in Cafe World, and even
be a virtual farmer in the immensely popular FarmVille with
friends in online social networks like Facebook. Such ap-
plications are more fun when used with friends, and many
such applications even explicitly reward players with many
friends. The unique feature of such modern networked goods
is that the underlying social network is explicit. This en-
ables application distributors to use the network structures
to market and sell these goods.

In this paper, we leverage explicit network structure to
design mechanisms for selling networked goods. We primar-
ily focus on goods, such as applications like FarmVille in
online social networks, that are available in unlimited sup-
ply or, more precisely, can be produced at zero marginal
cost. The network externalities of the good are implied by
the private valuations of the social network users. In the
most general case, users have a private value for each possi-
ble allocation of the good to a subset of users. This allows
for arbitrary externalities, enabling say John Doe to value
the good only if Kim Kardashian owns it despite having no
direct relationship to her. While this makes sense for some
goods, like fashion, many network goods like telephones or
social network applications have value to a user only if users
in his or her immediate neighborhood also own the good.
The main focus of the paper is on special case of this sort of
direct externality, which we call step function externalities:
that is, we suppose a user’s value for the good is zero unless



at least one of his or her neighbors or friends in the social
network is also allocated the good.
We study auction mechanisms, or mechanisms that solicit

bids from agents indicating their private value for various
allocations, and then determine an allocation and prices in
a way that maximizes expected revenue. As is common in
economics, we work in a Bayesian setting where, while the
realization of the private value is known only to the agent,
it is drawn according to a commonly known distribution.
Most literature on auction design assumes that agents value
allocations solely based on the bundle of goods they receive,
i.e., they are indifferent for the allocation of the other play-
ers. This is clearly violated in settings with externalities.
Unfortunately, externalities significantly complicate auction
design for the following reasons:

1. The efficient representation of values is no longer a
trivial task, since in the most general case each bid-
der might need to report a value for each subset of
allocated bidders.

2. More dimensions make satisfying incentive constraints
harder (multi-parameter mechanism design is not well
understood).

3. The space of feasible allocations might be more com-
plex, which can make finding the optimal allocation a
computationally hard problem.

4. Furthermore, the complexity of the feasible allocation
space can easily cause the setting to violate downward-
closure, i.e., not every subset of a feasible allocation
is necessarily feasible. Thus the few known results for
multi-parameter mechanism design can not be adopted
generically.

We circumvent the first two issues by assuming a spe-
cial structure on the players’ values, namely that valuations
satisfy step function externalities as defined above. Thus
our problem is a single-parameter one, and so the represen-
tation and incentive constraints straight-forward. Revenue
maximization is also well understood for single-parameter
settings. The seminal paper by Myerson [15] fully charac-
terizes mechanisms that maximize revenue. By this charac-
terization, the expected revenue of any auction is equal to
the expected virtual value of the allocated agents, where
the virtual value of an agent is a function of the valua-
tion and its distribution and may be negative. In our set-
ting, this characterization converts the optimal allocation
problem to a combinatorial optimization problem, which is
to maximize the sum of the virtual values over all feasible
subsets. For step-function externalities, the feasibility con-
straint requires that all allocated agents have a neighbor
who is also allocated. Graph-theoretically, this equates to
finding, in a vertex-weighted graph with possibly negative
vertex weights, a maximum-weight subset of vertices whose
induced subgraph has no singleton components.
Although the optimal auction is easy to define, the third

and fourth issues of auction design with externalities remain
in our setting. We observe via reduction to set-buying that
approximating the optimization problem within even a lin-
ear factor on every sampling of the values is NP-hard. On
the other hand, we only need to find algorithms that per-
form well in expectation rather than in worst case. Even
on average, we prove that our problem remains APX-hard.

However, we are able to design constant approximations for
several versions of the problem.

We first note that there’s a simple (1/2)-approximation
for our problem. The algorithm divides the graph into two
subsets of vertices, such that each vertex in each set has a
neighbor in the other. This can be done, for example, by
constructing a spanning tree of the graph and then taking
a bipartite partitioning of it. The allocation strategy is to
then pick the set with better expected revenue, extract rev-
enue from that set, and allocate to all users in the other set
in order to maintain feasibility. This very simple algorithm
does not use the structure of the social network in any deep
way, and is therefore unable to give better approximations in
even very simple social networks consisting of a single edge.
In order to leverage knowledge of the network structure, we
construct a linear program (LP) whose variables represent
the allocation and whose constraints use the network struc-
ture to characterize feasibility. Our main result shows how to
use this LP formulation to give a e

e+1
≈ 0.73-approximation

to the optimal revenue for any distribution of values. The
interesting observation is that, although the gap of this LP
is linear in the number of agents for a particular instantia-
tion of values, we manage to prove a constant approximation
through a novel average-case analysis of the rounding tech-
nique. We also show that the expected integrality gap of our
LP is 0.828, and thereby bound the approximation ratio of
any LP-based mechanism. In the full version, we also give
a simple greedy-based e

e+1
-approximation for our problem.

We extend our setting to single-parameter submodular ex-
ternalities in which a bidder’s value for an outcome is his
private value times a known function of the set of players
who receive the item. For such settings we study a class of
strategies called influence and exploit in which some bidders
(the influencers) are given the good for free and the remain-
der (the exploited) are offered an optimal price conditioned
on the set of influencers. We show that the revenue is a
submodular function of the set of influencers and hence can
use recent submodular function maximization results [7, 8]
to design an influence-and-exploit strategy whose revenue
is within a 0.41-factor of the optimal influence and exploit
strategy. We also show that a randomization over influence
and exploit strategies gives a 0.25-approximation to the opti-
mal expected revenue by further submodularity arguments.

Related Work. Various settings with positive, negative,
or mixed externalities have been studied in economics as
well as computer science literature. Rohlfs [16] discusses
positive externalities in the telephone industry in which a
person’s value for a telephone increases as more friends use
it. A well-studied scenario with negative externalities is the
allocation of ad slots in which, a company’s valuation for
being listed as one of the sponsored search results decreases
if their competitor is also listed [1, 4, 9, 10, 13, 14]. Finally,
the valuation might have mixed externalities, as in the sale
of nuclear weapons [12], in which countries prefer their allies
rather than their foes to win the auction. Our work can be
viewed as another in this line of literature, which addresses
the difficulties of externalities in a specific setting of practical
import by making application-specific assumptions.

Our work considers auctions with externalities. In con-
trast, some prior work considers instead posted price mech-
anisms [3, 2, 5, 11]. Particularly relevant to our work is that
of Hartline, Mirrokni, and Sundararajan [11]. They consider
the problem of finding a revenue-maximizing sequence of



prices that are offered sequentially to myopic buyers. They
observed that simple influence and exploit strategies have
revenue within a constant factor of the revenue of any equi-
librium of any pricing sequence. They are reminiscent of
our auctions which subsidize certain subsets of agents, and
also our influence and exploit strategies for general single-
parameter submodular externalities. However, unlike Hart-
line, Mirrokni, and Sundararajan [11], we provide approxi-
mation results with regards to the optimal auction revenue,
which can be larger than the upper bound in their paper.

2. PRELIMINARIES
We consider a society of n bidders located on the ver-

tices in a social network G(V,E), where the undirected edges
model friendship. We assume for ease of exposition that the
social network is connected. There is a limited supply k of
a homogeneous good. Unless otherwise specified, we assume
k ≥ n so that the supply is essentially unlimited (equiva-
lently, the good can be reproduced at zero marginal cost).
An outcome o ∈ Ω = {0, 1}n is a distribution of goods

among bidders, where oi = 1 if bidder i receives a copy of
the good and 0 otherwise. Bidder i’s type vi : Ω → R

+ ∪{0}
maps outcomes to non-negative real numbers, where vi(o)
represents his value for outcome o and is positive only if
he receives a copy of the good (i.e., oi = 1). We study
Bayesian mechanism design, in which one assumes that each
type vi(·) is drawn independently from a commonly-known
distribution Fi. Let F = F1 × . . . × Fn be the product
distribution of Fi for all i; v be the vector of types, called
the type profile; v−i be the vector of types of agents other
than i, and F−i the distribution of v−i. Throughout the
paper, our algorithms assume access to expectations defined
with respect to the distribution F . We assume these can be
computed to within sufficient accuracy via sampling.
A (direct) mechanism is specified by two functions χ :

R
n2n → Ω and ρ : Rn2n → R

n in which ρi(v) is the payment
of agent i given the reported type profile v. The utility
of an agent for outcome o and price p is his value for the
outcome minus the price he pays, vi(o) − p. We say that a
mechanism (χ, ρ) is Bayesian incentive compatible (BIC) if
reporting the true type maximizes any player i’s expected
utility assuming that other players also report their true
types, that is for every agent i and types vi and v′i,

Ev−i∼F−i [vi(χ(v))− ρi(χ(v))]

≥ Ev−i∼F−i [vi(χ(v
′
i, v−i))− ρi(χ(v

′
i, v−i))].

Note that this is an interim notion, i.e., the agent’s choose
the strategy that gives them the highest expected utility
after observing their own private value. Similarly, we assume
an interim notion of individual rationality, i.e., each agent’s
expected utility conditioned on their private value should be
non-negative.
We consider single-parameter settings. In these settings,

agents values are a function of just one private parameter,
called their type. As types are represented by a single pa-
rameter, vi, the Bayesian assumption reduces to assuming
that vi is drawn independently from a distribution Fi over
the non-negative reals, henceforth referred to as the type
distribution of bidder i. We assume type distributions are
regular and hence the corresponding virtual values are non-
decreasing (see Subsection 2.1 for definitions).

In the following subsection, we discuss optimal auction de-
sign for single-parameter settings. We encourage the reader
familiar with these subjects to skip to Subsection 2.3 where
we define the problem studied in this paper.

2.1 Optimal Auction Characterization
In his seminal paper [15], Myerson characterized the rev-

enue of the optimal (i.e., revenue-maximizing) auction in
terms of the virtual values of the agents. We first define
virtual values and then discuss the characterization result.

Definition 1. Suppose type vi is drawn independently
from a distribution Fi(v) = Pr[vi ≤ v] and let fi(v) be the
density function of the distribution (note that if the distri-
bution is discrete then fi(v) is simply Pr[vi = v]). Then the

virtual value function φi(v) is v − 1−Fi(v)
fi(v)

.

Note that virtual values may be negative. However, they
are non-negative in expectation, a fact which enables many
of our results.

Fact 1. For any distribution F and value v, the virtual
value φ(v) is non-negative.

We will further assume that the distributions we study are
regular, meaning that the corresponding virtual value func-
tion is non-decreasing in the support of F .

For a mechanism (χ, ρ), let xi(v) = vi(χ(v))/vi if vi > 0,
and zero otherwise. In Myerson’s characterization, it is the
function x that is relevant for determining the revenue of
the mechanism, and hence in a slight abuse of terminology
we will refer to x as the allocation function even though
there may be bidders i with xi(v) = 0 that receive copies of
the good (however they do not value the copy of the good
because of the externalities). Accordingly define xi(vi) =
Ev−i∼F−i [xi(vi, v−i)] to be agent i’s expected allocation for
type vi, where the expectation is over the types of other
players.

In the single-parameter setting with regular distributions,
Myerson showed that for any monotone increasing rule x,
there is a unique corresponding payment rule ρ such that
the resulting mechanism (χ, ρ) is BIC (where χ is any func-
tion that induces allocation function x and is not necessarily
unique). The expected revenue of the mechanism is equal
to its expected virtual value,

∑

Evi∼Fi [xi(vi)φi(vi)]. Fur-
thermore, if x is not monotone increasing, then there is no
payment rule that makes the corresponding mechanism BIC.
Restricting attention to BIC mechanisms is without loss of
generality due to the revelation principle, and so to maxi-
mize revenue, one simply needs to find a rule χ satisfying
all exogenous constraints (e.g., limited supply) whose cor-
responding feasible allocation function x is monotone and
maximizes expected virtual value. We can therefore analyze
the revenue of any monotone mechanism without explicitly
defining the prices.

2.2 Submodular Externalities
In this setting, we assume that each player i is assigned

local influence function gi : 2
V → ℜ which is common knowl-

edge. Following the previous literature on network influence,
we assume that this local influence function is submodular
for each player, i.e., gi(S∪{j})−gi(S) ≥ gi(S

′∪{j})−gi(S),
for all S ⊇ S′, and j /∈ S. Submodularity models the



diminishing return properly and makes sense in this con-
text. Without loss of generality assume gi is normalized
such that gi(V ) = 1. Given this function and i’s type vi,
define S(o) = {j : oj = 1} to be the set of players that are
given the item in an outcome o. Then the value of i for o is
defined to be vi(o) = vi · gi(S(o)).
Given any mechanism (χ, ρ), define the allocation func-

tion xi(v) = gi(S(χ(v))). Using this definition we can write
vi(χ(v)) = vixi(v). Now we can invoke Myerson’s charac-
terization and write the expected revenue of the mechanism
to be

∑

i E[xi(v)φi(vi)].
We consider two special cases of submodular externali-

ties: concave externalities and step-function externalities.
In concave externalities, for each player i and subset S,
gi(S) = G(|S ∩Ni|) for some concave function G(.) if i ∈ S.
That is, the valuation of each bidder i depends on the num-
ber of his neighbors who have the good but not their identity,
and also the local influence function is the same among all
players. Step-function externalities are detailed in the next
section.

2.3 Step-Function Externalities
Step-function externalities are a special case of submodu-

lar externalities in which the value of the influence function
is 0 if the set of neighbors who receive the item is empty,
and 1 otherwise. Let N(i) be the neighborhood of i in G,
N(i) = {j : (i, j) ∈ E}. Formally, bidder i’s value for an
outcome is:

vi(o) =

{

vi : oi = 1, |j ∈ N(i), oj = 1| ≥ 1
0 : otherwise

We say that a bidder i is satisfied by an allocation if
vi(o) = vi. This models applications, like bridge tourna-
ments, that require just one friend to be of value.
In this setting, for any mechanism (χ, ρ), we have xi(v) =

1 if outcome χ(v) satisfies bidder i and zero otherwise. Note
that χ and x may differ on certain bidders i. In particular, it
can be that outcome o = χ(v) gives a good to bidder i (i.e.,
oi = 1) and yet does not satisfy the bidder (i.e., o 6∈ Oi)
so that xi(v) = 0. As a result, allocation functions x must
satisfy the condition that xi(v) = 1 only if for at least one
(more generally, s) neighbor j ∈ N(i) of i, we also have
xj(v) = 1. This means that in the subgraph induced by the
allocated agents, every vertex must have degree at least 1
(more generally, s). Call such a subset of agents feasible. By
the Myerson characterization discussed above, the optimal
auction is thus specified by an allocation function that, given
a type profile, allocates to a feasible subset of agents with
maximum sum of virtual values (note this rule is necessarily
monotone).
Graph-theoretically, the problem of finding an optimal al-

location function equates to finding a subset of vertices of
maximum weight whose induced subgraph has no isolated
vertices. Unfortunately, we show in Section 3 that this prob-
lem is more general than the set buying problem, and there-
fore hard to approximate within a linear factor on every
sampling of values. We also show that the problem of max-
imizing the expected revenue (over randomness of values), is
APX-hard.
As the problem is NP-hard to solve optimally, we in-

stead design a polynomial-time monotone allocation func-
tion whose expected revenue (as defined by the sum of vir-
tual values) is close to the optimal expected revenue OPT ,

where the expectations are over the type distributions. We
say an auction is an α-approximation if its expected revenue
is at least α×OPT .

3. HARDNESS
By Myerson’s characterization of optimal allocations, the

problem of finding an optimal allocation function equates
to finding a subset of vertices of maximum weight whose
induced subgraph has no isolated vertices. Unfortunately,
since virtual values and hence vertex weights might be neg-
ative, this problem is more general than the set buying prob-
lem (see, e.g., Feige et. al. [6]). We prove this formally in
lemma3. We next show that the problem of maximizing the
expected, over the randomness of values, revenue is APX-
hard, and therefore does not admit a PTAS unless P=NP,
which justifies the search for constant factor approximations
to the problem in later sections. The reduction is from a spe-
cial case of set buying, which we call the prize collecting set
cover problem (PCSCP).

Definition 2. A set buying instance is specified by a set
of elements U and a collection F of subsets of U . There is a
non-negative cost c(S) associated with each set S ∈ F , and
a non-negative value v(u) associated with each element u ∈
U . The problem to pick some subsets S ⊆ F to maximize
the value of the elements covered by those sets minus the
total cost of those sets, that is

∑

u∈Span(S) v(u)−
∑

S∈S c(S),

where Span(S) = ∪S∈SS.

Theorem 2 (Feige et al [6]). It is NP-hard to ap-
proximate the set-buying problem to within a linear factor.

Lemma 3. The optimal auction with step-function exter-
nalities is NP-hard to approximate to within a linear factor
on every instantiation of values.

Proof. For any instance I = (U,S) of the set-buying
problem we construct a bipartite graph GI = ((L,R), E)
with a vertex lu ∈ L for each u ∈ U and a vertex rS ∈ R
for each S ∈ F . We introduce an edge (lu, rS) ∈ E for any
element u and set S such that u ∈ S.

Consider an instance I and social network defined by the
corresponding bipartite graph GI . Let the type of bidder
lu be v(u) with probability 1 and the type of bidder rS be
−c(S) with probability 1. Note these point mass distribu-
tions are in fact regular, and furthermore a subset of bidders
with maximum sum of virtual values directly corresponds
to an optimal solution to the set-buying instance. The first
claim follows from the inapproximability of set buying.

The PCSCP is a special case of set buying problem in
which all set and all elements have equal costs and values,
respectively. We first give an approximation preserving re-
duction from PCSCP to our problem, and then prove that
PCSCP is APX-hard, which using the approximation pre-
serving reduction implies the APX-hardness of our problem.

Definition 3. In the prize collecting set cover problem,
there is a collection of n sets {S1, S2, . . . , Sn} over a universe
U . For a collection C of sets, let QC = ∪i∈CSi. The goal
is to find a collection C∗ that maximizes α|QC∗ |+ n− |C∗|
for some α > 0.

Note that this is equivalent to maximizing the value of
covered elements plus the cost of unused sets. While this is



equivalent, in optimality, to maximizing the value of covered
elements minus the cost of the used sets, the two problems
differ in approximability. The PCSCP is easier to approxi-
mate: there is a e/(e+1)-approximation for it. On the other
hand, set-buying is not approximable to within a linear fac-
tor. We will show an approximation-preserving reduction
from PCSCP to our problem and then give an e/(e + 1)-
approximation for our problem.

Lemma 4. There is an approximation preserving reduc-
tion from the prize collecting set cover problem to our prob-
lem.

Proof. Given an instance of the prize collecting set cover
problem, where the sets are denoted {S1, S2, . . . , Sn} and the
elements are denoted e1, e2, . . . , em, we construct a graph
where there is a vertex for each set and each element, and
an edge between Si and ej if ej ∈ Si. For each element ej ,
the value is deterministic α. Let L ≫ mnα. For each set Si,
the valuation follows distribution Bernoulli(L, 1/L), so that
the virtual valuation is −1 w.p. 1 − 1/L and (L − 1) w.p.
1/L.
To compute the revenue, we let L → ∞. There are two

events:

1. If at least one set has positive virtual valuation (which
happens w.p. approximately n/L → 0), the solu-
tion chooses all such sets to obtain expected revenue
n. The expected revenue from the remaining nodes
(sets with negative virtual valuation and elements) is
at most αm/L ≪ 1. Therefore, the optimal solution
has contribution n from this event as L → ∞, and this
solution is trivial to compute.

2. If no set has positive virtual valuation (which happens
w.p. 1−n/L → 1), the value of the solution is precisely
α|QC∗ | − |C∗|, and this is the contribution from this
event.

Therefore, the value of the optimal revenue solution is
α|QC∗ |+n− |C∗| as L → ∞, and this completes the reduc-
tion.

Theorem 5. The prize collecting set cover problem (PC-
SCP) is APX-complete.

Proof. We start with a 4-regular graph. On such a graph
with n = 152k nodes, for any ǫ > 0, it is NP-Hard to decide
if there is an independent set of size at least (74− ǫ)k or at
most (73 + ǫ)k.
Given this graph, construct the following prize collecting

set cover instance: There is a set for every vertex, and an
element for every edge. α is set to 1/3. It is easy to check
that any feasible solution will correspond to choosing an
independent set of vertices, and the incident edges. The
goal becomes to maximize 1

3
(3n+ I), where I is the size

of an independent set. Therefore, the optimal solution has
value (530 − ǫ)k/3, and it is NP-Hard to find a solution
of value (529 + ǫ)k/3, so that the approximation ratio is at
least 530

529
≈ 1.002.

Corollary 6. The problem of maximizing the expected
revenue is APX-hard.

4. STEP-FUNCTION EXTERNALITIES
Although the optimal auction is NP-hard to compute and

NP-hard to approximate on every instantiation of values, it
is in fact easy to approximate on average. The following very
simple allocation function has expected revenue within a fac-
tor 1/2 of the optimal expected revenue. In Appendix A, we
show that this can be generalized to a (1/4)-approximation
for the limited-supply setting.

Divide vertices into two sets S0 and S1 such
that each vertex i ∈ S0 (respectively S1) has
a neighbor in the opposing set S1 (respectively
S0). Note that this can be done efficiently, e.g.
by computing a spanning tree of G and consider-
ing an arbitrary 2-coloring of it. Suppose S0 has
higher expected positive virtual value, that is,
∑

i∈S0

E[max(φi(vi), 0)] ≥
∑

i∈S1

E[max(φi(vi), 0)].

Let S+
0 = {i ∈ S : φ(vi) ≥ 0} be the bidders with

positive virtual value in set S0 for a particular
instantiation of values. Then give a copy of the
good to every bidder i ∈ S+

0 ∪ S1.
1

To see that this is a (1/2)-approximation, note that the
expected optimum revenue is at most

∑

i E[max(φi(vi), 0)]
since at best an auction can extract φi(vi) from all bid-
ders i with positive virtual value. The above strategy gets
expected revenue

∑

i∈S+

0

E[max(φi(vi), 0)] from the bidders

in S+
0 , which is at least half the optimum expected revenue

by linearity of expectation and our choice of S0. Although
a copy of the good is always given to any i ∈ S1, i is not
always satisfied. In particular, for i to be satisfied it needs
to have a neighbor in S+

0 ∪S1. But note that i’s expected al-
location is independent of its value, i.e., we have xi(vi) = xi

for some constant xi. As a result, the revenue from i is
E[xiφi(vi)] = xiE[φi(vi)]. Thus, since the expected virtual
value of any bidder is non-negative (see Fact 1), the expected
revenue of bidders in S1 is non-negative.

Further note that this analysis is tight, as shown by the
simple example of a single edge whose endpoints have value
1 with probability p and 0 with probability 1 − p for some
0 < p < 1. Then the virtual value is 1 with probability p
and −p

1−p
with probability 1 − p. Consider the strategy in

which we allocate both nodes when at least one of them has
positive value. The value that we get is 2p2 + 2p(1− p)(1 +
−p
1−p

) = 2p2+2p(1−2p) = 2p−2p2. The (1/2)-approximation
algorithm described above gets expected value p. The ratio
of the algorithm’s solution to the given strategy goes to 1/2
as p → 0.

There are two reasons why this simple algorithm can not
guarantee better than a 0.5-approximation of the optimum
solution. First, the current upper bound that we are using
is quite loose. Second, the current algorithm gives the good
to a bidder solely based on that bidders value, without con-
sidering the values of its neighbors. We can generalize this
algorithm to a broader class of threshold strategies in which,

1A plausibly more natural strategy would be to select set
S0 based on the instantiation of the virtual values rather
than their expectation. Such a strategy is still monotone,
but bounding its revenue is more complex since the virtual
value of S1 conditional on the selection is now less than zero.



there exists a threshold assigned to each player and he re-
ceives the item when his value passes that threshold. Note
that the simple algorithm falls in that class since each player
is either assigned the threshold of zero, or φ−1(0). We show
in the full version that no threshold strategy can have better
than 0.5 approximation.
In order to improve this approximation ratio, we need to

leverage detailed knowledge of the graph structure. In the
remainder of this section, we present a linear-programming-
based approach that gets a 0.73-approximation for general
distributions. In the full version, we also provide a simple
greedy-based algorithm that gets this same approximation
ratio.

4.1 Linear Program
As discussed above, the main hurdle in the analysis of the

simple auction schemes was the loose upper bound on the
optimal expected revenue. In this section, we significantly
improve the upper bound using linear programs whose con-
straints characterize the feasible allocation rules. We then
use these LPs to bound the expected revenue of an LP-based
auction. As a result, we are able to get a better approxi-
mation ratio and also generalize the setting to non-identical
distributions.
Recall that for each profile of types v with virtual valu-

ation functions {φi(·)}, the optimal revenue is equal to the
maximum sum of virtual values among feasible allocations.
In step-function externalities, an allocation x(·) is feasible if
each vertex i with xi(v) = 1 had a neighbor j with xj(v) = 1.
Hence we can write the following LP relaxation of the opti-
mum revenue:

max
x

∑

i xi(v)φi(vi) (1)

s.t. xi(v) ≤
∑

j∈N(i) xj(v) ∀i
0 ≤ xi(v) ≤ 1 ∀i.

Each instantiation of types induces one such LP. As dis-
cussed in Section 3, given the instantiation of types, our
problem is more general than the set-buying problem stud-
ied in Feige et. al. [6] whose LP-relaxation is shown to have
linear gap. Hence the LP value might seem like a very loose
upper bound. However, recall that we only require our auc-
tion to have close-to-optimal revenue on average. In other
words, we need a rounding scheme whose expected value,
over the distribution of LPs induced by the type distribu-
tions, is close to the expected value of the LPs. Thus we can
perform poorly on hard instances so long as we do well on
average, and so LPs with linear worst-case integrality gaps
might still be useful in designing an LP-based auction with
constant approximation ratios.

4.2 Auction Scheme
We present an LP-based auction whose expected value is

within a constant factor of the expected LP value. Note
the LP gets positive contributions from two types of nodes:
those with positive virtual value who also have a neighbor
with positive virtual value, and those with positive virtual
value whose neighbors all have negative virtual value. Our
auction first estimates the relative contributions of these two
types and then tailors its strategy accordingly. In the ex-
tremes, where one type contributes most of the revenue,
a simple deterministic scheme has a good approximation.

When the contributions are more-or-less equal, we use a ran-
domized rounding of the LP solution.

To define the auction, we first introduce some notation
to capture the LP contribution from the types discussed
above. For an instantiation of values v, let x∗

i (v) be the
optimum LP value of variable x∗

i (v). Recall that the LP
for any instantiation v bounds the optimal revenue for that
instantiation and hence the optimal expected revenue is at
most Ev[maxx

∑

i xi(v)φi(vi)] = Ev[
∑

i x
∗
i (v)φi(vi)]. Fix a

player i and define the following events:

• P+
i is the event that φi(vi) ≥ 0 and there exists j ∈

N(i) such that φj(vj) ≥ 0.

• P−
i is the event that φi(vi) ≥ 0 and all neighbors of i

have negative virtual value.

• Ni is the event that φi(vi) < 0.

Observe that the expected revenue of the optimum alloca-
tion from agent i can be written as

Ev[x
∗
i (v)φi(vi)] = Ev[x

∗
i (v)φi(vi)|P+

i ]Pr(P+
i )

+Ev[x
∗
i (v)φi(vi)|Ni]Pr(Ni)

+Ev[x
∗
i (v)φi(vi)|P−

i ]Pr(P−
i )

Define

A∗
i = Ev[x

∗
i (v)φi(vi)|P−

i ]Pr(P−
i ),

B∗
i = Ev[x

∗
i (v)φi(vi)|P+

i ]Pr(P+
i ),

and

C∗
i = Ev[x

∗
i (v)φi(vi)|Ni]Pr(Ni)

(note C∗
i is negative). The auction works as follows.

LP-Based Auction. Compute A∗ =
∑

i A
∗
i ,

B∗ =
∑

i B
∗
i , and C∗ =

∑

i C
∗
i , where the ex-

pectation is computed via sampling, and let R =
(1−1/e)A∗+B∗+C∗. Solve LP 1 for the instan-
tion of types v and let x∗ be an optimal solution.
If

• A∗ ≥ max(B∗, R), allocate to all the nodes
i for which φi(vi) ≥ 0 as well as all nodes
i for which Ni happens and the LP value
x∗
i (v) > 0,

• else if B∗ ≥ max(A∗, R), allocate to all the
nodes for which P+

i happens.

Otherwise
1. For each i with φi(vi) < 0, give i a copy of

the good with probability x∗
i (v).

2. For each i with φi(vi) ≥ 0, give i a copy of
the good if it has a neighbor j that either

(a) has non-negative virtual value φj(j) ≥
0, or

(b) has negative virtual value φj(j) < 0 and
received a copy of the good in step 1.

4.3 Analysis
The proof of the approximation guarantee requires two

technical lemmas that appear at the end of this section. The
first lemma shows that the contribution of a node i when P+

i

happens outweighs his contribution when N happens (for



reasonable allocation rules). The second lemma provides the
key argument for the analysis of the randomized rounding
step: the LP constraints corresponding to an agent i with
positive virtual value must be tight in an optimal solution
x∗(v). Namely, x∗

i (v) = min(1,
∑

j∈N(i) x
∗
j (v)). Hence to

round and get constant contribution from these agents, we
can round the nodes with negative virtual value with prob-
ability equal to their LP values and then round nodes with
positive virtual value to one if some neighbor was rounded
to one. To bound the expected allocation of such an agent i
in the rounding, we note that in the worst-case all neighbors
of i have negative virtual value. However, even in this case,
i is allocated so long as at least one j ∈ N(i) receives the
good. This happens with probability x∗

j for neighbor j and
so the allocation probability of i from the rounding scheme
is at least 1 − ∏

j∈N(i)(1 − x∗
j ). This is within a (1 − 1/e)

fraction of x∗
i .

Theorem 7. The LP-based auction is a e/(e+1) ≈ 0.73
approximation.

Proof. For an instantiation of values v, let xi(v) be the
expected allocation of i (over the randomization of the auc-
tion). Correspondingly, define Ai, Bi, Ci and A,B,C for the
auction’s allocation function as we did for the LP. There are
three cases.
If B∗ ≥ max(A∗, R), then xi(v) ∈ {0, 1} and is 1 only for

those i for which P+
i happens. In the LP, x∗

i (v) also equals 1
for all such i and hence the revenue of the auction B = B∗.
If A∗ ≥ max(B∗, R), then xi(v) = 1 for all i for which

φi(vi) ≥ 0 so A ≥ A∗. Lemma 8 further shows that B+C ≥
0 and so the total revenue of the auction is at least A ≥ A∗.
Finally, if R ≥ max(A∗, B∗), then Lemma 9 shows A ≥

(1 − 1/e)A∗. Furthermore, from the construction of x we
see that conditioned on P+ and N , x and x∗ are equal so
B+C = B∗+C∗. Therefore the total revenue of the auction
is at least (1− 1/e)A∗ +B∗ + C∗

The optimal expected revenue is at most A∗ + B∗ + C∗,
and so the approximation ratio of the auction is at least

min
max(A∗, B∗, (1− 1/e)A∗ +B∗ + C∗)

A∗ +B∗ + C∗
.

For computing the above minimum, normalize A∗ = 1 and
suppose B∗ = x and B∗ + C∗ = rx for 0 ≤ r ≤ 1 (such r
exists since B∗ + C∗ ≥ 0 by Lemma 8 and C∗ ≤ 0). Thus
we want to compute the minimum of max(1, x, 1 − 1/e +
xr)/(1+ xr) where 0 ≤ r ≤ 1. We can do a case analysis on
the maximum:

1. xr ≤ 1/e. Then, we are minimizing max(1, x)/(1+xr).
We can set xr = 1/e, so that the lowest possible value
is e/(e+ 1).

2. xr ≥ 1/e and x(1 − r) ≤ 1 − 1/e. Then we have
(1 − 1/e + xr)/(1 + xr). Setting xr = 1/e implies
e/(e+ 1).

3. x ≥ 1 and x(1 − r) ≥ 1 − 1/e. Then we have x/(1 +
xr). But xr ≤ x+ 1/e− 1, so that we are minimizing
x/(x+1/e) for x ≥ 1, so that we again have e/(e+1).

Thus the approximation ratio is e/(e+ 1) ≈ 0.73.

Lemma 8. For any monotone non-decreasing allocation
function x that allocates to nodes i with φi(vi) < 0 only if
there is a neighbor j with φj(vj) ≥ 0, and corresponding
B,C, we have B − C ≥ 0.

Proof. We prove the inequality for each node i sepa-
rately. Let N(i) be the neighborhood of i and note that:

Bi − Ci = Evi [xi(vi)φi(vi)|P+]Pr(P+)

+Evi [xi(vi)φi(vi)|N ]Pr(N)

= Evi [xi(vi)φi(vi)|P+]Pr(P+)

+(Evi [xi(vi)φi(vi)|N, ∃j ∈ N(i), φj(vj) ≥ 0]

·Pr(∃j ∈ N(i), φj(vj) ≥ 0)Pr(N)

+Evi [xi(vi)φi(vi)|N, ∀j ∈ N(i), φj(vj) < 0]

·Pr(∀j ∈ N(i), φj(vj) < 0))Pr(N).

But by assumption conditioned on N and the event [∀j ∈
N(i), φj(vj) < 0], x∗

i (vi) = 0, and therefore, letting E be
the event [∃j ∈ N(i), φj(vj) ≥ 0], we have

B − C = Evi [xi(vi)φi(vi)|P+]Pr(φi(vi) ≥ 0)Pr(E)

+Evi [xi(vi)φi(vi)|N,E] Pr(N) Pr(E)

= (Evi [x
∗
i (vi)φi(vi)|P+, E]Pr(φi(vi) ≥ 0)

+Evi [x
∗
i (vi)φi(vi)|N,E]Pr(N)) Pr(E)

= Evi [x
∗
i (vi)φi(vi)|E] Pr(E)

≥ 0,

where the second equality follows because the event P+
i im-

plies event E and the last inequality follows because x∗(vi)
is a monotone non-decreasing function of vi as φ(·) is regular
and also that Evi [φi(vi)] = 0 (see Fact 1).

Lemma 9. If R ≥ max(A∗, B∗), then A ≥ (1− 1/e)A∗.

Proof. First note that conditioned on event P−, we have
x∗
i (v) = min(1,

∑

j∈N(i) x
∗
j (v)), and xi(v) = 1−∏

j∈N(i)(1−
x∗
j (v)). Let y =

∑

j∈N(i) x
∗
j (v) and d = |N(i)|. Fixing the

value of
∑

j∈N(i) x
∗
j (v), the minimum of 1 −

∏

j∈N(i)(1 −
x∗
j (v)) happens when all the variables are equal, in which

case we have xi(v) = 1 − (1 − y
d
)d ≥ 1 − 1

ey
. Thus when

y ≤ 1, we have x∗
i (v) = y and so xi(v)

x∗
i
(v)

is at least 1−e−y

y
,

whose minimum value is equal to 1− 1
e
. When y ≥ 1, we have

x∗
i (v) = 1 and so xi(v)

x∗
i
(v)

is at least 1− e−y, whose minimum

value is again 1− 1
e
. Therefore we have

Ai = Evi [xi(vi)φi(vi)|P−]Pr(P−)

≥ (1− 1

e
)Evi [x

∗
i (vi)φi(vi)|P−]Pr(P−)

= (1− 1

e
)B∗

i

Summing over i yields the result.

4.4 Integrality Gap
We now prove that the above LP has integrality gap at

most 0.828. This means that we can not use the LP solutions
as an upper bound in order to get approximation guarantees
better than 0.828. We show the gap by proving the gap on
the analogous LP for the PCSCP, which using the reduction
in lemma 3 implies the gap on the original LP.

Theorem 10. The above LP has integrality gap at most
0.828.

Proof. We construct an LP gap instance for the prize
collecting set cover problem. In our instance, the input is
a graph; the sets are vertices and the elements are edges,



so that each edge is present in the sets corresponding to
its incident vertices. For an n-vertex graph, the goal is to
choose a subset X of vertices to maximize α|E(X)|+n−|X|,
where E(X) is the subset of edges incident to some vertex
in X.
The LP has a variable xe for each edge, which is 1 if the

edge is selected in the event that all vertices in the graph
have negative virtual valuation. Similarly, yv is the variable
denoting whether vertex v is selected in the same event. The
LP can be reformulated as:

Maximize n−
∑

v

yv + α
∑

e

xe

xe ≤ yu + yv ∀e = (u, v) ∈ E
xe, yu ∈ [0, 1] ∀e ∈ E, u ∈ V

Consider a complete graph on n vertices, for large n. By
appropriate scaling, let us rewrite the objective as |E(X)|+
αn(n − |X|). Set all yv = 1 and xe = 1/2. For this frac-
tional solution, the objective is approximately n2(1 + α)/2.
Suppose the optimal integer solution chooses k vertices and
all incident edges. Its value is approximately nk − k2/2 +
αn(n − k). Optimizing over k, we obtain k = n(1 − α), so
that the optimal value is n2(1+α2)/2. The ratio is therefore
(1 + α2)/(1 + α), so that α =

√
2− 1. This yields a ratio of

2(
√
2− 1) = 0.828.

5. SUBMODULAR EXTERNALITIES
In order to design an approximately optimal mechanism

for the more general problem with submodular externalities,
we identify a set of mechanisms, called influence-and-exploit
mechanisms. In the following, we first show that a simple
random-sapling mechanism which belongs to this category
of mechanisms achieves a 0.25-approximate mechanism for
this problem. Then, we focus on optimizing over these mech-
anisms and design improved approximation algorithms for
this problem. We start by defining influence and exploit-
mechanisms:

Definition 4. Let S be a set of users, called the influence
set. For a fixed price p and any set of players S, define the
Influence-and-Exploit Mechanism IE(S) as follows. Give the
item to any i ∈ V \S regardless of its value. Give the item
to any i ∈ S if his value is more than the threshold p.

5.1 Constant Approximation
First, we observe that a simple IE mechanism gives a

0.25-approximation to the optimal revenue for the setting
of single-parameter submodular externalities. Consider the
following algorithm:

• Let S be a random subset of bidders where each i ∈ S
is chosen independently with probability 1

2
.

• Influence: Give the good to all i ∈ V \ S regardless of
the value.

• Exploit: Give the good to a bidder j ∈ S if vj ≥
pj(S), where pj(S) = φ−1

j (0) is the inverse virtual
value of zero for the distribution Fj,S , where Fj,S(p) =
Prvj∈Fj (vjgj(S)) ≤ p).

In order to prove the approximation guarantee, we make
use of the following lemma.

Lemma 11 ([7]). For a ground set V , Let f : 2V →
ℜ be a monotone submodular set function. Form set S by
picking elements i ∈ V independently at random with some
fixed probability p. Then

E[f(S)] ≥ pE[f(V )]

Now define the revenue function Ri(S) = maxp p(1 −
Fi,S(p)). We first prove that

∑

i Ri(V ) is an upper bound
on the revenue of any mechanism.

Lemma 12. The expected revenue of any truthful mecha-
nism is at most

∑

i Ri(V ).

Proof. Recall that we normalized gi(V ) = 1. As a re-
sult, Fi,V (p) = Fi(p). So by definition Ri(V ) = maxp p(1−
F (p)). Consider any mechanism with allocation function
xi(vi) ≤ 1. By Myerson’s characterization, the expected
revenue of the mechanism is

∑

i

Evi [xi(vi)φi(vi)] ≤
∑

i

E[max(0, φi(vi))]

=

∫ ∞

φ−1(0)

φi(x)f(x)dx

=

∫ ∞

φ−1(0)

(xf(x)− (1− F (x)))dx

= −x(1− F (x))|∞φ−1(0)

= pi(S)(1− Fi,S(pi(S)))

= Ri(V ).

Lemma 13. If the revenue function is submodular for all
agents, then the above mechanism is a 4-approximation of
the optimal mechanism.

Proof. Consider any agent i. With probability 1/2, it
chosen to be in S. Fixing the set S, the expected revenue we
get from i is Ri(S) = pi(S)(1−Fi,S(pi(S))). Now note that
each agent is independently sampled, so over the random
choices of the mechanism, and by submodularity of Ri(S),
the expected revenue from i (conditioned on being in S) is
at least Ri(V )/2. Since we get this revenue with probability
1/2, the expected revenue from i is at least Ri(V )/4. This
gives a 4-approximation.

Similar to [11], we may simply assume that the revenue
function Ri is monotone and submodular for each bidder,
and indeed our result holds for any settings that induce
monotone submodular revenue functions. Interestingly, for
the single-parameter submodular setting, the submodular-
ity of the revenue function follows from the submodularity
of the local influence function.

Lemma 14. The revenue function is submodular for the
single-parameter submodular externality setting and the con-
cave externality setting.

Proof. Consider a player i with distribution Fi over vi.
Then

Ri(S) = max
p

p(1− Fi,S(p))

= max
p

p(1− Fi(p/g(S)))

= g(S)max
p′

p′(1− F (p′))



where p′ = p/g(S). Submodularity of Ri(.) then follows
directly from submodularity of g(.).

Applying the above two lemmas, we conclude that the
following:

Theorem 15. There exists a 1
4
-approximate IE mecha-

nism to the optimum revenue in the single-parameter sub-
modular externality model, and thus in the concave exter-
nality model.

5.2 Optimizing over IE Mechanisms
Now that we proved that IE mechanisms achieve constant-

factor approximation to the optimal revenue, it would be
interesting to optimize among IE mechanisms. To do so
we need to find a set V \ S of initial (influential) bidders
to get the item regardless of their value, and then exploit
the remaining bidders S by setting optimal thresholds as
above. Let xS(v) be the outcome of this strategy, that is,
xi,S(v) = 1 if the item is given to i for the profile of types
v in IE(S). Let Φ(S) be the expected revenue of IE(S).
Our goal is to find a subset S of bidders that maximizes
Φ(S). We do so by arguing that Φ(S) is a (not necessarily
monotone) submodular function and then using submodular
function maximization results. We present the results in this
section with regard to concave externalities in order to keep
notation simple; the results extend easily to the more general
submodular externalities. We first characterize the expected
revenue of any IE strategy.

Lemma 16. Let Xi,S(v) = |{j ∈ N(i) : χj(v) = 1}|.
Then the expected revenue of any IE strategy, IE(S), for
each i ∈ S is equal to p(1 − Fi(p))Ev[h(Xi,S(v))] where
h(·) is the concave function defining the externality (i.e.,
gi(o) = oi · h(|{j ∈ N(i) : oj = 1}|)).

Proof. Consider IE(S) with allocation function x and
outcome function χ. By Myerson’s characterization, we can
write the expected revenue of i in IE(S) as

Ev[xi(v)φi(vi)] = Ev[gi(χ(v))φi(v)]
= Ev[χi(v)h(Xi,S(v))φi(v)].

Note in any IE strategy, χi(v) and χj(v) are independent
random variables (when v is drawn from F ) for any i 6= j.
Thus χi(v) is also independent from Xi,S(v). So we can
write the revenue of i as E[h(Xi,S(v))]E[χi(v)φi(vi)]. Since
we set χi(vi) = 1 when φ(vi) ≥ 0, E[χi(v)φ(vi)] is equal to
the optimum revenue from distribution Fi, which is equal to
p(1− F (p)).

We next prove the key structural property of the revenue
function Φ(S) for IE mechanisms, namely that it is submod-
ular.

Lemma 17. The set function Φ is a non-negative submod-
ular function of S.

Proof. First note that each agent i ∈ V \S contributes
0 to the revenue, and each i ∈ S contributes

p(1− F (p))Ev[g(Xi,S(v))],

where Xi,S(v) is a random variable denoting the number of
i’s neighbors that are given the item to at profile v, that
is Xi,S(v) =

∑

j∈N(i) xi,S(v). For all i, S, let Fi,S be the

distribution (with density function fi,S) of Xi,S(v) when v

is drawn from the joint distribution of types. We show sub-
modularity of Φ(.) by proving submodularity of all Φi(.) for
all i, that is Φi(S∪{j})−Φi(S) ≤ Φi(S

′∪{j})−Φi(S
′), for all

S′ ⊆ S and all i and j. Submodularity of Φ(.) follows from
submodularity of Φi(.)’s, since Φ(S) =

∑

i 6∈S Φi(S), and
First note that if i is not a neighbor of j, then we have 0 =
Φi(S∪{j})−Φi(S) ≤ Φi(S

′∪{j})−Φi(S
′) = 0. Now assume

that i is a neighbor of j. Define Φ = Φi(S ∪ {j}) − Φi(S).
Now we have

Φ = p(1− F (p))(Ev[g(Xi,S∪{j}(v))]− Ev[g(Xi,S(v))])

= p(1− F (p))(Ek∼Fi,S∪{j}
[g(k)]− Ek∼Fi,S

[g(k)])

= p(1− F (p))
∑

k

g(k)(fi,S∪{j}(k)− fi,S(k))

Note that we can write fi,S∪{j}(k) = F (p)fi,S(k + 1) +
(1− F (p))fi,S(k). As a result,

Φ = p(1− F (p))F (p)
∑

k

g(k)(fi,S(k + 1)− fi,S(k))

= p(1− F (p))F (p)
∑

k

fi,S(k)(g(k − 1)− g(k))

Now recall that g is a concave function of k. As a result,
G(k) = g(k − 1) − g(k) is a non-decreasing function of k.
Therefore,

Φi(S
′ ∪ {j})− Φi(S

′)− (Φi(S ∪ {j})− Φi(S))

= p(1− F (p))F (p)
∑

k

G(k)(fi,S′(k)− fi,S(k))

= p(1− F (p))F (p)
∑

k

G(k)(Fi,S′(k)−

Fi,S′(k − 1)− (Fi,S(k)− Fi,S(k − 1)))

= p(1− F (p))F (p)

·
∑

k

(Fi,S′(k)− Fi,S(k))(G(k)−G(k + 1))

Note that for S′ ⊃ S, Fi,S′(k) ≥ Fi,S(k), and therefore
Fi,S′(k) − Fi,S(k) ≥ 0 for all k. Also, Since G is a non-
decreasing function, G(k)−G(k + 1) ≤ 0.

It only remains to consider the revenue function of j when
we add j to sets. If For S such that j /∈ S, we have

Φj(S ∪ {j})− Φj(S) = p(1− F (p))Ev[g(Xj,S(v))]

Again, note that for S′ ⊃ S, Fj,S(k) ≤ Fj,S′(k), therefore

EFj,S′ [g(k)] − EFj,S
[g(k)]

=
∑

k

g(k)(fj,S′(k)− fj,S(k))

=
∑

k

(Fj,S′(k)− Fj,S(k))

·(g(k)− g(k + 1)) ≤ 0

Function Φ(.) as described above is non-negative and sub-
modular, but not necessarily monotone. In order to ob-
tain a constant-factor approximation for maximizing over IE
mechanisms, we can simply apply non-monotone submodu-
lar maximization algorithms for this problem [7, 8]. For
example, the following simple local search algorithm gives a
0.33-approximation to this problem[7]: (i) Let S = {v|v =
argmaxmaxi∈V (Φ({i})}, and (ii) at each step either add or



remove a bidder i from S if this adding or removing increases
the value of Φ(S) be a 1+ ǫ

n
factor, (ii) After reaching a local

optimal L, output the better of L and L̄. The above sim-
ple algorithm achieves 0.33-approximation for the problem
of maximizing over IE strategies. One can apply a recently-
developed randomized local search algorithm [8] to achieve
a 0.41-approximation for this problem.
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APPENDIX

A. LIMITED-SUPPLY SETTING

Theorem 18. There is a (1/4)-approximate auction for
the limited-supply setting.

Proof. Suppose that the auctioneer has k copies of the
good. Compute a spanning tree of the social network and
color the nodes red and blue such that each red node has a
blue neighbor in the spanning tree (and vice versa). Pick a
color uniformly at random and name the nodes of this color
S1 and nodes of the other color S2. Allocate to the k/2 high-
est positive virtual values in S1, and their neighbors in S2

to ensure feasibility. We now compute the expected virtual
value of this allocation for the red nodes. We condition on
the event E that the red nodes were chosen to be set S1.

Ev[
∑

i red

xi(v)φi(vi)] = Ev[
∑

i red

xi(v)φi(vi)|E] Pr[E]

+Ev[
∑

i red

xi(v)φi(vi)|E] Pr[E]

≥
(

1

2

)

Ev[
∑

i red

xi(v)φi(vi)|E]

=

(

1

2

)

Ev[ max
S⊆ red:|S|≤k/2

∑

i∈S

φi(vi)]

where the second step follows since the expected allocation
of any red node i is independent of its value conditioned
on E. Therefore by fact 1 each such vertex contributes a
non-negative amount to the revenue. The third step follows
since conditioned on E we picked the best set of size at most
k/2 from the red nodes.

Now to prove the approximation guarantee first define
X = E[maxS:|S|≤k

∑

i∈S φ(vi)], and note this is an upper
bound on the optimum revenue, since in the best case we
can allocate the highest (positive) k virtual values. But we
know that for any sampling of the values,

max
S:|S|≤k

∑

i∈S

φ(vi) ≤ max
S⊆ red:|S|≤k

∑

i∈S

φ(vi)

+ max
S⊆ blue:|S|≤k

∑

i∈S

φ(vi)

≤ 2 · ( max
S⊆ red:|S|≤k/2

∑

i∈S

φ(vi)

+ max
S⊆blue:|S|≤k/2

∑

i∈S

φ(vi)),

and therefore,

X = E[ max
S:|S|≤k

∑

i∈S

φ(vi)]

≤ 2(E[ max
S⊆S1:|S|≤k/2

∑

i∈S

φ(vi)]

+E[ max
S⊆S2:|S|≤k/2

∑

i∈S

φ(vi)]),

by linearity of expectation. Recalling that the expected
value of our allocation is at least

E[ max
S⊆S1:|S|≤k/2

(
∑

i∈S

φi(vi))],

and noting that we picked each of the two sets with proba-
bility 1/2 to be S1, we conclude that the expected revenue
of our allocation, is at least 1/4 of the upper bound.


