
A Case Study: Proving Paxos with the IOA Toolkit �Ni
ole Immorli
a, Toh Ne Win yMay 25, 2002Abstra
tPaxos is an important distributed algorithm that implements
onsensus in the presen
e ofstopping failures. It was introdu
ed by Leslie Lamport in 1990 and published in 1998 [8℄. Inthis paper, we present a formal safety proof of the Paxos algorithm using an intera
tive theoremprover. Using the I/O automaton [13℄ model of Paxos from Lyn
h and Shvartsman [11℄, wede�ne a forward simulation from Paxos to the
onsensus spe
i�
ation using several intermediateautomata and present and prove invariants of ea
h automaton. Through this
ase study, wehighlight the power and use of the IOA language and toolkit.1 Introdu
tionDistributed
onsensus is an important problem that
aptures a
ore issue in many
omputer s
ien
eappli
ations su
h as
onsistent distributed databases. The problem addresses the situation in whi
hthere is a set of n pro
esses. Ea
h pro
ess
an propose a value, but eventually they all must agreeon a
ommon value. The
onsensus pro
edure must be safe at all times. That is, the
ommon valuemust be a proposed value, there must be at most one
ommon value, and no pro
ess should everagree on a value di�erent from the
ommon value. Furthermore, the
onsensus pro
edure mustbe live. That is, eventually all pro
esses should learn the value. The
onsensus pro
edure shouldwork even in the presen
e of asyn
hronous pro
esses, benign pro
ess failures, and message loss anddupli
ation.As an example, suppose there are n terminals t1; : : : ; tn and a user at ea
h terminal ti. Theterminals maintain a distributed database. Ea
h user proposes a value �(ti) for database entry �.The terminals run a
onsensus pro
edure to de
ide whi
h value �(ti) will be assigned to databaseentry �. The
onsensus pro
edure guarantees that the database will be
onsistent and
omplete(i.e. return the same value for � no matter what terminal it is a

essed from) even in the presen
eof benign terminal failures.The general problem of
onsensus has been studied extensively in the literature [10, 4, 8, 9, 11℄.As early as 1985, it was known that the
onsensus problem
an not be solved at all in a
ompletelyasyn
hronous setting, even with at most one faulty pro
ess [4℄. Thus, in order to design an algorithmfor
onsensus, the
onsensus
onditions had to be relaxed. In 1990, Lamport sa
ri�
ed the liveness
ondition and designed an algorithm known as Paxos to implement
onsensus safely [8, 9℄. In 2002,Lyn
h and Shvartsman formalized the
orre
tness proof of Paxos and provided a performan
eanalysis under
ertain timing and failure assumptions [11℄.�Proje
t Report for 6.962/6.897yfni
kle, tohng�theory.l
s.mit.edu 1

This paper presents a formal, me
hanized proof of the safety properties of the Paxos algorithm.Via an intera
tive theorem prover toolkit, we prove the Paxos algorithm implements the
onsensusspe
i�
ation. That is, we show every possible externally observable out
ome of the Paxos algorithmis also an externally observable out
ome of the
onsensus spe
i�
ation. We �rst de�ne both thePaxos algorithm and the
onsensus spe
i�
ation as input/output automata [13℄ using the IOAlanguage [6℄. To prove that Paxos implements
onsensus, we de�ne a forward simulation relationfrom the Paxos automaton to the
onsensus automaton. We translate our automata and forwardsimulation
onje
ture into a form readable by the Lar
h Prover [5℄, using an automated translationtool IOA2LSL [2℄. This work is largely based on the algorithm
ode and de�nitions introdu
ed byLyn
h and Shvartsman in [11℄. Our main
ontribution is the automated proof of this
ompli
ateddistributed algorithm, and the dis
overy of new invariants that are needed for the proof. Weprovide a
omplete and detailed proof that Paxos implements
onsensus and also demonstrate theperforman
e of the IOA toolkit on a
ompli
ated distributed algorithm.The rest of this paper is organized as follows. Se
tion 2 gives a short introdu
tion to most of themathemati
al de�nitions and theorems that we need. Se
tion 3 formalizes the
onsensus problemand Paxos solution and introdu
es the input/output automata spe
i�
ation of ea
h one. Se
tion 4presents the formal proof and dis
usses the use of the IOA toolkit.2 Mathemati
al FoundationsMu
h e�ort has been exerted during the years to formalize the notion of algorithms and dis-tributed systems. There are several standard models su
h as Temporal Logi
 of A
tions (TLA) [7℄and input/output (I/O) automata [13℄. In addition to these models, there are several standardproof methods for implementation theorems. These methods in
lude
omposition [14℄ and simu-lations [12℄. Here we give a brief overview of the models and methods used in our proofs and theautomated tools designed to support them.2.1 I/O automataWe will de�ne all the algorithms we des
ribe in terms of input/output or I/O automata. Theseautomata reason about algorithms in terms of the their state ma
hine representation.De�nition 1 An em I/O automaton A is made up of four parts:� states(A) is a state spa
e, usually written as a
ross produ
t of some variables.� start(A) � states(A) is a set of start states.� sig(A) is a signature that lists the a
tions of the automaton. The signature spe
i�es the typeof ea
h a
tion as either input, output, or internal.� trans(A) � states(A)�a
tions(A)�states(A) is a transition relation that tells whi
h a
tionsare enabled at whi
h states, and the e�e
ts of the a
tions. Input a
tions are always enabled.An exe
ution of an I/O automaton is a sequen
e of interleaved a
tions and states. The set ofall possible exe
utions is written as exe
s(A). A tra
e of an exe
ution is the sequen
e of all theexternal (i.e. input or output) a
tions in the exe
ution. The set of all tra
es is written as tra
es(A).Often we would like to prove statements of the form \nothing bad happens" in the exe
utionof an algorithm. For example, one might wish to prove that during the exe
ution of Kruskal'sminimum spanning tree algorithm, the graph that the algorithm is building is always a tree or aforest. Su
h properties are
alled safety properties.2

De�nition 2 A safety property P is a set of tra
es, tra
es(P) su
h that� tra
es(P) is nonempty.� tra
es(P) is pre�x-
losed: all �nite pre�xes of a tra
e in tra
es(P) are also in tra
es(P).� tra
es(P) is limit-
losed: if an in�nite sequen
e of tra
es �1; �2; ::: are in tra
es(P) and ea
h�i is a pre�x of �i+1, then the tra
e � that is the limit of the sequen
e is also in tra
es(P).One way to show that a safety property holds is through invariants. An invariant is a predi-
ate of the states that holds at every point in every rea
hable exe
ution. Another way to provea saftey property is via a simulation relation. If automaton B satis�es a safety property andtra
es(A) � tra
es(B), then A satis�es the safety property. We
an show tra
es(A) � tra
es(B)by showing that there exists a forward simulation relation f from an implementation automaton Ato a spe
i�
ation automaton B.De�nition 3 A forward simulation relation f from A to B is a relation from states of A to statesof B that satis�es:� Every start state of A
orresponds to a start state of B:8s2start(A)9u2start(B)f(s; u)� For every enabled transition (s; a; s0) of A and every state u of B su
h that f(s; u), there isa
orresponding exe
ution fragment � of B su
h that tra
e(a) = tra
e(�) and f(s0; last(�))where last(�) is the last state in the exe
ution fragment �.If a forward simulation relation exists between A and B, we write A ! B. In order to showf(s0; u0), we usually use invariants1 of A and the hypothesis that f(s; u). Sometimes the relation fis diÆ
ult to de�ne. In these
ases, it
an be useful to de�ne one or several intermediate automataC1; : : : ; Ck and prove the k + 1 forward simulation relations A! C1; C1 ! C2; : : : ; Ck ! B. Thiste
hnique is know as su

essive re�nement.When reasoning about distributed systems, humans often �nd it easier to
onsider a system ofautomata. However, all the te
hniques we have developed for proving safety reason about singleautomata. Thus it is useful to de�ne a formal way of
ombining separate automata that forma single system into a single automaton that represents that system. We would like to de�nethis
ombination in su
h a way that safety properties of the
ombined automata imply safetyproperties of the individual automata. Although we do not take the time to de�ne it formally here,the te
hnique hinted at exists and is
alled
omposition. Basi
ally
omposition requires that thesignatures of the automata be
ompatible. It forms the
ombined (or
omposed) automaton by
onsidering
ross produ
ts of states of the
omponent automata and allowing a transition wheneverthe proje
ted transition is valid on every
omponent automaton.2.2 The IOA ToolkitThe IOA language allows I/O automata to be written as programs. The signature of the automatais de
lared at the begining of the program. The states are de
lared by listing the state variables,and the start state is impli
it in the variable initializers. Ea
h transition
ontains a (
onjoined) setof pre
onditions. Transition e�e
ts may be spe
i�ed de
laratively (as a predi
ate on pre and post1Te
hni
ally, we also have to also show that s and u are rea
hable states. However, for the simulation, we are onlyinterested in the rea
hable states, where the invariants have been proven to hold.3

states) or imperatively (using assignments). Safety properties
an be expressed as invariants andas simulation relations in the IOA
ode itself. These are
he
ked during exe
ution and are writtenas proof obligations for the theorem prover tool, Lar
h Prover (LP).LP [5℄ is a theorem prover that uses multi-sorted �rst-order logi
. In order to
onvert an IOAprogram and its invariants and simulation relations into �rst order logi
 for LP, we use a toolIOA2LSL. The I/O automaton's transitions be
ome assertions in LP's body of knowledge abouthow pre and post states of the automaton relate.The veri�
ation of safety properties involves the veri�
ation of invariants and the proof of asimulation relation. Bogdanov [2℄ developed standard ways to pro
eed with these proofs in LP. Theproofs are by indu
tion on the a
tions of the automaton. To prove an invariant Inv holds in allrea
hable states, we �rst prove that Inv holds in the start state. Then we prove that if Inv holdson state s, and if a is a valid a
tion from s, Inv also holds on the post state s0. In LP, we writeprove Start(s) => Inv(s)prove Inv(s) /\ isStep(s, a, s') => Inv(s')To prove a relation f(s; u) de�ned in the IOA
ode is a forward simulation between the states s ofthe implementation automaton A and the states u of the spe
i�
ation automaton B, we �rst provethe start state
orresponden
e and then we show that every enabled a
tion of A has a
orrespondingexe
ution fragment that maintains the relation. In LP, we writeprove Start(s) => \E u : States[UpperLevel℄ (f(s, u) /\ Start(u))prove isStep(s, a, s') /\ f (s, u) =>\E beta : Exe
s[UpperLevel℄(tra
e(beta) = tra
e(a)/\ f(s', last(u, beta)))/\ exe
Frag(u, beta)where beta is an exe
ution fragment of the upper level automaton, last(u; beta) is the last stateof the fragment, and exe
Frag(u; beta) is a predi
ate indi
ating that beta is a valid exe
ution fromu. Both invariants and simulation relation proofs are
ompleted using indu
tion on the a
tions ofthe implementation automaton A. In LP, we begin the proof by writingresume by indu
tion on a : A
tions[A℄LP then produ
es a proof subgoal for ea
h possible a
tion the implementation automaton
antake. Then one usually spe
i�es the
orresponding exe
ution fragment of the spe
i�
ation automa-ton. Most of the
reativity of the proofs lies in these steps, but most of the work lies in provingthat the last state of the spe
i�
ation automaton's exe
ution fragment does indeed
orrespond tothe last state of the implementation automaton's transition.3 The Problem and SolutionWe would like to solve the problem of distributed
onsensus. Given a set of asyn
hronous pro
essors
onne
ted via a network, we would like to design an algorithm that allows the pro
essors to rea
ha
onsensus regarding some value. In order to design su
h an algorithm, we �rst must formalizethe notion of distributed
onsensus. For simpli
ity of presentation, we postpone the treatment ofnode failures until our dis
ussion of the automaton des
ription of distributed
onsensus.4

De�nition 4 Suppose we are given a set of nodes N and a set of proposed values V (t), initiallyempty. At any moment t in time, a value v may be added to V (t) (i.e. V (t) grows monotoni
ally).The nodes N are said to satisfy distributed
onsensus if at every moment t in time there is some
hosen value v 2 V (t) su
h that ea
h n 2 N either has outputed v exa
tly on
e or has not outputa value.Noti
e that distributed
onsensus is a safety property of an automaton Cons. Intuitively, thisis be
ause if Cons fails to satisfy distributed
onsensus, then it fails at some parti
ular moment intime. Formally, let init(n; v) be the input a
tion that adds v to the set V (t) and for ea
h n 2 N ,let de
ide(n; v) be the output a
tion that n outputs v. Then distributed
onsensus is the set of alltra
es (�1; : : : ; �k) for 0 � k � 1 where �i = init(mi; ui) or �i = de
ide(ni; vi) su
h that� vi = vj for all i; j (i.e. the
hosen value is
onsistent)� for all i there is some j < i su
h that vi = uj (i.e. the
hosen value was proposed at sometime in the past)� ni 6= nj for all i 6= j (i.e. nodes only
hoose on
e)Clearly, this is nonempty, pre�x-
losed, and limit-
losed.Noti
e the trivial automaton that simply has no output satis�es distributed
onsensus. This
orresponds to the elimination of the liveness
ondition from our intuitive notion of
onsensus. Aswe argued in Se
tion 1, it is unfortunately ne
essary to eliminate the liveness from
onsensus if wewish to �nd an implementation.As distributed
onsensus is a safety property, we
an de�ne an automaton whose tra
es areexa
tly those of distributed
onsensus, ex
ept now we in
lude node failures. We
all this au-tomaton Cons. Let initiated, de
ided, and failed be sets of nodes and proposed and
hosen besets of values. The initiated, proposed, and
hosen sets are self-explanatory. The de
ided setrepresents nodes that have outputed a value. The failed set represents nodes that have failed.These sets are the variables of Cons and form its state spa
e, so states(Cons) = initiated �de
ided � failed � proposed �
hosen. There is just one start state start(Cons) = finitiated =;; de
ided = ;; failed = ;; proposed = ;;
hosen = ;g. The signature
onsists of four a
tionssig(Cons) = finput init(n; v); input fail(n); output de
ide(n; v); internal
hooseV al(v)g. Thetransition relation
an be viewed as pre
onditions and e�e
ts of the a
tions and is as follows: theinput a
tion init(n; v) has no pre
ondition (in fa
t, input a
tions must always be enabled) and addsnode n to initiated and value v to proposed unless node n has failed in whi
h
ase the state doesnot
hange. The input a
tion fail(n) adds node n to failed. The internal a
tion
hooseV al(v) hasthe pre
ondition that
hosen is empty and has the e�e
t of adding v to
hosen. Finally, the outputa
tion de
ide(n; v) has the pre
ondition that n 2 initiated � failed, n 62 de
ided, and v 2
hosenand adds n to de
ided. Figure 3 shows the IOA des
ription of this automaton.We will refer to the
onsensus automaton Cons as the spe
i�
ation automaton. We now presentthe algorithm Paxos that solves the distributed
onsensus problem. First we provide a high-leveldes
ription of the algorithm, and then we de�ne an implementation automaton Paxos that des
ribesthis algorithm. The Paxos algorithm was �rst introdu
ed by Lamport [8℄. It is a three-phasealgorithm that satis�es distributed
onsensus. As with Cons, pro
esses in Paxos are initiated withproposed values and
an fail.The Paxos algorithm introdu
es two new
on
epts | ballots and quorums. Ballots have iden-ti�
ation numbers and values. The identi�
ation numbers have a total ordering de�ned on them.Ea
h pro
ess has a unique set of ballots whi
h it
an initiate. The total ordering of ballots allowsall the pro
esses of the Paxos algorithm to agree on the same ballot when they all re
eive multiple5

automaton Conssignatureinput init(i : Node, v : Value)input fail(i : Node)output de
ide (i : Node, v : Value)internal
hooseVal (v : Value)statesinitiated : Set[Node℄ := { },proposed : Set[Value℄ := { },
hosen : Set[Value℄ := { },de
ided : Set[Node℄ := { },failed : Set[Node℄ := { }transitionsinput init (i, v)e�if : (i in failed) theninitiated := initiated union {i};proposed := proposed union {v};elseinitiated := initiated;�internal
hooseVal (v)prev in proposed and
hosen = { }e�
hosen := {v};output de
ide (i, v)prei in initiated and: (i in de
ided) and: (i in failed) andv in
hosene�de
ided := de
ided union {i};input fail (i)e�failed := failed union {i};Figure 1: Cons Automaton IOA Des
ription
6

ballots. Quorums are sets of nodes. There are two types of quorums | read quorums and writequorums. The quorums are designed su
h that for all read quorums r and all write quorums w,r \ w 6= ;. For example, one feasible quorum design is to have one read quorum
onsisting ofall the nodes and one write quorum also
onsisting of all the nodes. This design is instru
tive inunderstanding the algorithm. Another more optimal design is to arrange the nodes in a matrix andhave the rows be the read quorums and the
olumns be the write quorums. Then any read quorumhas an interse
tion of size one with a write quorum. The interse
tion property of quorums preventstwo pro
esses that have re
eived di�erent sets of ballots from de
iding on di�erent ballots.Algorithm 5 Throughout the algorithm, pro
esses gossip about ea
h other. In parti
ular, they passaround information
on
erning what values have been proposed, what ballots have been proposed,what ballots have been assigned what values, who has voted for what, and who has abstained fromwhat. Also, a pro
ess may vote at any moment during any phase for a ballot that it has re
eivedand not abstained from, and it may abstain from a ballot if it has re
eived a larger ballot. For
larity, we will talk about two kinds of pro
esses | leaders and learners. Leaders propose ballotsand assign values to ballots. Learners abstain from and vote on ballots. Note a pro
ess
an be botha leader and a learner.1. In the �rst phase of the algorithm, leaders propose ballots. Ea
h learner whi
h has heard aboutthis ballot proposal through the gossip is now free to abstain from smaller ballots that it hasnot voted for.2. In the se
ond phase, a leader
onsiders the votes of a read quorum. It �nds the largest ballotb from whi
h a read quorum has not abstained. If there is no su
h b, then the leader knowsall ballots less than its ballot have failed, so the leader assigns a proposed value to its ballot.If there is su
h a b, the leader takes the value of b and assigns this value to its own ballot.3. In the third phase, when a pro
ess hears that a write quorum has voted for a ballot, it mayde
ide on that ballot's value.At this point, it is instru
tive to
onsider an example.Example 6 Suppose there are 3 pro
esses, dubya, ash
roft, and rumsfeld, whi
h have beeninitiated with the values \axis of evil", \fear of god", and \war on terror". We will let the setof read quorums and the set of write quorums
onsist of the single set fash
roft; rumsfeldg.Suppose the universe of ballot identi�ers is the integers with the usual ordering. WLOG assumedubya be
omes a leader pro
ess. For brevity of exposition, we will pretend the gossip in this
ir
leof pro
essors is highly eÆ
ient, and pro
esses learn ea
h other's information immediately. We willnot re
ord this gossip in the Paxos trans
ription. Then a possible exe
ution of Paxos is as follows:1. dubya assigns value \fear of god" to ballot 12. dubya proposes ballot 2 to ash
roft and rumsfeld. Now ash
roft and rumsfeldmay abstainfrom ballot 1.3. ash
roft votes on ballot 24. dubya proposes ballot 3 to ash
roft and rumsfeld. Now rumsfeld may abstain from ballot2 even though ash
roft has already voted for ballot 2.5. rumsfeld and ash
roft abstain from ballot 1. Now a read quorum has abstained from ballot1, so ballot 2
an be assigned any value.6. rumsfeld abstains from ballot 2. Now ballot 2
an not su

eed, but it
an not fail either (i.e.it will never be the
ase that a read quorum or a write quorum agrees on whether to vote orabstain from this ballot). Therefore, ballot 2 must be assigned a value.7

7. dubya assigns value \axis of evil" to ballot 28. rumsfeld and ash
roft vote for ballot 3. Noti
e pro
esses
an vote for ballots that don'thave a value.9. dubya assigns value \axis of evil" to ballot 310. all three pro
esses de
ide on the value of ballot 3, \axis of evil". Note the pro
esses had towait for a value to be assigned to ballot 3 before they
ould de
ide on it.This de�nition of Paxos arises quite naturally from the requirements of distributed
onsensusas argued by Lamport [8℄. However, to formally prove that Paxos satis�es distributed
onsensusrequires a bit more work. First we must de�ne an implementation automaton Paxos that des
ribesPaxos, and then we must prove that there is a simulation relation from Paxos to Cons. Thede�nition of the Paxos automaton is presented in Appendix A.We have arrived at this I/O automaton de�nition by
omposing all the node automata and allthe
hannel automata. Every a
tion and every state variable is indexed by the individual nodeautomaton whi
h the a
tion/state variable
orresponds to. Thus, if in the underlying system node2 is initialized with value d, the Paxos automaton will have an a
tion of the form init(2; d) and willadd d to node 2's set of proposed values proposed[2℄ proposed[2℄ [fdg. This is di�erent fromthe Cons automaton where there was just one global set of proposed values.In the underlying system, nodes
ommuni
ate to ea
h other through
hannels. All the internalsend and re
v a
tions are artifa
ts of the
hannel automata. In the underlying system, there is one
hannel automaton for every pair of node automaton, and so the send and re
v a
tions are indexedby two nodes. The underlying
hannel automaton may dupli
ate messages, reorder messages, andlose messages, but it may not
reate messages. We model these properties of the
hannel automatonby maintaining a set of messages S in the
hannel. The send a
tion adds its input message s tothe set S. The re
v a
tion has as a pre
ondition s 2 S.Now we will argue the IOA des
ription in Appendix A a
tually des
ribes Algorithm 5, Paxos.The gossip is a
hieved via the send and re
v a
tions. Voting is represented by the vote a
tionand abstention by the abstain a
tion. The
onditions of voting and abstention are pre
onditionsof the
orresponding a
tion. The ballot proposals from phase 1 are initiated by a newBallota
tion and
ompleted by a makeBallot a
tion. The presen
e of newBallot, makeBallot, andthe doMakeBallot variable is a te
hni
al detail. We write Paxos in this way simply to make it
omposable with a timed version of Paxos in future work. The se
ond phase of Algorithm 5 isen
oded in the assignV alue(i; b; v) a
tion. This lets automaton i assigns value v to ballot b if�8b0 < b; b0 2 dead� _ �9b00 < b; val(b00) = v ^ (8b0; b00 < b0 < b; b0 2 dead)�where b0 and b00 are any ballots in the universe of ballots and dead is the set of ballots from whi
hpro
ess i knows that a read quorum has abstained. This
ondition ensures that the value v whi
h iassigns to b is
onsistent with all smaller ballots, as Algorithm 5 states. The third and �nal phaseof Algorithm 5 is en
oded by the internal a
tion, internalDe
ide, in whi
h a pro
ess adds a ballotto its su

eeded set, and the external output a
tion de
ide in whi
h a pro
ess de
ides on a value ofa ballot in its su

eeded set. We have en
oded this third phase in two steps in order to allow more
exibility in our automaton | a pro
ess
an de
ide internally long before it be
omes ina
tive, anda pro
ess
an de
ide internally on a ballot that doesn't have a value.We have omitted a few te
hni
al details from our des
ription of the IOA
ode. These detailsare not essential to an understanding of the algorithm and proof, but are ne
essary to a
tually runthe proof in the Lar
h Prover. These details in
lude the mode and failed variables, the indexingof quorums on ballots, the implementation of dead mentioned above, the de�nition of minBallotfor the smallest ballot and the nil value for ballots whi
h have not been assigned a value.8

4 The ProofWe prove that Paxos satis�es distributed
onsensus by de�ning a forward simulation from the Paxosautomaton to the Cons automaton. The
orre
tness of this proof follows from the dis
ussion inSe
tion 2. We will use two re�nements in order to prove the forward simulation. The �rst re�nementis a forward simulation from an automaton
alled Global1 to Cons. The se
ond re�nement is aforward simulation from an automaton
alled Global2 to Global1. These su

essive re�nementsallow us to prove the simulation relation in
rementally by breaking up the proof into
on
eptual
hunks. This has the advantage of making ea
h individual proof easier and giving us more insightinto the algorithm itself. In order for the forward simulations to work, we de�ne Global1 andGlobal2 with the same input and output a
tions | init(i; v), fail(i), and de
ide(i; v) | as Cons.The Global1 automaton
aptures most of the essen
e of the Paxos automaton. It introdu
es asimpli�ed notion of learning
apabilities by de�ning internal abstain and vote a
tions. However,there are several major di�eren
es between Global1 and Paxos. Global1 is not a
omposition ofnode automaton. This means there is no node
ommuni
ation and so all the
hannel a
tions aremissing from Global1. Furthermore, the makeBallot, assignV al and internalDe
ide a
tions area
tions of the automaton as a whole. In terms of the algorithmi
 des
ription of Paxos, Global1en
odes the �rst, se
ond, and third phase in makeBallot, assignV al, and internalDe
ide/de
ide.The makeBallot a
tion just ensures new ballots have a distin
t identi�er from old ballots. TheinternalDe
ide a
tion just ensures su

eeded ballots have a write quorum that has voted for them.These two a
tions are essentially identi
al to the
orresponding Paxos automaton a
tions. TheassignV al(b; v) a
tion is slightly di�erent and in fa
t does not fully
apture the
orrespondingPaxos automaton a
tion. Instead of just
he
king the largest ballot b0 < b from whi
h a readquorum has not abstained, it
he
ks that every ballot b0 < b is either dead or has value v.The se
ond re�nement is a forward simulation from an automaton
alled Global2 to an automa-ton
alled Global1. The Global2 automaton is exa
tly the same as the Global1 automaton ex
eptin the assignV al(b; v) a
tion. This transition is a full implementation of the se
ond phase of thePaxos algorithm; it only
he
ks that the largest ballot b0 < b from whi
h a read quorum has notabstained has value v if su
h a b0 exists.As mentioned in Se
tion 2.2, we prove the simulation relation for ea
h implementation-spe
i�
ationautomaton pair in LP using stru
tural indu
tion on the a
tions of the implementation automaton.The proofs use several invariants of the automata. We also prove these invariants in LP.4.1 Global1 to ConsAlthough not the longest in terms of length, this relation is
on
eptually the most importantbe
ause it
onne
ts the de
ision of the
onsensus spe
i�
ation with the use of ballots. Intuitively,when a ballot is voted on by a quorum in Global1, the
orresponding a
tion in Cons is to
hoosea value to de
ide on. Thus, internalDe
ide should
orrespond to
hooseV al, and the simulationrelation we have is:forward simulation from Global1 to Cons:Cons.initiated = Global1.initiated^ Cons.proposed = Global1.proposed^ Cons.de
ided = Global1.de
ided^ Cons.failed = Global1.failed^ 8 v : Value ((9 b : Ballot (b in Global1.su

eeded ^ Global1.val[b℄ = embed(v)))) v in Cons.
hosen)^ 8 v : Value (v in Cons.
hosen) 9 b : Ballot (b in Global1.su

eeded ^ Global1.val[b℄ = embed(v)))9

The last two
lauses are the important ones | they are a bi
onditional in [11℄, but for
onvenien
e in LP, we
hoose to separate them. They say that the values of the ballots inGlobal1:su

eeded are the same as those in Cons:
hosen.Even though this
on
ept is
lear, there are a few
aveats that do not allow a dire
t
orre-sponden
e. First, internalDe
ide
an happen to more than one ballot (or more than on
e onthe same ballot), while
hooseV al requires that Cons:
hosen be empty. Thus, the se
ond timeinternalDe
ide happens in Global1, the
orresponding exe
ution in Cons is not
hooseV al but theempty sequen
e. In LP, we handle this situation by doing a
ase analysis where the witness for theexistentially quanti�ed exe
ution � is di�erent in ea
h
ase.Another
aveat is that Global1 allows ballots to be voted and internally de
ided on before theirvalues are assigned. This does not apparently a�e
t the
orre
tness of the algorithm2, but makesthe proof more
ompli
ated, be
ause we need to take into a

ount two new
ases:� When internalDe
ide �res on a ballot without a value, the
orresponding � exe
ution is theempty sequen
e, even if Global1:su

eeded was empty.� When assignV al is �red, it
ould be assigning a value to a ballot already inGlobal1:su

eeded.In this
ase, the
orresponding � is
hooseV al.On
e these
ases are handled, witness exe
utions for internal a
tions of Global1 are as follows.A
tions vote, makeBallot and abstain always have � = fg. A
tion internalDe
ide(b) has � = fgif there exists a ballot in Global1:su

eeded that already has a value or if b does not have a value.If b has a value and su

eeded does not, then � =
hooseV al(val[b℄). Lastly, assignV al has� = fg = fg if it is assigning a value to a ballot not in su

eeded, but
orresponds to
hooseV alotherwise.4.1.1 Invariants UsedLyn
h [11℄ mentioned four invariants ne
essary to prove the simulation relation:� The set of voted ballots is disjoint from the set of abstained ballots.� If v is the value of a ballot, then v was proposed.� The set of su

eeded ballots is disjoint from the set of dead ballots.� If b and b0 are two ballots su
h that b has a value and b0 < b, then either the value of b0 equalsthe value of b or b0 is dead.We have added another invariant used in the simulation relation proof:� The set of su

eeded ballots is a subset of the set of designated (i.e. made) ballots.and two invariants used to prove the �ve main invariants themselves:� If a ballot has su

eeded, then a write quorum has voted for it.� If a ballot is not designated (i.e. it has not been made), its value is nil.The IOA des
ription of these invariants follows.invariant Inv1 of Global1: 8 i : Node (8 b : Ballot (b in voted[i℄) : (b in abstained[i℄)))invariant Inv2 of Global1: 8 b : Ballot (val[b℄ 6= nil) val[b℄.val in proposed)2It may redu
e the fault toleran
e spe
i�
ations. 10

invariant Inv3 of Global1: 8 b : Ballot (b in su

eeded) : (b in dead(abstained)))invariant Inv4 of Global1: 8 b : Ballot 8 b' : Ballot((val[b℄ 6= nil ^ b' < b)) val[b'℄ = val[b℄ _ b' in dead(abstained))invariant Inv5 of Global1: 8 b : Ballot (b in su

eeded) b in ballots)invariant Inv6 of Global1:8 b_Inv6 : Ballot(b_Inv6 in su

eeded)9 b_qInv6 : Ballot8 n_Inv6 : Node(n_Inv6 in wquorums(b_qInv6)) b_Inv6 in voted[n_Inv6℄))invariant Inv7 of Global1:8 b_Inv7 : Ballot(: (b_Inv7 in ballots)) val[b_Inv7℄ = nil)Invariants 1 through 4 were the original ones. Inv1 and Inv3 are a
tually written as interse
tionsin [11℄ but we rewrote them in terms of elements to better work with our set axioms in LP. Wefound that Inv5 was ne
essary be
ause makeBallot assigns a value to the newly-
reated ballot,so we must ensure that su

eeded ballots do not have their values
hanged. Inv6 was used in theproof of Inv3 and Inv7 in the proof of Inv4.The property that quorums interse
t was used in the simulation relation and the proof of Inv3.4.2 Global2 to Global1The state variables of the Global2 automaton were not di�erent from those of the Global1 automa-ton. Thus the simulation relation was an equality mapping:forward simulation from Global2 to Global1:Global1.initiated = Global2.initiated^ Global1.proposed = Global2.proposed^ Global1.de
ided = Global2.de
ided^ Global1.failed = Global2.failed^ Global1.val = Global2.val^ Global1.ballots = Global2.ballots^ Global1.abstained = Global2.abstained^ Global1.voted = Global2.voted^ Global1.su

eeded = Global2.su

eededThe only non-trivial transition was assignV al. Even then, the LP proof was 9 lines for thistransition.We expe
ted to use no invariants for proving this simulation relation, but we found that anequivalent of Inv4 was ne
essary. Nevertheless, the simulation relation was ultimately a trivialproof. The witness exe
utions also had a one-to-one
orresponden
e.4.3 Paxos to Global2Although the simulation relation proof from fully distributed Paxos to Global2 was longer thanthe previous two, this was mainly be
ause Paxos had more transitions. Con
eptually, the relationbetween the two automata was straightforward: the union of the data in the distributed Paxos isthe state of Global2. In IOA, this was written as:11

forward simulation from Paxos to Global2:8 i : Node (i in Global2.initiated , Paxos.mode[i℄ 6= idle)^ 8 v : Value (v in Global2.proposed , (9 i : Node (v in Paxos.proposed[i℄)))^ 8 i : Node (i in Global2.de
ided , Paxos.mode[i℄ = done)^ 8 i : Node (i in Global2.failed , Paxos.failed[i℄)^ 8 b : Ballot (b in Global2.su

eeded , (9 i : Node (b in Paxos.su

eeded[i℄)))^ 8 b : Ballot (Global2.val[b℄ = Paxos.val[b.pro
id℄[b℄)^ 8 i : Node (Global2.voted[i℄ = Paxos.voted[i℄[i℄)^ 8 i : Node (Global2.abstained[i℄ = Paxos.abstained[i℄[i℄)^ 8 b : Ballot (b in Global2.ballots , (9 i : Node (b in Paxos.ballots[i℄)))Noti
e that there is no union operator appearing anywhere. This is be
ause IOA does notsupport union over variables in a set (it only supports unions between two variables). However, these
ond
onjun
t is the equivalent of saying that Global2:proposed is the union of proposed valuesin ea
h of the Paxos automata.Note also that ea
h automaton's program state (idle, a
tive, done) and failure state (failed)dire
tly mapped to Global2 variables after the
hanges we made in 5.The witness exe
utions of Global2 were again straightforward: every a
tion done by a Paxosautomaton had the same-named
orresponding a
tion in Global2, ex
ept for doMakeBallot, whi
hhad the empty exe
ution. For example, a vote a
tion in Paxos resulted in a vote a
tion in Global2.Of
ourse, there are some a
tions in Global2, su
h as internalDe
ide that are not asso
i-ated with a parti
ular node. For these, whenever internalDe
ide was �red in Paxos, we �redinternalDe
ide in Global2. This is possible be
ause Global2 allows for repeats of previouslyperformed internal a
tions, so multiple internalDe
ide on the same ballot by di�erent nodes isa

eptable.We noti
ed that even though the simulation relation involved 9
lauses, no single a
tion involvedproving more than 4 of them. Most either went through immediately (in the
ase of fail or any ofthe
hannel sends) and the others mainly required 2-3
lauses. This is be
ause LP noti
es whi
hstate variables
hange, and automati
ally proves the simulation relation
onjun
t for un
hangedvariables.4.3.1 Invariants UsedThere were 5 invariants needed for the proof, even though [11℄ mentioned 3 (listed as 1-3 here).invariant DistInv1 of Paxos: 8 i : Node (8 j : Node (abstained[j℄[i℄ subseteq abstained[i℄[i℄))invariant DistInv2 of Paxos: 8 i : Node (8 j : Node (voted[j℄[i℄ subseteq voted[i℄[i℄))invariant DistInv3 of Paxos: 8 i : Node (8 b : Ballot (val[i℄[b℄ 6= nil) val[i℄[b℄ = val[b.pro
id℄[b℄))invariant DistInv4 of Paxos: 8 i : Node (8 b : Ballot (b in ballots[i℄) b in ballots[b.pro
id℄))invariant DistInv5 of Paxos: 8 b : Ballot (: (b in ballots[b.pro
id℄)) (val[b.pro
id℄)[b℄ = nil)DistInv4 andDistInv5 were required for the last
lause of the simulation relation inmakeBallotand the sixth
lause in assignV al.4.4 Mis
ellaneous proof detailsThere was only one pla
e in the simulation relation where had to expli
itly use quorums, andthis was in internalDe
ide, where we had to prove that a write quorum existed in Global1 given12

that one existed in Global2. However, we never had to use read quorums be
ause LP
ould usedead ballots without referring to quorums, and we did not need the property that read and writequorums interse
t.However, it must be noted that quorum interse
tion is needed for Paxos to properly implementGlobal1. It just happens that the property is not used in the proof be
ause it is spe
i�ed as anaxiom. The advantage for us was that the proof of Paxos, whi
h we expe
ted to be more
omplexthan than of Global1, was a
tually simpler in many ways.Initially, we were unsure of how to implement the quorum spe
i�
ation in [11℄. In the end, wesettled on the idea of parameterizing quorums using a dummy variable as shown in Appendix B sothat we
ould allow LP's �rst order logi
 to understand the
on
ept \there exists a quorum" whi
hwould normally be a quanti�
ation over sets.When we started trying to prove the simulation relations, however, we attempted to add anotherlevel of re�nement between Global2 and Paxos,
alled Global3, so that Global1 and Global2 woulduse a single quorum and Global3 would expand to use di�erent quorums that obeyed the interse
tionproperty. This, we thought, would make the proofs of Global1 and Global2 easier. What we foundout, however, was the proving Global1 with multiple quorums was not diÆ
ult, but we were unableto �nd a simulation relation between Global3 and Global2. Thus, we
hanged the su

essivere�nement ba
k to the one presented in [11℄.5 Con
lusionUsing the IOA language and the Lar
h Prover, we were able to take the I/O automaton spe
i�
ationof Lamport's Paxos algorithm, written in [11℄ and prove its
orre
tness. Some of the lessons learnedfor formal veri�
ation with LP in
lude:� When using
hannels, write the program so that the pre
ondition of the send transition tothe
hannel holds on
hannel
ontents at all times.� Su

essive re�nement is a useful te
hnique for managing algorithm
omplexity. However, thesize of proofs in simulation relations is not proportional to the length of the algorithms used,but rather to the
on
eptual di�eren
es between di�erent abstra
tion levels.� There is still too mu
h extra work in using an intera
tive theorem prover. Mu
h of our timewas spent trying to understand what LP was trying to do rather than leading the tool towardsa proof.5.1 Further workWe suggest that Paxos's liveness properties
ould be proved using the
urrent set of IOA tools andsimple temporal logi
 in LP. We also
onsider the idea of redu
ing the work it takes to dis
overinvariants.5.1.1 LivenessThe algorithm in [11℄ used timing to provide for liveness properties. However, the timing propertieswere only introdu
ed in the Paxos automaton and were not part of the su

essive re�nement aswith the safety proofs. We were able to ignore the timed ballot trigger automaton be
ause we wereonly proving safety properties. 13

Ideally, we would like to spe
ify liveness properties at the Cons automaton level and use sim-ulation relations as with safety to show that Paxos is live. The advantage of su
h a method isthat proofs would be similar to safety proofs in that they reason over individual transitions ratherthan over exe
utions. One way to prove liveness would be to use su

essive re�nement with timedautomata as des
ribed in [12℄. However, the IOA language
urrently does not support timed au-tomata.[1℄ suggests a method for doing this using the standard I/O automaton model augmented withminimal temporal logi
, using \liveness preserving simulation relations". A liveness preservingsimulation relation is a standard simulation relation augmented by a liveness \latti
e" fun
tionthat, maps the liveness properties of the lower level automaton to the liveness properties of theupper level automaton. Liveness properties are always expressed in
omplemented-pairs form:�}A! �}Bwhi
h reads \always eventually A implies always eventually B" where A and B are states ofthe I/O automaton.Ea
h
omplemented pair in the upper level automaton has to be satis�ed by
omplementedpairs in the lower level automaton. This is done by providing a \latti
e", or dire
ted a
y
li
 graphof
omplemented pairs in the lower automaton.We would like to implement this as a standard method for proving liveness in IOA with LPor another prover. Implementing this method would involve a one-time
ost of axiomatizing the
omplemented-pairs temporal logi
 in LP, followed by a modeling of the desired algorithms' livenessproperties. With Paxos for example, a property we may wish to have in the Cons automaton is:8i�}[i 2 initialized℄! �}[:(i 2 failed)! i 2 de
ided℄That is, an initialized pro
ess eventually de
ides if it does not fail.5.1.2 Invariant dis
overyFor the invariants of Paxos, we were given the important ones in [11℄, but these were not enough tofully prove the simulation relations. Dis
overing whi
h invariants were needed using LP took time,and would have taken longer had we not already had some invariants given in [11℄. One way toalleviate the problem would be to use runtime information to suggest invariants that may be truefor the program. These invariants
ould then be human- or
omputer-�ltered to be used in proofsof larger properties like simulation relations.Daikon [3℄ is a tool that performs the dynami
, runtime analysis des
ribed above. Daikon
analready pro
ess IOA data and output invariants in IOA syntax. It
annot dis
over all invariants,but the ones that it dis
overs are often enough to prove important program properties. UsingDaikon for Paxos and other IOA programs is studied further in [15℄. Presently, Daikon is able todis
over the �rst �ve invariants in the simulation relation from Global1 to Cons. However, theremay not yet be enough data to see how using Daikon would generalize.A Paxos IOA des
ription
14

axioms AuxDistaxioms Null(Value)type ModeType = enumeration of idle, a
tive, doneautomaton Global2signatureinput init (i : Node, v : Value)input fail (i : Node)output de
ide (i : Node, v : Value)internal makeBallot (b : Ballot)internal abstain (i : Node, B : Set[Ballot℄)internal assignVal (b : Ballot, v : Value)internal vote (i : Node, b : Ballot)internal internalDe
ide (b : Ballot)statesinitiated : Set[Node℄ := { },proposed : Set[Value℄ := { },de
ided : Set[Node℄ := { },failed : Set[Node℄ := { },ballots : Set[Ballot℄ := { },su

eeded : Set[Ballot℄ := { },val : Array[Ballot, Null[Value℄℄ :=
onstant(nil),voted : Array[Node, Set[Ballot℄℄ :=
onstant({ }),abstained : Array[Node, Set[Ballot℄℄ :=
onstant({minBallot})transitionsinput init (i, v)e�if : (i in failed) theninitiated := initiated union {i};proposed := proposed union {v};elseproposed := proposed;�;input fail (i)e�failed := failed union {i}internal makeBallot(b)pre8 b' : Ballot (b' in ballots) (b' 6= b)) / b 6= minBallote�ballots := ballots union {b};val[b℄ := nil;internal assignVal (b, v)preb in ballots / val[b℄ = nil / v in proposed / ((8 b' : Ballot (b' < b) (b' in dead(abstained))))_(9 b'': Ballot (val[b''℄ = embed(v) ^ 8 bd' : Ballot (b'' < bd') bd' in dead(abstained)))))e�val[b℄ := embed(v);internal vote(i, b)prei in initiated / : (i in failed) / b in ballots / : (b in abstained[i℄)e�voted[i℄ := voted[i℄ union {b};internal abstain (i, B)prei in initiated / : (i in failed) / voted[i℄ interse
tion B = { }e�abstained[i℄ := abstained[i℄ union B;internal internalDe
ide(b)preb in ballots / 9 b_qID : Ballot 8 j : Node (j in wquorums(b_qID)) b in voted[j℄)e�su

eeded := su

eeded union {b};output de
ide(i, v)
hoose b : Ballotprei in initiated / : (i in de
ided) / : (i in failed) / b in su

eeded / embed(v) = val[b℄e�de
ided := de
ided union {i};
automaton Paxossignatureinput init (i_Me : Node, v_Init : Value)input fail (i_Me : Node)output de
ide (i_Me : Node, v_De
ide : Value)internal newBallot (i_Me : Node)internal makeBallot (i_Me : Node, b_MakeBallot : Ballot)internal abstain (i_Me : Node, B_Abstain : Set[Ballot℄)internal assignVal (i_Me : Node, b_AssignVal : Ballot, v_AssignVal : Value)internal vote (i_Me : Node, b_Vote : Ballot)internal internalDe
ide (i_Me : Node, b_InternalDe
ide : Ballot)internal sendProposed (i_Me : Node, j_You : Node, v_SProposed : Value)internal sendBallot (i_Me : Node, j_You : Node, b_SBallot : Ballot)internal sendValue (i_Me : Node, j_You : Node, b_SValue : Ballot, v_SValue : Value)internal sendVote (i_Me : Node, j_You : Node, k_SVote : Node, b_SVote : Ballot)internal sendAbstained (i_Me : Node, j_You : Node, k_SVote : Node, B_SVote : Set[Ballot℄)internal re
vProposed (i_Me : Node, j_You : Node, v_RProposed : Value)internal re
vBallot (i_Me : Node, j_You : Node, b_RBallot : Ballot)internal re
vValue (i_Me : Node, j_You : Node, b_RValue : Ballot, v_RValue : Value)internal re
vVote (i_Me : Node, j_You : Node, k_RVote : Node, b_RVote : Ballot)internal re
vAbstained (i_Me : Node, j_You : Node, k_RVote : Node, B_RVote : Set[Ballot℄)statesmode : Array[Node, ModeType℄ :=
onstant(idle),failed : Array[Node, Bool℄ :=
onstant(false),proposed : Array[Node, Set[Value℄℄ :=
onstant({ }),ballots : Array[Node, Set[Ballot℄℄ :=
onstant({ }),doMakeBallot : Array[Node, Bool℄ :=
onstant(false),val : Array[Node, Array[Ballot, Null[Value℄℄℄ :=
onstant(
onstant(nil)),voted : Array[Node, Array[Node, Set[Ballot℄℄℄ :=
onstant(
onstant({ })),abstained : Array[Node, Array[Node, Set[Ballot℄℄ ℄:=
onstant(
onstant({minBallot})),su

eeded : Array[Node, Set[Ballot℄℄ :=
onstant({ })transitionsinput init (i_Me, v_Init)e�if (failed[i_Me℄) thenproposed[i_Me℄ := proposed[i_Me℄;else if (mode[i_Me℄ = idle ^ : failed[i_Me℄) thenmode[i_Me℄ := a
tive;proposed[i_Me℄ := proposed[i_Me℄ union {v_Init};elseproposed[i_Me℄ := proposed[i_Me℄ union {v_Init};��internal newBallot (i_Me)e�if (: failed[i_Me℄) thendoMakeBallot[i_Me℄ := true;elsedoMakeBallot[i_Me℄ := doMakeBallot[i_Me℄;�;input fail (i_Me)e�failed[i_Me℄ := true;internal makeBallot(i_Me, b_MakeBallot)pre: failed[i_Me℄;doMakeBallot[i_Me℄;8 b'_MakeBallot : Ballot (b'_MakeBallot in ballots[i_Me℄) b'_MakeBallot < b_MakeBallot);b_MakeBallot.pro
id = i_Me;b_MakeBallot 6= minBallot;e�ballots[i_Me℄ := insert(b_MakeBallot, ballots[i_Me℄);val[i_Me℄[b_MakeBallot℄ := nil;doMakeBallot[i_Me℄ := false;internal assignVal (i_Me, b_AssignVal, v_AssignVal)pre: failed[i_Me℄;b_AssignVal in ballots[i_Me℄;b_AssignVal.pro
id = i_Me;val[i_Me℄[b_AssignVal℄ = nil;v_AssignVal in proposed[i_Me℄;((8 b'_AssignVal : Ballot (b'_AssignVal < b_AssignVal)(b'_AssignVal in dead(abstained[i_Me℄))))_(9 b''_AssignVal: Ballot(val[i_Me℄[b''_AssignVal℄ = embed(v_AssignVal)^ 8 bd'_AssignVal : Ballot (b''_AssignVal < bd'_AssignVal)bd'_AssignVal in dead(abstained[i_Me℄)))))e�val[i_Me℄[b_AssignVal℄ := embed(v_AssignVal);internal vote(i_Me, b_Vote)premode[i_Me℄ 6= idle;: failed[i_Me℄;b_Vote in ballots[i_Me℄;val[i_Me℄[b_Vote℄ 6= nil;: (b_Vote in abstained[i_Me℄[i_Me℄)e�voted[i_Me℄[i_Me℄ := voted[i_Me℄[i_Me℄ union {b_Vote};internal abstain (i_Me, B_Abstain)premode[i_Me℄ 6= idle;: failed[i_Me℄;8 b_Abstain : Ballot ((b_Abstain in B_Abstain))9 b'_Abstain : Ballot (b'_Abstain in ballots[i_Me℄ ^ b_Abstain < b'_Abstain));voted[i_Me℄[i_Me℄ interse
tion B_Abstain = { };e�abstained[i_Me℄[i_Me℄ := abstained[i_Me℄[i_Me℄ union B_Abstain;internal internalDe
ide(i_Me, b_InternalDe
ide)pre: failed[i_Me℄;mode[i_Me℄ = a
tive;b_InternalDe
ide in ballots[i_Me℄;9 b_qID : Ballot 8 j : Node (j in wquorums(b_qID)) b_InternalDe
ide in voted[i_Me℄[j℄)e�su

eeded[i_Me℄ := su

eeded[i_Me℄ union {b_InternalDe
ide};output de
ide(i_Me, v_De
ide)
hoose b_De
ide : Ballotpre: failed[i_Me℄;mode[i_Me℄ = a
tive;b_De
ide in su

eeded[i_Me℄;embed(v_De
ide) = val[i_Me℄[b_De
ide℄;e�mode[i_Me℄ := done;internal sendProposed (i_Me, j_You, v_SProposed)pre: failed[i_Me℄;mode[i_Me℄ 6= idle;v_SProposed in proposed[i_Me℄;internal sendBallot (i_Me, j_You, b_SBallot)pre: failed[i_Me℄;mode[i_Me℄ 6= idle;b_SBallot in ballots[i_Me℄;internal sendValue (i_Me, j_You, b_SValue, v_SValue)pre: failed[i_Me℄;mode[i_Me℄ 6= idle;embed(v_SValue) = val[i_Me℄[b_SValue℄;internal sendVote (i_Me, j_You, k_SVote, b_SVote)pre: failed[i_Me℄;mode[i_Me℄ 6= idle;b_SVote in voted[i_Me℄[k_SVote℄;internal sendAbstained (i_Me, j_You, k_SVote, B_SVote)pre: failed[i_Me℄;mode[i_Me℄ 6= idle;B_SVote subseteq voted[i_Me℄[k_SVote℄;%% FIXME: eventually use sets and invariantsinternal re
vProposed (i_Me, j_You, v_RProposed)prev_RProposed in proposed[i_Me℄;e�if (mode[j_You℄ 6= idle ^ : failed[j_You℄) thenproposed[j_You℄ := insert(v_RProposed, proposed[j_You℄);�;internal re
vBallot (i_Me, j_You, b_RBallot)preb_RBallot in ballots[i_Me℄;e�if (mode[j_You℄ 6= idle ^ : failed[j_You℄) thenballots[j_You℄ := insert(b_RBallot, ballots[j_You℄);�;internal re
vValue (i_Me, j_You, b_RValue, v_RValue)preembed(v_RValue) = (val[i_Me℄)[b_RValue℄;e�if (mode[j_You℄ 6= idle ^ : failed[j_You℄) then(val[j_You℄)[b_RValue℄ := embed(v_RValue);�;internal re
vVote (i_Me, j_You, k_RVote, b_RVote)preb_RVote in voted[i_Me℄[k_RVote℄;e�if (mode[j_You℄ 6= idle ^ : failed[j_You℄) then(voted[j_You℄)[k_RVote℄ := insert(b_RVote, (voted[j_You℄)[k_RVote℄);�;internal re
vAbstained (i_Me, j_You, k_RVote, B_RVote)preB_RVote subseteq abstained[i_Me℄[k_RVote℄;e�if (mode[j_You℄ 6= idle ^ : failed[j_You℄) then(abstained[j_You℄)[k_RVote℄ := B_RVote union (abstained[j_You℄)[k_RVote℄;�;forward simulation from Paxos to Global2:8 i : Node (i in Global2.initiated , Paxos.mode[i℄ 6= idle)^ 8 v : Value (v in Global2.proposed , (9 i : Node (v in Paxos.proposed[i℄)))^ 8 i : Node (i in Global2.de
ided , Paxos.mode[i℄ = done)^ 8 i : Node (i in Global2.failed , Paxos.failed[i℄)^ 8 b : Ballot (b in Global2.su

eeded , (9 i : Node (b in Paxos.su

eeded[i℄)))^ 8 b : Ballot (Global2.val[b℄ = Paxos.val[b.pro
id℄[b℄)^ 8 i : Node (Global2.voted[i℄ = Paxos.voted[i℄[i℄)^ 8 i : Node (Global2.abstained[i℄ = Paxos.abstained[i℄[i℄)^ 8 b : Ballot (b in Global2.ballots , (9 i : Node (b in Paxos.ballots[i℄)))invariant DistInv1 of Paxos: 8 i : Node (8 j : Node(abstained[j℄[i℄ subseteq abstained[i℄[i℄))invariant DistInv2 of Paxos: 8 i : Node (8 j : Node(voted[j℄[i℄ subseteq voted[i℄[i℄))invariant DistInv3 of Paxos: 8 i : Node (8 b : Ballot(val[i℄[b℄ 6= nil) val[i℄[b℄ = val[b.pro
id℄[b℄))invariant DistInv4 of Paxos: 8 i : Node (8 b : Ballot(b in ballots[i℄) b in ballots[b.pro
id℄))invariant DistInv5 of Paxos: 8 b : Ballot(: (b in ballots[b.pro
id℄)) (val[b.pro
id℄)[b℄ = nil)% This
auses an error in ioaChe
k% invariant DistInv4 of Paxos: 8 i : Node (8 b : Ballot% b in ballots[i℄) b in ballots[b.pro
id℄)

Figure 2: Signature and States

15

transitionsinput init (i_Me, v_Init)e�if (mode[i_Me℄ = idle _ mode[i_Me℄ = a
tive) thenmode[i_Me℄ := a
tive;proposed[i_Me℄ := proposed[i_Me℄ union {v_Init};elseproposed[i_Me℄ := proposed[i_Me℄;�;internal newBallot (i_Me)e�if (mode[i_Me℄ = a
tive) thendoMakeBallot[i_Me℄ := true;elsedoMakeBallot[i_Me℄ := doMakeBallot[i_Me℄;�;input fail (i_Me)e�mode[i_Me℄ := failed;internal makeBallot(i_Me, b_MakeBallot)premode[i_Me℄ = a
tive;doMakeBallot[i_Me℄;8 b'_MakeBallot : Ballot (b'_MakeBallot in ballots[i_Me℄) b'_MakeBallot < b_MakeBallot);b_MakeBallot.pro
id = i_Me;e�ballots[i_Me℄ := insert(b_MakeBallot, ballots[i_Me℄);val[i_Me℄[b_MakeBallot℄ := nil;doMakeBallot[i_Me℄ := false;internal assignVal (i_Me, b_AssignVal, v_AssignVal)premode[i_Me℄ = a
tive;b_AssignVal in ballots[i_Me℄;b_AssignVal.pro
id = i_Me;val[i_Me℄[b_AssignVal℄ = nil;v_AssignVal in proposed[i_Me℄;((8 b'_AssignVal : Ballot (b'_AssignVal < b_AssignVal)(b'_AssignVal in dead(abstained[i_Me℄))))_(9 b''_AssignVal: Ballot(val[i_Me℄[b''_AssignVal℄ = embed(v_AssignVal)and 8 bd'_AssignVal : Ballot (b''_AssignVal < bd'_AssignVal)bd'_AssignVal in dead(abstained[i_Me℄)))))e�val[i_Me℄[b_AssignVal℄ := embed(v_AssignVal);Figure 3: A
tions
16

internal vote(i_Me, b_Vote)premode[i_Me℄ 6= idle;mode[i_Me℄ 6= failed;b_Vote in ballots[i_Me℄;val[i_Me℄[b_Vote℄ 6= nil;: (b_Vote in abstained[i_Me℄[i_Me℄)e�voted[i_Me℄[i_Me℄ := voted[i_Me℄[i_Me℄ union {b_Vote};internal abstain (i_Me, B_Abstain)premode[i_Me℄ 6= idle;mode[i_Me℄ 6= failed;8 b_Abstain : Ballot ((b_Abstain in B_Abstain))9 b'_Abstain : Ballot (b'_Abstain in ballots[i_Me℄ and b_Abstain < b'_Abstain));voted[i_Me℄[i_Me℄ interse
tion B_Abstain = { };e�abstained[i_Me℄[i_Me℄ := abstained[i_Me℄[i_Me℄ union B_Abstain;internal internalDe
ide(i_Me, b_InternalDe
ide)premode[i_Me℄ = a
tive;b_InternalDe
ide in ballots[i_Me℄;9 b_qID : Ballot 8 j : Node (j in wquorums(b_qID)) b_InternalDe
ide in voted[i_Me℄[j℄)e�su

eeded[i_Me℄ := su

eeded[i_Me℄ union {b_InternalDe
ide};output de
ide(i_Me, v_De
ide)
hoose b_De
ide : Ballotpremode[i_Me℄ = a
tive;b_De
ide in su

eeded[i_Me℄;embed(v_De
ide) = val[i_Me℄[b_De
ide℄;e�mode[i_Me℄ := done; Figure 4: A
tions

17

internal sendProposed (i_Me, j_You, v_SProposed)premode[i_Me℄ = a
tive;v_SProposed in proposed[i_Me℄;internal sendBallot (i_Me, j_You, b_SBallot)premode[i_Me℄ 6= idle;b_SBallot in ballots[i_Me℄;internal sendValue (i_Me, j_You, b_SValue, v_SValue)premode[i_Me℄ 6= idle;embed(v_SValue) = val[i_Me℄[b_SValue℄;internal sendVote (i_Me, j_You, k_SVote, b_SVote)premode[i_Me℄ 6= idle;b_SVote in voted[i_Me℄[k_SVote℄;internal sendAbstained (i_Me, j_You, k_SVote, B_SVote)premode[i_Me℄ 6= idle;B_SVote subset voted[i_Me℄[k_SVote℄;internal re
vProposed (i_Me, j_You, v_RProposed)internal re
vBallot (i_Me, j_You, b_RBallot)internal re
vValue (i_Me, j_You, v_RValue)internal re
vVote (i_Me, j_You, k_RVote, b_RVote)internal re
vAbstained (i_Me, j_You, k_RVote, B_RVote)Figure 5: A
tions

18

B LSL Auxiliary Spe
i�
ationsThe following are the LSL spe
i�
ations used as axioms for all three Paxos algorithms.AuxDist : traitin
ludes TotalOrder(Ballot), TotalOrder(Node), Set(Ballot), Array(Node, Set[Ballot℄), Set(Node), IntegerBallot tuple of seqno : Int, pro
id : Nodeintrodu
esdummyNode : ! Node,dummyValue : ! Value,dummyBallot : ! Ballot,minBallot : ! Ballot,__<__ : Ballot, Ballot ! Bool,__<__ : Node, Node ! Bool,wquorums : Ballot ! Set[Node℄,rquorums : Ballot ! Set[Node℄,dead : Array[Node, Set[Ballot℄℄ ! Set[Ballot℄,haveRQuorum : Array[Node, Set[Ballot℄℄, Ballot ! Bool,haveWQuorum : Array[Node, Set[Ballot℄℄, Ballot ! Bool,haveQuorum : Array[Node, Set[Ballot℄℄, Ballot ! BoolhaveNobody : Array[Node, Set[Ballot℄℄, Ballot ! Boolasserts withabstained, abs1, abs2 : Array[Node, Set[Ballot℄℄, b_WQuorum, b_RQuorum,b_DeadQuorum, b_Dead, b_NotMin : Ballot,n_Quorum, n_rQuorum, n_wQuorum, n_Dead : Node,voted : Array[Node, Set[Ballot℄℄,b_HaveWQuorum, b_qHaveWQuorum : Ballot,n_HaveWQuorum : Node,b_HaveRQuorum, b_qHaveRQuorum : Ballot,n_HaveRQuorum : Node,b_HaveQuorum, b_qHaveQuorum : Ballot,n_HaveQuorum : Node,a_HaveQuorum : Array[Node, Set[Ballot℄℄,a_HaveWQuorum : Array[Node, Set[Ballot℄℄,a_HaveRQuorum : Array[Node, Set[Ballot℄℄,b_Less, b_Greater : Ballotb_Less < b_Greater , (b_Less.seqno < b_Greater.seqno _(b_Less.seqno = b_Greater.seqno ^ b_Less.pro
id < b_Less.pro
id));b_Less = b_Greater , (b_Less.seqno = b_Greater.seqno^ b_Less.pro
id = b_Greater.pro
id);8 b_RQuorum (8 b_WQuorum (9 n_Quorum : Node(n_Quorum in(rquorums(b_RQuorum) interse
tion wquorums(b_WQuorum)))));8 b_RQuorum (9 n_wQuorum : Node (n_wQuorum in (rquorums(b_RQuorum))));8 b_WQuorum (9 n_rQuorum : Node (n_rQuorum in (wquorums(b_WQuorum))));b_Dead in dead (abstained) , 9 b_DeadQuorum (8 n_Dead : Node(n_Dead in rquorums(b_DeadQuorum)) b_Dead in abstained[n_Dead℄));8 n_Dead : Node (abs1[n_Dead℄ subseteq abs2[n_Dead℄) dead(abs1) subseteq dead(abs2));8 b_NotMin (b_NotMin 6= minBallot) minBallot < b_NotMin);haveWQuorum (a_HaveWQuorum, b_HaveWQuorum) , 9 b_qHaveWQuorum (8 n_HaveWQuorum(n_HaveWQuorum in wquorums(b_qHaveWQuorum)) b_HaveWQuorum in a_HaveWQuorum[n_HaveWQuorum℄));haveNobody (a_HaveQuorum, b_HaveQuorum) , (8 n_HaveQuorum19

: (b_HaveQuorum in a_HaveQuorum[n_HaveQuorum℄));haveRQuorum (a_HaveRQuorum, b_HaveRQuorum) , 9 b_qHaveRQuorum (8 n_HaveRQuorum(n_HaveRQuorum in rquorums(b_qHaveRQuorum)) b_HaveRQuorum in a_HaveRQuorum[n_HaveRQuorum℄))

20

C Proof S
riptsC.1 Paxos to Global2The following is the LP proof of the simulation relation from Paxos to Global2.
learthaw Paxos2Global2forgetset name Zde
l vars z_s, z_s' : States[Paxos℄de
l vars z_u, z_u' : States[Global2℄de
l vars beta : A
tionSeq[Global2℄de
l vars v, vha
k : Valuede
l op sk_b : -> Ballotde
l op sk_bn : -> Ballotde
l op sk_i : -> Nodepr (F(z_s, z_u) /\ step (z_s, pi, z_s') /\ DistInv1(z_s)/\ DistInv2(z_s) /\ DistInv3(z_s) /\ DistInv4(z_s) /\ DistInv5(z_s)=> \E beta : A
tionSeq[Global2℄ (exe
Frag(z_u, beta)/\ F(z_s', last(z_u, beta)) /\ tra
e(beta) = tra
e(pi:A
tions[Paxos℄)))<>make immune
onres by ind on pi : A
tions[Paxos℄<> init (n, v1)res by =>res by spe
 beta to init(n, v1) * {}% 3 requirements: failed/a
tive; initiated; proposedres by /\<> for doneres by
ases z_s
.failed[n℄<>[℄<>res by
ases z_s
.mode[n
℄ = idle<>res by
ases i = n
[℄[℄[℄<> for idle/a
tiveres by
ases z_s
.failed[n℄<>[℄<>res by
ases i = n
<>res by
ases z_s
.mode[n
℄ = idle[℄<>res by
ases z_s
.mode[n
℄ = idle[℄[℄[℄<>res by
ases z_s
.failed[n℄<> Failedex Ta
ti
Paxos2G2_1.lp[℄<> Not failedres by
ases embed(v1) = embed(v)<> We're the one doing the insertingres by spe
 i to n
[℄ Someone else's value<>ex Ta
ti
Paxos2G2_1.lp[℄[℄[℄ res by /\[℄ init<> Fail (n)res by =>res by spe
 beta to fail(n) * {}[℄<> De
ide (n, v1, b1)res by =>res by spe
 beta to de
ide (n
, v1
, b1
) * {}% (z_s
.val[n
℄)[b1
℄ = z_u
.val[b1
℄% /\ \E i:Node (b1
 \in z_s
.su

eeded[i℄)% /\ \A i:Node 21

% (z_s
.mode[i℄ = idle% <=> (if n
 = i then done else z_s
.mode[i℄) = idle)% /\ \A i:Node% (z_s
.mode[i℄ = done \/ i = n
% <=> (if n
 = i then done else z_s
.mode[i℄) = done)res by /\<> Level 5 subgoal for
onjun
t 1: (z_s
.val[n
℄)[b1
℄ = z_u
.val[b1
℄% Value
onsisten
ypr (z_s
.val[n
℄)[b1
℄ ~= nilres by
oninst i by n
, b by b1
 in *Hyp[℄<>% z_s
.mode[i℄ = idle% <=> (if n
 = i then done else z_s
.mode[i℄) = idleres by
ases n
 = i[℄<>res by
ases n
 = i[℄<> Level 5 subgoal for
onjun
t 2: \E i:Node (b1
 \in z_s
.su

eeded[i℄)res by spe
 i to n
[℄[℄<> enabled(z_s, newBallot(n))res by =>res by spe
 beta to {}[℄<> enabled(z_s, makeBallot(n, b1))res by =>res by spe
 beta to makeBallot (b1
) * {}res by /\<> Current subgoal: ~(b1
 \in z_s
.ballots[i℄)res by
oninst b by b1
, i by i
 in *Hyp% ZImpliesHyp.1.13.2: b1
 \in z_s
.ballots[b1
.pro
id℄ -> true% Now this violates pre
ondition of unique ballotinst b'_MakeBallot by b1
 in *Hyp[℄<>% b1
.seqno = b.seqno \/ \E i:Node (b \in z_s
.ballots[i℄)% <=> \E i:Node% (b% \in (if b1
.pro
id = i% then insert(b1
, z_s
.ballots[b1
.pro
id℄)% else z_s
.ballots[i℄))res by
ases b1
 = b<>res by spe
 i to b1
.pro
id[℄<>res by <=><>fix i as sk_i in *Hypres by spe
 i to sk_ires by
ases b1
.pro
id = sk_i[℄<>fix i as sk_i in *Hypres by spe
 i to sk_ires by
ases b1
.pro
id = sk_i[℄[℄<> Valset imm onres by
ases b = b1
<>[℄<>res by
ases b1
.pro
id = b
.pro
id<> Same[℄<> Differentres by
ases b
.seqno = b1
.seqno<> HACKass nil = z_u
.val[b
℄[℄[℄set imm off[℄[℄ /\[℄ makeBallot<> enabled(z_s, abstain(n, s7))res by =>res by spe
 beta to abstain(n
, s7
) * {}% Just one
lause, yay! 22

res by
ases n
 = i[℄<> enabled(z_s, assignVal(n, b1, v1))res by =>res by spe
 beta to assignVal(b1
, v1
) * {}% (\A b' (b'.seqno < b1
.seqno => b' \in dead(z_u
.abstained))% \/ \E b''% (z_u
.val[b''℄ = embed(v1
)% /\ \A bd'% (b''.seqno < bd'.seqno% => bd' \in dead(z_u
.abstained))))% /\ \A b% ((if b.seqno = b1
.seqno then embed(v1
) else z_u
.val[b℄)% = (if b1
.pro
id = b.pro
id% then assign(z_s
.val[b1
.pro
id℄, b1
, embed(v1
))% else z_s
.val[b.pro
id℄)% [b℄)% /\ \E i:Node (b1
 \in z_s
.ballots[i℄)% /\ \E i:Node (v1
 \in z_s
.proposed[i℄)res by /\<>res by
ases \A b'_AssignVal (b'_AssignVal.seqno < b1
.seqno => b'_AssignVal \in dead(z_s
.abstained[b1
.pro
id℄))<>pr \A b' (b'.seqno < b1
.seqno => b' \in dead(z_u
.abstained))res by =>inst b'_AssignVal by b'
 in *Hypset imm onpr \A i : Node ((z_s
.abstained[b1
.pro
id℄)[i℄ \subseteq z_u
.abstained[i℄)set imm offinst n_Dead by i, abs1 by z_s
.abstained[b1
.pro
id℄, abs2 by z_u
.abstained in Aux*res by
ases dead(z_s
.abstained[b1
.pro
id℄) = dead(z_u
.abstained)inst e by b'
, s1 by dead(z_s
.abstained[b1
.pro
id℄), s2 by dead(z_u
.abstained) in Setinst e by b'
 in Set[℄<>fix b''_AssignVal as sk_b in *Hyppr \E b'' (z_u
.val[b''℄ = embed(v1
)/\ \A bd' (b''.seqno < bd'.seqno => bd' \in dead(z_u
.abstained)))res by spe
 b'' to sk_b% Now show that (z_s
.val[b1
.pro
id℄)[sk_b℄ -> embed(v1
) = z_u
.val[sk_b℄inst i by b1
.pro
id, b by sk_b in *Hyp% This removes first
onjun
t% Other goal: sk_b.seqno < bd'.seqno => bd' \in dead(z_u
.abstained)res by =>inst bd'_AssignVal by bd'
 in Zset imm onpr \A i : Node ((z_s
.abstained[b1
.pro
id℄)[i℄ \subseteq z_u
.abstained[i℄)set imm offinst n_Dead by i, abs1 by z_s
.abstained[b1
.pro
id℄, abs2 by z_u
.abstained in Aux*inst e by bd'
, s1 by dead(z_s
.abstained[b1
.pro
id℄), s2 by dead(z_u
.abstained) in Setinst e by bd'
 in Set[℄<>% (if b.seqno = b1
.seqno then embed(v1
) else z_u
.val[b℄)% = (if b1
.pro
id = b.pro
id% then assign(z_s
.val[b1
.pro
id℄, b1
, embed(v1
))% else z_s
.val[b.pro
id℄)% [b℄res by
ases b.pro
id = b1
.pro
id<>res by
ases b
.seqno = b1
.seqno<>[℄<>inst i by b1
.pro
id, b by b
 in *Hyp[℄[℄<> Different pro
 IDs[℄[℄<> Level 5 subgoal for
onjun
t 3: \E i:Node (b1
 \in z_s
.ballots[i℄)res by spe
 i to b1
.pro
id[℄<> Level 5 subgoal for
onjun
t 4: \E i:Node (v1
 \in z_s
.proposed[i℄)res by spe
 i to b1
.pro
id[℄[℄ /\[℄ assignVal<> vote(n, b1)res by =>res by spe
 beta to vote(n
, b1
) * {}% Two
onjuntsres by /\<> Level 5 subgoal for
onjun
t 1: \E i:Node (b1
 \in z_s
.ballots[i℄)res by spe
 i to n
[℄<> 23

% (if n
 = i% then z_u
.voted[n
℄ \U insert(b1
, {})% else z_u
.voted[i℄)% = (if n
 = i% then assign(z_s
.voted[n
℄,% n
,% z_u
.voted[n
℄ \U insert(b1
, {}))% else z_s
.voted[i℄)% [i℄res by
ases i = n
[℄[℄ vote<> enabled(z_s, internalDe
ide(n, b1))res by =>res by spe
 beta to internalDe
ide(b1
) * {}% 3
onjun
tsres by /\<>% ((b1
.seqno = b.seqno /\ b1
.pro
id = b.pro
id)% \/ \E i:Node (b \in z_s
.su

eeded[i℄)% <=> \E i:Node% (b% \in (if n
 = i% then z_s
.su

eeded[n
℄ \U insert(b1
, {})% else z_s
.su

eeded[i℄)))res by
ases (b1
.seqno = b.seqno /\ b1
.pro
id = b.pro
id)% b
 is the generi
 guy in the upper automaton<>res by spe
 i to n
[℄<>res by <=><>fix i as sk_i in *Hypres by spe
 i to sk_ires by
ases n
 = sk_i[℄<>fix i as sk_i in *Hypres by spe
 i to sk_ires by
ases n
 = sk_i[℄[℄[℄<> \E b_qID \A j:Node (j \in wquorums(b_qID) => b1
 \in z_u
.voted[j℄)% We have a quorumfix b_qID as sk_bn in *Hypres by spe
 b_qID to sk_bnres by =>inst j by j
 in Zres by
ases z_u
.voted[j
℄ = (z_s
.voted[n
℄)[j
℄inst i by j
, j by n
 in *Hypinst e by b1
, s1 by(z_s
.voted[n
℄)[j
℄, s2 by z_u
.voted[j
℄ in Setinst e by b1
 in Set[℄<> Level 5 subgoal for
onjun
t 3: \E i:Node (b1
 \in z_s
.ballots[i℄)res by spe
 i to n
[℄[℄ intl de
ide<> enabled(z_s, sendProposed(n, n1, v1))ex Ta
ti
Paxos2G2_emptyBeta[℄<> enabled(z_s, sendBallot(n, n1, b1))ex Ta
ti
Paxos2G2_emptyBeta[℄<> enabled(z_s, sendValue(n, n1, b1, v1)ex Ta
ti
Paxos2G2_emptyBeta[℄<> enabled(z_s, sendVote(n, n1, n2, b1))ex Ta
ti
Paxos2G2_emptyBeta[℄<> enabled(z_s, sendAbstained(n, n1, n2, s7))ex Ta
ti
Paxos2G2_emptyBeta[℄<> enabled(z_s, re
vProposed(n, n1, v1))ex Ta
ti
Paxos2G2_emptyBeta% \E i:Node (v \in z_s
.proposed[i℄)% <=> \E i:Node% (v% \in (if ~(z_s
.mode[n1℄ = idle) /\ ~z_s
.failed[n1℄24

% then assign(z_s
.proposed,% n1,% insert(v1
, z_s
.proposed[n1℄))% else z_s
.proposed)% [i℄)res by <=><>fix i as sk_i in *Hypres by spe
 i to sk_ires by
ases ~(z_s
.mode[n1
℄ = idle) /\ ~z_s
.failed[n1
℄<>res by
ases n1
 = sk_i[℄<>[℄[℄<>set imm onres by
ases v
 = v1
<>set imm offres by spe
 i to n
[℄<>set imm offfix i as sk_i in *Hypres by spe
 i to sk_ires by
ases ~(z_s
.mode[n1
℄ = idle) /\ ~z_s
.failed[n1
℄res by
ases n1
 = sk_ipr embed(v1
) ~= embed(v
)inst t by v
, t2 by v1
 in Null[℄[℄[℄ ugh<> enabled(z_s, re
vBallot(n, n1, b1))ex Ta
ti
Paxos2G2_emptyBetares by <=><>fix i as sk_i in *Hypres by spe
 i to sk_ires by
ases ~(z_s
.mode[n1
℄ = idle) /\ ~z_s
.failed[n1
℄<>res by
ases n1
 = sk_i[℄<>[℄[℄<>fix i as sk_i in *Hypres by
ases ~(z_s
.mode[n1
℄ = idle) /\ ~z_s
.failed[n1
℄res by
ases n1
 = sk_i<>res by
ases b
 \in z_s
.ballots[sk_i℄<>res by spe
 i to sk_i[℄<>res by spe
 i to n
res by
onset imm onpr b
 = b1
[℄[℄<>res by spe
 i to sk_i[℄[℄<> enabled(z_s, re
vValue(n, n1, b1, v1))ex Ta
ti
Paxos2G2_emptyBetares by
ases ~(z_s
.mode[n1℄ = idle) /\ ~z_s
.failed[n1℄set imm onres by
ases b1
 = b<>set imm offres by
ases n1
 = b1
.pro
idpr (z_s
.val[n
℄)[b
℄ ~= nilres by
oninst b by b
, i by n
 in *Hyp[℄<>set imm offres by
ases n1
 = b
.pro
idpr ~(b
.seqno = b1
.seqno /\ b
.pro
id = b1
.pro
id)inst b_Less by b
, b_Greater by b1
 in Aux*[℄[℄ re
vValue<> enabled(z_s, re
vVote(n, n1, n2, b1)) 25

ex Ta
ti
Paxos2G2_emptyBetares by
ases ~(z_s
.mode[n1℄ = idle) /\ ~z_s
.failed[n1℄% Requirement: z_u
.voted[i℄ = z_s
.voted[i℄[i℄% n
 = sender, n1
 = re
eiver, n2
 = information aboutres by
ases n1
 ~= i% First
ase done% Now n1
 = i, re
eiver data being
hangedres by
ases n2
 ~= i
% First
ase easy again% Now n
 = i
, talking about info of senderpr b1
 \in (z_s
.voted[i
℄)[i
℄<>res by
ases (z_s
.voted[n
℄)[i
℄ = z_u
.voted[i
℄inst j by n
, i by i
 in *Hypinst e by b1
, s1 by (z_s
.voted[n
℄)[i
℄, s2 by z_u
.voted[i
℄ in Setinst e by b1
 in Set[℄pr b1
 \in z_u
.voted[i
℄ass b \in s : Set[Ballot℄ => s = insert(b, s)inst b by b1
, s by z_u
.voted[i
℄ in Z[℄<> enabled(z_s, re
vAbstained(n, n1, n2, s7))ex Ta
ti
Paxos2G2_emptyBetares by
ases ~(z_s
.mode[n1℄ = idle) /\ ~z_s
.failed[n1℄% Requirement: z_u
.voted[i℄ = z_s
.voted[i℄[i℄% n
 = sender, n1
 = re
eiver, n2
 = information aboutres by
ases n1
 ~= i% First
ase done% Now n1
 = i, re
eiver data being
hangedres by
ases n2
 ~= i
% First
ase easy again% Now n
 = i
, talking about info of senderpr s7
 \subseteq (z_s
.abstained[i
℄)[i
℄<>ass s : Set[Ballot℄ \subseteq s1 : Set[Ballot℄ /\ s1 : Set[Ballot℄ \subseteq s2 : Set[Ballot℄ => s : Set[Ballot℄ \subseteq s2 : Set[Ballot℄inst j by n
, i by i
 in *Hypinst s by s7
, s1 by (z_s
.abstained[n
℄)[i
℄, s2 by (z_s
.abstained[i
℄)[i
℄ in Zres by
on[℄pr s7
 \subseteq z_u
.abstained[i
℄ass s1 : Set[Ballot℄ \subseteq s2 : Set[Ballot℄ => s1 : Set[Ballot℄ \U s2 = s2inst s1 by s7
, s2 by z_u
.abstained[i
℄ in Z[℄[℄qedC.2 Global2 to Global2The following is the LP proof of the simulation relation from Global2 to Global1. Noti
e that it ismu
h simpler than the proof from Paxos to Global2 or from Global1 to Cons.
learthaw Global22Global1forgetset name Zde
l vars z_s, z_s' : States[Global2℄de
l vars z_u, z_u' : States[Global1℄de
l vars beta : A
tionSeq[Global1℄de
l vars v, vha
k : Valuede
l op sk_b : -> Ballotde
l op sk_bn : -> Ballotde
l op sk_i : -> Nodede
l op sk_z1 : -> States[Global1℄de
l op sk_s1 : -> States[Global2℄de
l op StartRel : States[Global2℄ -> States[Global1℄ass StartRel(z_s:States[Global2℄) = [z_s.abstained, z_s.voted,z_s.val, z_s.su

eeded, z_s.ballots, z_s.failed, z_s.de
ided,z_s.proposed, z_s. initiated℄ 26

pr start(z_s) => \E z_u (start(z_u) /\ F(z_s, z_u))<> Start of proofmake immune
onres by =>res by spe
 z_u to StartRel(z_s
)[℄pr (F(z_s, z_u) /\ step (z_s, pi, z_s') /\ Inv4(z_s) =>\E beta : A
tionSeq[Global1℄ (exe
Frag(z_u, beta) /\F(z_s', last(z_u, beta)) /\ tra
e(beta) = tra
e(pi:A
tions[Global2℄)))make immune
onres by ind on pi : A
tions[Global2℄<> Indu
tion proof<> enabled(z_s, init(n, v))res by =>res by spe
 beta to init(n, v) * {}[℄<> enabled(z_s, fail(n))res by =>res by spe
 beta to fail(n) * {}[℄<> enabled(z_s, de
ide(n, v, b1))res by =>res by spe
 beta to de
ide (n
, v
, b1
) * {}[℄<> enabled(z_s, makeBallot(b1, s3))res by =>res by spe
 beta to makeBallot (b1
, quorums) * {}[℄<> enabled(z_s, abstain(n, s13))res by =>res by spe
 beta to abstain(n
, s13
) * {}[℄<> enabled(z_s, assignVal(b1, v))res by =>res by spe
 beta to assignVal(b1
, v
) * {}res by =>% Level 5 subgoal for proof of =>:% z_s
.val[b'
℄ = embed(v
)% \/ \A j:Node (j \in quorums => b'
 \in z_s
.abstained[j℄)inst b' by b'
 in *Hypres by
ases \A j:Node (j \in quorums => b'
 \in z_s
.abstained[j℄)<> First
ase easy[℄<> b'
 isn't dead yet remember, b'
 < b
% Current subgoal: z_s
.val[b'
℄ = embed(v
)fix b'' as sk_b in *Hypres by
ases sk_b < b'
, sk_b = b'
, b'
 < sk_b<> Easy
aseinst bd' by b'
, b' by b'
 in Z% Impossible[℄<> Easy
ase[℄<> Not so easy, use Inv4inst b by sk_b, b' by b'
 in *Hyp[℄[℄[℄ assignVal<> enabled(z_s, vote(n, b1))res by =>res by spe
 beta to vote(n
, b1
) * {}[℄<> internalDe
ide(b1)res by =>res by spe
 beta to internalDe
ide(b1
) * {}[℄[℄ End of indu
tionqedC.3 Global1 to ConsThis is the proof from Global1 to Cons. Although Global1 is a smaller program than Paxos, theproof is nearly as long as the simulation relation from Paxos to Global2.27

learthaw Global12Consforgetset name Zde
l vars z_s, z_s' : States[Global1℄de
l vars z_u, z_u' : States[Cons℄de
l vars beta : A
tionSeq[Cons℄de
l vars v, vha
k : Valuede
l op sk_b : -> Ballotde
l op sk_bn : -> Ballotde
l op sk_i : -> Nodede
l op StartRel : States[Global1℄ -> States[Cons℄ass StartRel(z_s:States[Global1℄) = [{}, {}, {}, {}, {}℄ : States[Cons℄pr start(z_s) => \E z_u (start(z_u) /\ F(z_s, z_u))<> Start of proofmake immune
onres by =>res by spe
 z_u to StartRel(z_s
)[℄pr (F(z_s, z_u) /\ step (z_s, pi, z_s') /\Inv1(z_s) /\ Inv2(z_s) /\ Inv3(z_s) /\ Inv4(z_s) /\ Inv5(z_s) =>\E beta : A
tionSeq[Cons℄ (exe
Frag(z_u, beta) /\F(z_s', last(z_u, beta)) /\ tra
e(beta) = tra
e(pi:A
tions[Global1℄)))make immune
onres by ind on pi : A
tions[Global1℄<> Indu
tion proof<> enabled(z_s, init(n, v1))res by =>res by spe
 beta to init(n, v1) * {}[℄<> enabled(z_s, fail(n))res by =>res by spe
 beta to fail(n) * {}[℄<> enabled(z_s, de
ide(n, v1, b1))res by =>res by spe
 beta to de
ide (n
, v1
) * {}inst b by b1
, v by v1
 in *Hyp[℄<> enabled(z_s, makeBallot(b1))res by =>res by spe
 beta to {}res by /\<>res by =>inst v by v
 in *Hypfix b as sk_b in
on-op(v
)res by spe
 b to sk_bres by
ases b1
 = sk_binst b by sk_b in *Hyp[℄<>res by =>fix b as sk_b in
on-op(b1
)res by
ases sk_b = b1
<> First
ase easy, impossible
ase[℄<> Se
ond
ase, sk_b ~= b1
inst b by sk_b, v by v
 in *Hyp[℄ Booyeah![℄[℄<> enabled(z_s, abstain(n, s13))res by =>res by spe
 beta to {}[℄ ayup<> enabled(z_s, assignVal(b1, v1))res by =>res by
ases \A b : Ballot (b \in z_s
.su

eeded => z_s
.val[b℄ = nil)<> True
ase, all vals are nil 28

res by
ases ~(b1
 \in z_s
.su

eeded)<> ~(b1
 \in z_s
.su

eeded)res by spe
 beta to {}res by /\<>ex Ta
ti
G2C_1[℄<>ex Ta
ti
G2C_2[℄[℄<> True. New assigned ballot is in su

eeded and nothing else has su

eededres by spe
 beta to
hooseVal(v1
) * {}res by /\<> empty(z_u
.
hosen)ex Ta
ti
G2C_5[℄<> v in z_s
.
hosen => \E...res by =>res by spe
 b to b1
[℄<> \E.... => v in z_s
.
hosenex Ta
ti
G2C_4[℄ \E...[℄ b1
 \in z_s
.su

eeded[℄ true
ase for all ballots being nil<> false
ase, there are some ballots not nil% Use pre
ondition on < operatorpr \E b : Ballot (b \in z_s
.su

eeded /\ ~(z_s
.val[b℄ = nil))<> Some preliminariesset name temppr \E b ~(b \in z_s
.su

eeded => z_s
.val[b℄ = nil)make immune
onres by
onfix b as sk_b in temp*res by spe
 b to sk_bres by
ases z_s
.val[sk_b℄ = nil[℄fix b as sk_bn in Z% sk_bn is one of the ballots that aren't nullres by spe
 beta to {}res by /\<>ex Ta
ti
G2C_1[℄<>res by =>fix b as sk_b in
on-op(v
)res by
ases b1
 = sk_b% v
 = value of inserted element b1
<> True
ase, show using < operatorres by
ases sk_b < sk_bn, sk_b = sk_bn, sk_bn < sk_b<> sk_b < sk_bninst b' by sk_b, b by sk_bn in *Hypinst b by sk_b in *Hyp[℄ Apparently impossible
ase, be
ause of invariant<> sk_b = sk_bn[℄<> sk_bn < sk_b Level 8% Something in ballots is <
urrent insertionpr ~ (sk_bn \in dead(z_s
.abstained))<>make immune
oninst b by sk_bn in *Hyp[℄inst b by sk_bn, b' by sk_bn, v by v
 in *Hyp[℄[℄ b1
 = sk_b<> b1
 ~= sk_binst b by sk_b, v by v
 in *Hyp% Ppeviously in su

eeded[℄[℄ sk_b ~= b1
[℄[℄ assignVal<> vote enabled(z_s, vote(n, b1))res by => 29

res by spe
 beta to {}[℄ ayup<> enabled(z_s, internalDe
ide(b1))res by =>res by
ases b1
 \in z_s
.su

eeded<> Easy
aseres by spe
 beta to {}res by /\<>ex Ta
ti
G2C_3[℄<>ex Ta
ti
G2C_4[℄ Easy
ase<> b1
 is a
tually newres by
ases z_s
.val[b1
℄ = nil<> Another easy
ase - de
iding on a null ballotres by spe
 beta to {}res by /\<>ex Ta
ti
G2C_3[℄<>ex Ta
ti
G2C_4[℄[℄[℄<> b1
 has a value. Now we're talkingres by
ases \E b : Ballot (b \in z_s
.su

eeded /\ z_s
.val[b℄ ~= nil)<> True
ase, there are existing su

eeded ballots with valuefix b as sk_bn in *CaseHypres by spe
 beta to {}res by /\<>ex Ta
ti
G2C_3[℄<>% Remember, goal is v
 \in u
.
hosen, where val[b = sk_b℄℄ = v
res by =>fix b as sk_b in
on-op(v
)res by
ases b1
 = sk_b% This
ase resumption is not ne
essary. There exists sk_b% that already holds what we want.<> True
ase, show using < operatorres by
ases sk_b < sk_bn, sk_b = sk_bn, sk_bn < sk_b<> sk_b < sk_bnpr z_s
.val[sk_bn℄ = z_s
.val[sk_b℄inst b' by sk_b, b by sk_bn in *Hyp% embed(v
) = z_s
.val[sk_bn℄% \/ sk_b \in dead(z_s
.abstained)% -> truepr ~(sk_b \in dead(z_s
.abstained))make immune
onrewrite
onres by
onde
l op sk_i : Ballot, Ballot -> Nodefix n_Quorum as sk_i(b_RQuorum, b_WQuorum) in Aux*de
l op sk_bq : -> Ballotfix b_qID as sk_bq in *Hypinst j by sk_i(b_DeadQuorum
, sk_bq), b_WQuorum by sk_bq in Zinst n_Dead by sk_i(b_DeadQuorum
, sk_bq) in *Hyp
rit *Hyp with Z, *Hyp[℄inst b' by sk_b, b by sk_bn in *Hypinst b by sk_b, v by v
 in *Hyp[℄ sk_b < sk_bn<> sk_b = sk_bn% Impossible[℄<> sk_bn < sk_binst b' by sk_bn, b by sk_b in *Hypinst v by v
, b by sk_bn in *Hyp[℄[℄ sk_b = b1
<> sk_b ~= b1
inst b by sk_b, v by v
 in *Hyp[℄[℄[℄ b1
 is new[℄ ballot already
hosen 30

<> Ballot not yet
hosenres by spe
 beta to
hooseVal(z_s
.val[b1
℄.val) * {}res by /\<> z_s
.val[b1
℄.val \in z_s
.proposedinst b by b1
 in *Hyp[℄<> empty(z_u
.
hosen)ex Ta
ti
G2C_5[℄<> \A v (v \in z_u
.
hosen)...res by =>res by spe
 b to b1
[℄<> \E....% v1
 = newly assigned value% v
 = value on right side of what we have to proveres by =>fix b as sk_b in *Hyp.2inst b by sk_b in *Hyp[℄ \E...[℄ new value
hosen[℄ internalDe
ide[℄ End of indu
tionqed

31

Referen
es[1℄ Paul Attie. Liveness preserving simulation relations. PODC, 1998.[2℄ Andrej Bogdanov. Formal veri�
ation of simulations between I/O automata. Master of engi-neering thesis, September 2000.[3℄ The Daikon Invariant Dete
tor User Manual, De
ember 7, 2001.[4℄ Mi
hael J. Fis
her, Nan
y A. Lyn
h, and Mi
hael Merritt. Impossibility of distributed
on-sensus with one faulty pro
ess. Journal of the ACM, (2):374{382, 1985.[5℄ Stephen J. Garland and John V. Guttag. A guide to LP, the Lar
h Prover. Te
hni
al Report 82,Digital Equipment Corporation, Systems Resear
h Center, 31 De
ember 1991.[6℄ Stephen J. Garland, Nan
y A. Lyn
h, and Mandana Vaziri. IOA: A language for spe
ify-ing, programming, and validating distributed systems. Te
hni
al report, MIT Laboratory forComputer S
ien
e, 1997.[7℄ L. Lamport. The temporal logi
 of a
tions. ACM Transa
tions on Programming Languagesand Systems, 16(3):872{923, May 1994.[8℄ Leslie Lamport. The part-time parliament. ACM Transa
tions on Computer Systems, pages133{169, May 1998.[9℄ Leslie Lamport. Paxos made simple. to appear in SIGACT News, Nov 2001.[10℄ Nan
y Lyn
h. Distributed Algorithms. Morgan Kaufmann, San Fran
is
o, CA, 1996.[11℄ Nan
y Lyn
h and Alex Shvartsman. Paxos made even simpler (and formal).[12℄ Nan
y Lyn
h and Frits Vandraager. Forward and ba
kward simulations, parts i and ii.http://theory.l
s.mit.edu/tds/papers/Lyn
h, O
tober 1994.[13℄ Nan
y A. Lyn
h and Mark R. Tuttle. An introdu
tion to Input/Output automata. CWI-Quarterly, 2(3):219{246, September 1989.[14℄ Roberto Segala, Rainer Gawli
k, Jorgen Sogaard-Andersen, and Nan
y Lyn
h. Liveness intimed and untimed systems. Information and Computation, 141(2):119{171, 1998.[15℄ Toh Ne Win and Mi
hael Ernst. Verifying distributed algorithms via dynami
 analysis andtheorem proving. http://theory.l
s.mit.edu/tds/papers/Tohn, May 2002.

32

