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Abstract

Paxos is an important distributed algorithm that implements consensus in the presence of
stopping failures. It was introduced by Leslie Lamport in 1990 and published in 1998 [8]. In
this paper, we present a formal safety proof of the Paxos algorithm using an interactive theorem
prover. Using the I/O automaton [13] model of Paxos from Lynch and Shvartsman [11], we
define a forward simulation from Paxos to the consensus specification using several intermediate
automata and present and prove invariants of each automaton. Through this case study, we
highlight the power and use of the IOA language and toolkit.

1 Introduction

Distributed consensus is an important problem that captures a core issue in many computer science
applications such as consistent distributed databases. The problem addresses the situation in which
there is a set of n processes. Each process can propose a value, but eventually they all must agree
on a common value. The consensus procedure must be safe at all times. That is, the common value
must be a proposed value, there must be at most one common value, and no process should ever
agree on a value different from the common value. Furthermore, the consensus procedure must
be live. That is, eventually all processes should learn the value. The consensus procedure should
work even in the presence of asynchronous processes, benign process failures, and message loss and
duplication.

As an example, suppose there are n terminals #1,...,%, and a user at each terminal ¢;. The
terminals maintain a distributed database. Each user proposes a value 7 (¢;) for database entry .
The terminals run a consensus procedure to decide which value 7(#;) will be assigned to database
entry w. The consensus procedure guarantees that the database will be consistent and complete
(i.e. return the same value for 7 no matter what terminal it is accessed from) even in the presence
of benign terminal failures.

The general problem of consensus has been studied extensively in the literature [10, 4, 8, 9, 11].
As early as 1985, it was known that the consensus problem can not be solved at all in a completely
asynchronous setting, even with at most one faulty process [4]. Thus, in order to design an algorithm
for consensus, the consensus conditions had to be relaxed. In 1990, Lamport sacrificed the liveness
condition and designed an algorithm known as Paxos to implement consensus safely [8, 9]. In 2002,
Lynch and Shvartsman formalized the correctness proof of Paxos and provided a performance
analysis under certain timing and failure assumptions [11].
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This paper presents a formal, mechanized proof of the safety properties of the Paxos algorithm.
Via an interactive theorem prover toolkit, we prove the Paxos algorithm implements the consensus
specification. That is, we show every possible externally observable outcome of the Paxos algorithm
is also an externally observable outcome of the consensus specification. We first define both the
Paxos algorithm and the consensus specification as input/output automata [13] using the IOA
language [6]. To prove that Paxos implements consensus, we define a forward simulation relation
from the Paxos automaton to the consensus automaton. We translate our automata and forward
simulation conjecture into a form readable by the Larch Prover [5], using an automated translation
tool IOA2LSL [2]. This work is largely based on the algorithm code and definitions introduced by
Lynch and Shvartsman in [11]. Our main contribution is the automated proof of this complicated
distributed algorithm, and the discovery of new invariants that are needed for the proof. We
provide a complete and detailed proof that Paxos implements consensus and also demonstrate the
performance of the IOA toolkit on a complicated distributed algorithm.

The rest of this paper is organized as follows. Section 2 gives a short introduction to most of the
mathematical definitions and theorems that we need. Section 3 formalizes the consensus problem
and Paxos solution and introduces the input/output automata specification of each one. Section 4
presents the formal proof and discusses the use of the IOA toolkit.

2 Mathematical Foundations

Much effort has been exerted during the years to formalize the notion of algorithms and dis-
tributed systems. There are several standard models such as Temporal Logic of Actions (TLA) [7]
and input/output (I/O) automata [13]. In addition to these models, there are several standard
proof methods for implementation theorems. These methods include composition [14] and simu-
lations [12]. Here we give a brief overview of the models and methods used in our proofs and the
automated tools designed to support them.

2.1 I/O automata

We will define all the algorithms we describe in terms of input/output or I/O automata. These
automata reason about algorithms in terms of the their state machine representation.

Definition 1 An em I/0 automaton A is made up of four parts:

e states(A) is a state space, usually written as a cross product of some variables.

e start(A) C states(A) is a set of start states.

e sig(A) is a signature that lists the actions of the automaton. The signature specifies the type
of each action as either input, output, or internal.

o irans(A) C states(A) x actions(A) x states(A) is a transition relation that tells which actions
are enabled at which states, and the effects of the actions. Input actions are always enabled.

An execution of an I/O automaton is a sequence of interleaved actions and states. The set of
all possible executions is written as execs(A). A trace of an execution is the sequence of all the
external (i.e. input or output) actions in the execution. The set of all traces is written as traces(A).

Often we would like to prove statements of the form “nothing bad happens” in the execution
of an algorithm. For example, one might wish to prove that during the execution of Kruskal’s
minimum spanning tree algorithm, the graph that the algorithm is building is always a tree or a
forest. Such properties are called safety properties.



Definition 2 A safety property P is a set of traces, traces(P) such that

e traces(P) is nonempty.

e traces(P) is prefiz-closed: all finite prefizes of a trace in traces(P) are also in traces(P).

e traces(P) is limit-closed: if an infinite sequence of traces By, Ba, ... are in traces(P) and each
Bi is a prefix of Biy1, then the trace B that is the limit of the sequence is also in traces(P).

One way to show that a safety property holds is through invariants. An invariant is a predi-
cate of the states that holds at every point in every reachable execution. Another way to prove
a saftey property is via a simulation relation. If automaton B satisfies a safety property and
traces(A) C traces(B), then A satisfies the safety property. We can show traces(A) C traces(B)
by showing that there exists a forward simulation relation f from an implementation automaton A
to a specification automaton B.

Definition 3 A forward simulation relation f from A to B is a relation from states of A to states
of B that satisfies:

e FEuvery start state of A corresponds to a start state of B:

VsEstart(A)auEstart(B) f(sa “)

e For every enabled transition (s,a,s') of A and every state u of B such that f(s,u), there is
a corresponding execution fragment B of B such that trace(a) = trace(B) and f(s',last(B))
where last(B) is the last state in the execution fragment 3.

If a forward simulation relation exists between A and B, we write A — B. In order to show
f(s',u'), we usually use invariants' of A and the hypothesis that f(s,u). Sometimes the relation f
is difficult to define. In these cases, it can be useful to define one or several intermediate automata
Ci,...,Cy and prove the k + 1 forward simulation relations A — Cy,C; — Csy, ... ,C, — B. This
technique is know as successive refinement.

When reasoning about distributed systems, humans often find it easier to consider a system of
automata. However, all the techniques we have developed for proving safety reason about single
automata. Thus it is useful to define a formal way of combining separate automata that form
a single system into a single automaton that represents that system. We would like to define
this combination in such a way that safety properties of the combined automata imply safety
properties of the individual automata. Although we do not take the time to define it formally here,
the technique hinted at exists and is called composition. Basically composition requires that the
signatures of the automata be compatible. It forms the combined (or composed) automaton by
considering cross products of states of the component automata and allowing a transition whenever
the projected transition is valid on every component automaton.

2.2 The IOA Toolkit

The TIOA language allows I/O automata to be written as programs. The signature of the automata
is declared at the begining of the program. The states are declared by listing the state variables,
and the start state is implicit in the variable initializers. Each transition contains a (conjoined) set
of preconditions. Transition effects may be specified declaratively (as a predicate on pre and post

!Technically, we also have to also show that s and u are reachable states. However, for the simulation, we are only
interested in the reachable states, where the invariants have been proven to hold.



states) or imperatively (using assignments). Safety properties can be expressed as invariants and
as simulation relations in the IOA code itself. These are checked during execution and are written
as proof obligations for the theorem prover tool, Larch Prover (LP).

LP [5] is a theorem prover that uses multi-sorted first-order logic. In order to convert an IOA
program and its invariants and simulation relations into first order logic for LP, we use a tool
IOA2LSL. The I/O automaton’s transitions become assertions in LP’s body of knowledge about
how pre and post states of the automaton relate.

The verification of safety properties involves the verification of invariants and the proof of a
simulation relation. Bogdanov [2] developed standard ways to proceed with these proofs in LP. The
proofs are by induction on the actions of the automaton. To prove an invariant Inv holds in all
reachable states, we first prove that Inv holds in the start state. Then we prove that if Inv holds
on state s, and if g is a valid action from s, Inv also holds on the post state s’. In LP, we write

prove Start(s) => Inv(s)
prove Inv(s) /\ isStep(s, a, s’) => Inv(s’)

To prove a relation f(s,u) defined in the IOA code is a forward simulation between the states s of
the implementation automaton A and the states u of the specification automaton B, we first prove
the start state correspondence and then we show that every enabled action of A has a corresponding
execution fragment that maintains the relation. In LP, we write

prove Start(s) => \E u : States[UpperLevell] (f(s, u) /\ Start(u))
prove isStep(s, a, s’) /\ f (s, u) =>
\E beta : Execs[UpperLevell]
(trace(beta) = trace(a)
/\ f(s’, last(u, beta)))
/\ execFrag(u, beta)

where beta is an execution fragment of the upper level automaton, last(u, beta) is the last state
of the fragment, and exzecFrag(u, beta) is a predicate indicating that beta is a valid execution from
U.

Both invariants and simulation relation proofs are completed using induction on the actions of
the implementation automaton A. In LP, we begin the proof by writing

resume by induction on a : Actions[A]

LP then produces a proof subgoal for each possible action the implementation automaton can
take. Then one usually specifies the corresponding execution fragment of the specification automa-
ton. Most of the creativity of the proofs lies in these steps, but most of the work lies in proving
that the last state of the specification automaton’s execution fragment does indeed correspond to
the last state of the implementation automaton’s transition.

3 The Problem and Solution

We would like to solve the problem of distributed consensus. Given a set of asynchronous processors
connected via a network, we would like to design an algorithm that allows the processors to reach
a consensus regarding some value. In order to design such an algorithm, we first must formalize
the notion of distributed consensus. For simplicity of presentation, we postpone the treatment of
node failures until our discussion of the automaton description of distributed consensus.



Definition 4 Suppose we are given a set of nodes N and a set of proposed values V(t), initially
empty. At any moment t in time, a value v may be added to V (t) (i.e. V(t) grows monotonically).
The nodes N are said to satisfy distributed consensus if at every moment t in time there is some
chosen value v € V(t) such that each n € N either has outputed v exactly once or has not output
a value.

Notice that distributed consensus is a safety property of an automaton Cons. Intuitively, this
is because if Cons fails to satisfy distributed consensus, then it fails at some particular moment in
time. Formally, let init(n,v) be the input action that adds v to the set V (¢) and for each n € N,
let decide(n,v) be the output action that n outputs v. Then distributed consensus is the set of all
traces (aq,...,qk) for 0 < k < oo where «; = init(m;,u;) or a; = decide(n;,v;) such that

e v; = v; for all 4, (i.e. the chosen value is consistent)

e for all 4 there is some j < ¢ such that v; = u; (i.e. the chosen value was proposed at some
time in the past)

e n; #n; for all i # j (i.e. nodes only choose once)

Clearly, this is nonempty, prefix-closed, and limit-closed.

Notice the trivial automaton that simply has no output satisfies distributed consensus. This
corresponds to the elimination of the liveness condition from our intuitive notion of consensus. As
we argued in Section 1, it is unfortunately necessary to eliminate the liveness from consensus if we
wish to find an implementation.

As distributed consensus is a safety property, we can define an automaton whose traces are
exactly those of distributed consensus, except now we include node failures. We call this au-
tomaton Cons. Let initiated, decided, and failed be sets of nodes and proposed and chosen be
sets of values. The initiated, proposed, and chosen sets are self-explanatory. The decided set
represents nodes that have outputed a value. The failed set represents nodes that have failed.
These sets are the variables of Cons and form its state space, so states(Cons) = initiated x
decided x failed x proposed x chosen. There is just one start state start(Cons) = {initiated =
0,decided = 0, failed = 0, proposed = 0, chosen = (}. The signature consists of four actions
sig(Cons) = {input init(n,v), input fail(n), output decide(n,v), internal chooseVal(v)}. The
transition relation can be viewed as preconditions and effects of the actions and is as follows: the
input action init(n, v) has no precondition (in fact, input actions must always be enabled) and adds
node n to initiated and value v to proposed unless node n has failed in which case the state does
not change. The input action fail(n) adds node n to failed. The internal action chooseVal(v) has
the precondition that chosen is empty and has the effect of adding v to chosen. Finally, the output
action decide(n,v) has the precondition that n € initiated — failed, n ¢ decided, and v € chosen
and adds n to decided. Figure 3 shows the IOA description of this automaton.

We will refer to the consensus automaton Cons as the specification automaton. We now present
the algorithm Paxos that solves the distributed consensus problem. First we provide a high-level
description of the algorithm, and then we define an implementation automaton Paxos that describes
this algorithm. The Paxos algorithm was first introduced by Lamport [8]. It is a three-phase
algorithm that satisfies distributed consensus. As with Cons, processes in Paxos are initiated with
proposed values and can fail.

The Paxos algorithm introduces two new concepts ballots and quorums. Ballots have iden-
tification numbers and values. The identification numbers have a total ordering defined on them.
Each process has a unique set of ballots which it can initiate. The total ordering of ballots allows
all the processes of the Paxos algorithm to agree on the same ballot when they all receive multiple



automaton Cons
signature

input init(i : Node, v : Value)
input fail(i : Node)

output decide (i : Node, v : Value)
internal chooseVal (v : Value)

states
initiated : Set[Node]l := {1},

proposed : Set[Value]l := {3},
chosen : Set[Value] {1},
decided : Set[Node] = {},
failed : Set[Nodel {}

transitions

input init (i, v)
eff
if = (i in failed) then

initiated := initiated union {i};

proposed := proposed union {v};
else

initiated := initiated;

fi

internal chooseVal (v)
pre
v in proposed and
chosen = {}
eff
chosen := {v};

output decide (i, v)
pre
i in initiated and
— (i in decided) and
— (i in failed) and
v in chosen

eff
decided := decided union {i};

input fail (i)
eff

failed := failed union {i};

Figure 1: Cons Automaton IOA Description



ballots. Quorums are sets of nodes. There are two types of quorums — read quorums and write
quorums. The quorums are designed such that for all read quorums r and all write quorums w,
rNw # (). For example, one feasible quorum design is to have one read quorum consisting of
all the nodes and one write quorum also consisting of all the nodes. This design is instructive in
understanding the algorithm. Another more optimal design is to arrange the nodes in a matrix and
have the rows be the read quorums and the columns be the write quorums. Then any read quorum
has an intersection of size one with a write quorum. The intersection property of quorums prevents
two processes that have received different sets of ballots from deciding on different ballots.

Algorithm 5 Throughout the algorithm, processes gossip about each other. In particular, they pass
around information concerning what values have been proposed, what ballots have been proposed,
what ballots have been assigned what values, who has voted for what, and who has abstained from
what. Also, a process may vote at any moment during any phase for a ballot that it has received
and not abstained from, and it may abstain from a ballot if it has received a larger ballot. For
clarity, we will talk about two kinds of processes — leaders and learners. Leaders propose ballots
and assign values to ballots. Learners abstain from and vote on ballots. Note a process can be both
a leader and a learner.

1. In the first phase of the algorithm, leaders propose ballots. Fach learner which has heard about
this ballot proposal through the gossip is now free to abstain from smaller ballots that it has
not voted for.

2. In the second phase, a leader considers the votes of a read quorum. It finds the largest ballot
b from which a read quorum has not abstained. If there is no such b, then the leader knows
all ballots less than its ballot have failed, so the leader assigns a proposed value to its ballot.
If there is such a b, the leader takes the value of b and assigns this value to its own ballot.

3. In the third phase, when a process hears that a write quorum has voted for a ballot, it may
decide on that ballot’s value.

At this point, it is instructive to consider an example.

Example 6 Suppose there are 3 processes, dubya, ashcroft, and rumsfeld, which have been
initiated with the values “axis of evil”, “fear of god”, and “war on terror”. We will let the set
of read quorums and the set of write quorums consist of the single set {ashcroft, rumsfeld}.
Suppose the universe of ballot identifiers is the integers with the usual ordering. WLOG assume
dubya becomes a leader process. For brevity of exposition, we will pretend the gossip in this circle
of processors is highly efficient, and processes learn each other’s information immediately. We will
not record this gossip in the Paxos transcription. Then a possible execution of Paxos is as follows:

1. dubya assigns value “fear of god” to ballot 1

2. dubya proposes ballot 2 to ashcroft and rumsfeld. Now ashcroft and rums feld may abstain
from ballot 1.

3. ashcroft votes on ballot 2

4. dubya proposes ballot 3 to ashcroft and rumsfeld. Now rums feld may abstain from ballot
2 even though ashcroft has already voted for ballot 2.

5. rumsfeld and asheroft abstain from ballot 1. Now a read quorum has abstained from ballot
1, so ballot 2 can be assigned any value.

6. rumsfeld abstains from ballot 2. Now ballot 2 can not succeed, but it can not fail either (i.e.
it will never be the case that a read quorum or a write quorum agrees on whether to vote or
abstain from this ballot). Therefore, ballot 2 must be assigned a value.



7. dubya assigns value “axis of evil” to ballot 2
8. rumsfeld and ashcroft vote for ballot 3. Notice processes can vote for ballots that don’t
have a value.
9. dubya assigns value “axis of evil” to ballot 3
10. all three processes decide on the value of ballot 3, “axis of evil”. Note the processes had to
wait for a value to be assigned to ballot 3 before they could decide on it.

This definition of Paxos arises quite naturally from the requirements of distributed consensus
as argued by Lamport [8]. However, to formally prove that Paxos satisfies distributed consensus
requires a bit more work. First we must define an implementation automaton Paxos that describes
Paxos, and then we must prove that there is a simulation relation from Paxos to Cons. The
definition of the Paxos automaton is presented in Appendix A.

We have arrived at this I/O automaton definition by composing all the node automata and all
the channel automata. Every action and every state variable is indexed by the individual node
automaton which the action/state variable corresponds to. Thus, if in the underlying system node
2 is initialized with value d, the Paxos automaton will have an action of the form init(2, d) and will
add d to node 2’s set of proposed values proposed|2] < proposed|2] U {d}. This is different from
the Cons automaton where there was just one global set of proposed values.

In the underlying system, nodes communicate to each other through channels. All the internal
send and recv actions are artifacts of the channel automata. In the underlying system, there is one
channel automaton for every pair of node automaton, and so the send and recv actions are indexed
by two nodes. The underlying channel automaton may duplicate messages, reorder messages, and
lose messages, but it may not create messages. We model these properties of the channel automaton
by maintaining a set of messages S in the channel. The send action adds its input message s to
the set S. The recv action has as a precondition s € S.

Now we will argue the IOA description in Appendix A actually describes Algorithm 5, Paxos.
The gossip is achieved via the send and recv actions. Voting is represented by the vote action
and abstention by the abstain action. The conditions of voting and abstention are preconditions
of the corresponding action. The ballot proposals from phase 1 are initiated by a newBallot
action and completed by a makeBallot action. The presence of newBallot, makeBallot, and
the doMakeBallot variable is a technical detail. We write Paxos in this way simply to make it
composable with a timed version of Paxos in future work. The second phase of Algorithm 5 is
encoded in the assignValue(i, b, v) action. This lets automaton i assigns value v to ballot b if

(VB < b, b € dead) v (30" < b, val(') =v A (W, b <V <b, b' € dead))

where b’ and 0" are any ballots in the universe of ballots and dead is the set of ballots from which
process ¢ knows that a read quorum has abstained. This condition ensures that the value v which ¢
assigns to b is consistent with all smaller ballots, as Algorithm 5 states. The third and final phase
of Algorithm 5 is encoded by the internal action, internal Decide, in which a process adds a ballot
to its succeeded set, and the external output action decide in which a process decides on a value of
a ballot in its succeeded set. We have encoded this third phase in two steps in order to allow more
flexibility in our automaton — a process can decide internally long before it becomes inactive, and
a process can decide internally on a ballot that doesn’t have a value.

We have omitted a few technical details from our description of the IOA code. These details
are not essential to an understanding of the algorithm and proof, but are necessary to actually run
the proof in the Larch Prover. These details include the mode and failed variables, the indexing
of quorums on ballots, the implementation of dead mentioned above, the definition of minBallot
for the smallest ballot and the nil value for ballots which have not been assigned a value.



4 The Proof

We prove that Paxos satisfies distributed consensus by defining a forward simulation from the Paxos
automaton to the Cons automaton. The correctness of this proof follows from the discussion in
Section 2. We will use two refinements in order to prove the forward simulation. The first refinement
is a forward simulation from an automaton called Globall to Cons. The second refinement is a
forward simulation from an automaton called Global2 to Globall. These successive refinements
allow us to prove the simulation relation incrementally by breaking up the proof into conceptual
chunks. This has the advantage of making each individual proof easier and giving us more insight
into the algorithm itself. In order for the forward simulations to work, we define Globall and
Global2 with the same input and output actions  init(i,v), fail(i), and decide(i,v)  as Cons.

The Globall automaton captures most of the essence of the Paxos automaton. It introduces a
simplified notion of learning capabilities by defining internal abstain and vote actions. However,
there are several major differences between Globall and Paxos. Globall is not a composition of
node automaton. This means there is no node communication and so all the channel actions are
missing from Globall. Furthermore, the makeBallot, assignV al and internal Decide actions are
actions of the automaton as a whole. In terms of the algorithmic description of Paxos, Globall
encodes the first, second, and third phase in makeBallot, assignV al, and internal Decide/decide.
The makeBallot action just ensures new ballots have a distinct identifier from old ballots. The
internal Decide action just ensures succeeded ballots have a write quorum that has voted for them.
These two actions are essentially identical to the corresponding Paxos automaton actions. The
assignVal(b,v) action is slightly different and in fact does not fully capture the corresponding
Paxos automaton action. Instead of just checking the largest ballot b’ < b from which a read
quorum has not abstained, it checks that every ballot b’ < b is either dead or has value v.

The second refinement is a forward simulation from an automaton called Global2 to an automa-
ton called Globall. The Global2 automaton is exactly the same as the Globall automaton except
in the assignVal(b,v) action. This transition is a full implementation of the second phase of the
Paxos algorithm; it only checks that the largest ballot ¥’ < b from which a read quorum has not
abstained has value v if such a b’ exists.

As mentioned in Section 2.2, we prove the simulation relation for each implementation-specification
automaton pair in LP using structural induction on the actions of the implementation automaton.
The proofs use several invariants of the automata. We also prove these invariants in LP.

4.1 Globall to Cons

Although not the longest in terms of length, this relation is conceptually the most important
because it connects the decision of the consensus specification with the use of ballots. Intuitively,
when a ballot is voted on by a quorum in Globall, the corresponding action in Cons is to choose
a value to decide on. Thus, internalDecide should correspond to chooseVal, and the simulation
relation we have is:

forward simulation from Globall to Cons:

Cons.initiated = Globall.initiated
A Cons.proposed = Globall.proposed
A Cons.decided = Globall.decided
A Cons.failed = Globall.failed
A Vv : Value ((3 b : Ballot (b in Globall.succeeded A Globall.val[b] = embed(v))) = v in Cons.chosen )

A V v : Value (v in Cons.chosen = 3 b : Ballot (b in Globall.succeeded A Globall.val[b] = embed(v) ))



The last two clauses are the important ones — they are a biconditional in [11], but for
convenience in LP, we choose to separate them. They say that the values of the ballots in
Globall.succeeded are the same as those in Cons.chosen.

Even though this concept is clear, there are a few caveats that do not allow a direct corre-
spondence. First, internalDecide can happen to more than one ballot (or more than once on
the same ballot), while chooseVal requires that Cons.chosen be empty. Thus, the second time
internal Decide happens in Globall, the corresponding execution in Cons is not chooseV al but the
empty sequence. In LP, we handle this situation by doing a case analysis where the witness for the
existentially quantified execution f is different in each case.

Another caveat is that Globall allows ballots to be voted and internally decided on before their
values are assigned. This does not apparently affect the correctness of the algorithm?, but makes
the proof more complicated, because we need to take into account two new cases:

e When internal Decide fires on a ballot without a value, the corresponding 8 execution is the
empty sequence, even if Globall.succeeded was empty.

e When assignVal is fired, it could be assigning a value to a ballot already in Globall.succeeded.
In this case, the corresponding § is chooseV al.

Once these cases are handled, witness executions for internal actions of Globall are as follows.
Actions vote, makeBallot and abstain always have f = {}. Action internalDecide(b) has = {}
if there exists a ballot in Globall.succeeded that already has a value or if b does not have a value.
If b has a value and succeeded does not, then 8 = chooseVal(val[b]). Lastly, assignVal has
B = {} = {} if it is assigning a value to a ballot not in succeeded, but corresponds to chooseV al
otherwise.

4.1.1 Invariants Used

Lynch [11] mentioned four invariants necessary to prove the simulation relation:

The set of voted ballots is disjoint from the set of abstained ballots.

If v is the value of a ballot, then v was proposed.

The set of succeeded ballots is disjoint from the set of dead ballots.

If b and b’ are two ballots such that b has a value and b’ < b, then either the value of b’ equals
the value of b or b is dead.

We have added another invariant used in the simulation relation proof:
e The set of succeeded ballots is a subset of the set of designated (i.e. made) ballots.
and two invariants used to prove the five main invariants themselves:

e If a ballot has succeeded, then a write quorum has voted for it.
e If a ballot is not designated (i.e. it has not been made), its value is nil.

The TOA description of these invariants follows.

invariant Invl of Globall: V i : Node (V b : Ballot (b in voted[i] = - (b in abstained[i])))

invariant Inv2 of Globall: V b : Ballot (val[b]l # nil = vall[bl.val in proposed)

It may reduce the fault tolerance specifications.
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invariant Inv3 of Globall: V b : Ballot (b in succeeded = — (b in dead(abstained)))

invariant Inv4d of Globall: V b : Ballot V b’ : Ballot
((vallb] # nil A b’ < b) = val[b’] = val[b] V b’ in dead(abstained))

invariant Inv5 of Globall: V b : Ballot (b in succeeded = b in ballots)

invariant Inv6 of Globalil:
V b_Inv6 : Ballot
(b_Inv6 in succeeded =
J b_qInv6 : Ballot
V n_Inv6 : Node
(n_Inv6 in wquorums(b_qInv6) => b_Inv6 in voted[n_Inv6]))

invariant Inv7 of Globalil:
V b_Inv7 : Ballot
(= (b_Inv7 in ballots) = vall[b_Inv7] = nil)

Invariants 1 through 4 were the original ones. Invl and Inv3 are actually written as intersections
n [11] but we rewrote them in terms of elements to better work with our set axioms in LP. We
found that Invb was necessary because makeBallot assigns a value to the newly-created ballot,
so we must ensure that succeeded ballots do not have their values changed. Inv6 was used in the
proof of Inv3 and Inv7 in the proof of Inv4.

The property that quorums intersect was used in the simulation relation and the proof of Inwv3.

4.2 Global2 to Globall

The state variables of the Global2 automaton were not different from those of the Globall automa-
ton. Thus the simulation relation was an equality mapping:

forward simulation from Global2 to Globall:
Globall.initiated = Global2.initiated

A Globall.proposed = Global2.proposed
A Globall.decided = Global2.decided

A Globall.failed = Global2.failed

A Globall.val = Global2.val

A Globall.ballots = Global2.ballots

A Globall.abstained = Global2.abstained
A Globall.voted = Global2.voted

A Globall.succeeded = Global2.succeeded

The only non-trivial transition was assignVal. Even then, the LP proof was 9 lines for this
transition.

We expected to use no invariants for proving this simulation relation, but we found that an
equivalent of Imv4 was necessary. Nevertheless, the simulation relation was ultimately a trivial
proof. The witness executions also had a one-to-one correspondence.

4.3 Paxos to Global2

Although the simulation relation proof from fully distributed Paxos to Global2 was longer than
the previous two, this was mainly because Paxos had more transitions. Conceptually, the relation
between the two automata was straightforward: the union of the data in the distributed Paxos is
the state of Global2. In IOA, this was written as:
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forward simulation from Paxos to Global2:

i : Node (i in Global2.initiated < Paxos.mode[i] # idle)

: Value (v in Global2.proposed < (3 i : Node (v in Paxos.proposed[i])))

i : Node (i in Global2.decided < Paxos.mode[i] = done)

i : Node (i in Global2.failed < Paxos.failed[i])

: Ballot (b in Global2.succeeded < (3 i : Node (b in Paxos.succeeded[i])))
: Ballot (Global2.val[b] = Paxos.vall[b.procid] [b])

i : Node (Global2.voted[i] = Paxos.voted[i][i])

i : Node (Global2.abstained[i] = Paxos.abstained[i][i])

: Ballot (b in Global2.ballots < (3 i : Node (b in Paxos.ballots[i])))

>>>>> > > >
CQAAACACCCICC
o RO O R R

Notice that there is no union operator appearing anywhere. This is because IOA does not
support union over variables in a set (it only supports unions between two variables). However, the
second conjunct is the equivalent of saying that Global2.proposed is the union of proposed values
in each of the Paxos automata.

Note also that each automaton’s program state (idle, active, done) and failure state (failed)
directly mapped to Global2 variables after the changes we made in 5.

The witness executions of Global2 were again straightforward: every action done by a Paxos
automaton had the same-named corresponding action in Global2, except for doM akeBallot, which
had the empty execution. For example, a vote action in Paxos resulted in a vote action in Global2.

Of course, there are some actions in Global2, such as internalDecide that are not associ-
ated with a particular node. For these, whenever internal Decide was fired in Paxos, we fired
internalDecide in Global2. This is possible because Global2 allows for repeats of previously
performed internal actions, so multiple internalDecide on the same ballot by different nodes is
acceptable.

We noticed that even though the simulation relation involved 9 clauses, no single action involved
proving more than 4 of them. Most either went through immediately (in the case of fail or any of
the channel sends) and the others mainly required 2-3 clauses. This is because LP notices which
state variables change, and automatically proves the simulation relation conjunct for unchanged
variables.

4.3.1 Invariants Used

There were 5 invariants needed for the proof, even though [11] mentioned 3 (listed as 1-3 here).

invariant DistInvl of Paxos: i : Node (V j : Node (abstained[j][i] subseteq abstained[i][i]))

invariant DistInv2 of Paxos: i : Node (V j : Node (voted[jl[il subseteq voted[i][il))
invariant DistInv3 of Paxos: i : Node (V b : Ballot (vall[il[b]l # nil = vall[i]l[b] = val[b.procid] [b]))

invariant DistInv4 of Paxos: i : Node (V b : Ballot (b in ballots[i] = b in ballots[b.procid]l))

<C < < <€ <
=

invariant DistInv5 of Paxos: b : Ballot (= ( b in ballots[b.procid]) = (val[b.procid])[b] = nil)

DistInv4d and DistInvb were required for the last clause of the simulation relation in makeBallot
and the sixth clause in assignVal.

4.4 Miscellaneous proof details

There was only one place in the simulation relation where had to explicitly use quorums, and
this was in internal Decide, where we had to prove that a write quorum existed in Globall given
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that one existed in Global2. However, we never had to use read quorums because LP could use
dead ballots without referring to quorums, and we did not need the property that read and write
quorums intersect.

However, it must be noted that quorum intersection is needed for Paxos to properly implement
Globall. It just happens that the property is not used in the proof because it is specified as an
axiom. The advantage for us was that the proof of Paxos, which we expected to be more complex
than than of Globall, was actually simpler in many ways.

Initially, we were unsure of how to implement the quorum specification in [11]. In the end, we
settled on the idea of parameterizing quorums using a dummy variable as shown in Appendix B so
that we could allow LP’s first order logic to understand the concept “there exists a quorum” which
would normally be a quantification over sets.

When we started trying to prove the simulation relations, however, we attempted to add another
level of refinement between Global2 and Paxos, called Global3, so that Globall and Global2 would
use a single quorum and Global3 would expand to use different quorums that obeyed the intersection
property. This, we thought, would make the proofs of Globall and Global2 easier. What we found
out, however, was the proving Globall with multiple quorums was not difficult, but we were unable
to find a simulation relation between Global3 and Global2. Thus, we changed the successive
refinement back to the one presented in [11].

5 Conclusion

Using the IOA language and the Larch Prover, we were able to take the I/O automaton specification
of Lamport’s Paxos algorithm, written in [11] and prove its correctness. Some of the lessons learned
for formal verification with LP include:

e When using channels, write the program so that the precondition of the send transition to
the channel holds on channel contents at all times.

e Successive refinement is a useful technique for managing algorithm complexity. However, the
size of proofs in simulation relations is not proportional to the length of the algorithms used,
but rather to the conceptual differences between different abstraction levels.

e There is still too much extra work in using an interactive theorem prover. Much of our time
was spent trying to understand what LP was trying to do rather than leading the tool towards
a proof.

5.1 Further work

We suggest that Paxos’s liveness properties could be proved using the current set of IOA tools and
simple temporal logic in LP. We also consider the idea of reducing the work it takes to discover
invariants.

5.1.1 Liveness

The algorithm in [11] used timing to provide for liveness properties. However, the timing properties
were only introduced in the Paxos automaton and were not part of the successive refinement as
with the safety proofs. We were able to ignore the timed ballot trigger automaton because we were
only proving safety properties.
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Ideally, we would like to specify liveness properties at the Cons automaton level and use sim-
ulation relations as with safety to show that Paxos is live. The advantage of such a method is
that proofs would be similar to safety proofs in that they reason over individual transitions rather
than over executions. One way to prove liveness would be to use successive refinement with timed
automata as described in [12]. However, the IOA language currently does not support timed au-
tomata.

[1] suggests a method for doing this using the standard I/O automaton model augmented with
minimal temporal logic, using “liveness preserving simulation relations”. A liveness preserving
simulation relation is a standard simulation relation augmented by a liveness “lattice” function
that, maps the liveness properties of the lower level automaton to the liveness properties of the
upper level automaton. Liveness properties are always expressed in complemented-pairs form:

O0A —» OOB

which reads “always eventually A implies always eventually B” where A and B are states of
the I/O automaton.

Each complemented pair in the upper level automaton has to be satisfied by complemented
pairs in the lower level automaton. This is done by providing a “lattice”, or directed acyclic graph
of complemented pairs in the lower automaton.

We would like to implement this as a standard method for proving liveness in IOA with LP
or another prover. Implementing this method would involve a one-time cost of axiomatizing the
complemented-pairs temporal logic in LP, followed by a modeling of the desired algorithms’ liveness
properties. With Paxos for example, a property we may wish to have in the Cons automaton is:

VOO € initialized] — OO[- (4 € failed) — i € decided]

That is, an initialized process eventually decides if it does not fail.

5.1.2 Invariant discovery

For the invariants of Paxos, we were given the important ones in [11], but these were not enough to
fully prove the simulation relations. Discovering which invariants were needed using LP took time,
and would have taken longer had we not already had some invariants given in [11]. One way to
alleviate the problem would be to use runtime information to suggest invariants that may be true
for the program. These invariants could then be human- or computer-filtered to be used in proofs
of larger properties like simulation relations.

Daikon [3] is a tool that performs the dynamic, runtime analysis described above. Daikon can
already process IOA data and output invariants in IOA syntax. It cannot discover all invariants,
but the ones that it discovers are often enough to prove important program properties. Using
Daikon for Paxos and other IOA programs is studied further in [15]. Presently, Daikon is able to
discover the first five invariants in the simulation relation from Globall to Cons. However, there
may not yet be enough data to see how using Daikon would generalize.

A Paxos IOA description
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axioms AuxDist
axioms Null (Value)

type ModeType = enumeration of idle, active, done
automaton Global2
signature

input init (i : Node, v : Value)

input fail (i : Node)

output decide (i : Node, v : Value)
internal makeBallot (b : Ballot)

internal abstain (i : Node, B : Set[Ballot])
internal assignVal (b : Ballot, v : Value)
internal vote (i : Node, b : Ballot)
internal internalDecide (b : Ballot)

states
initiated : Set[Node] := {},
proposed : Set[Value] := {1},
decided : Set[Node] = {},
failed : Set[Nodel = {3},
ballots : Set[Ballot] := {1},
succeeded : Set[Ballot] := {},
val : Array[Ballot, Null[Value]] := constant(nil),
voted : Array[Node, Set[Ballot]] := comstant({}),
abstained : Array[Node, Set[Ballot]] := constant({minBallot})
transitions

input init (i, v)

eff
if = (i in failed) then
initiated := initiated union {i};
proposed := proposed union {v};
else
proposed := proposed;
fi;
input fail (i)
eff
failed := failed union {i}

internal makeBallot (b)
pre

V b’ : Ballot (b’ in ballots = (b’ # b)) / b # minBallot
eff

ballots := ballots union {b};

val[b] := nil;

internal assignVal (b, v)
pre
b in ballots / wval[b] = nil / v in proposed / ((V b’ : Ballot (b’ < b = (b’ in dead(abstained))))

\
(3 b’?: Ballot (val[b’’] = embed(v) A V bd’ : Ballot (b’’ < bd’ = bd’ in dead(abstained))))

)
eff
val[b] := embed(v);
internal vote(i, b)
pre
i in initiated / = (i in failed) / b in ballots / — (b in abstained[i])
eff
voted[i] := voted[i] union {b};

internal abstain (i, B)

pre

i in initiated / = (i in failed) / voted[i] intersection B = {}
eff

abstained[i] := abstained[i] wunion B; 15

internal internalDecide(b)
pre

b in ballots / 3 b_qID : Ballot V j : Node (j in wquorums(b_qID) = b in voted[j])
eff

- - P - P



transitions

input init (i_Me, v_Init)

eﬂ;f (mode[i_Me] = idle V model[i_Me] = active) then
mode[i_Me] := active;
proposed[i_Me] := proposed[i_Me] union {v_Init};
else
proposed[i_Me] := proposed[i_Me];
fi;
internal newBallot (i_Me)
eff
if (mode[i_Me] = active) then
doMakeBallot[i_Me] := true;
else
doMakeBallot[i_Me] := doMakeBallotl[i_Mel;
fi;
input fail (i_Me)
eff
mode[i_Me] := failed;
internal makeBallot(i_Me, b_MakeBallot)
pre
mode[i_Me] = active;

doMakeBallot[i_Me];
V b’_MakeBallot : Ballot (b’_MakeBallot in ballots[i_Me] = b’_MakeBallot < b_MakeBallot);
b_MakeBallot.procid = i_Me;

eff
ballots[i_Me] := insert(b_MakeBallot, ballots[i_Me]);

val[i_Me] [b_MakeBallot] := nil;
doMakeBallot[i_Me] := false;

internal assignVal (i_Me, b_AssignVal, v_AssignVal)
re
P mode[i_Me] = active;
b_AssignVal in ballots[i_Me];
b_AssignVal.procid = i_Me;
val[i_Me] [b_AssignVal] = nil;
v_AssignVal in proposed[i_Mel;
((V b’ _AssignVal : Ballot (b’_AssignVal < b_AssignVal =
(b’ _AssignVal in dead(abstained[i_Me]))))
\
(3 b’ _AssignVal: Ballot
(val[i_Me] [b’’ _AssignVal] = embed(v_AssignVal)
and V bd’_AssignVal : Ballot (b’’_AssignVal < bd’_AssignVal =
bd’ _AssignVal in dead(abstained[i_Me]))))

)
eff
val[i_Me] [b_AssignVal] := embed(v_AssignVal);

Figure 3: Actions
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internal vote(i_Me, b_Vote)
pre
mode[i_Me]l # idle;
mode[i_Me] # failed;
b_Vote in ballots[i_Me];
val[i_Me] [b_Vote] # nil;
— (b_Vote in abstained[i_Me] [i_Me])
eff
voted[i_Me] [i_Me] := voted[i_Me][i_Me] union {b_Votel};

internal abstain (i_Me, B_Abstain)
pre
mode[i_Me] # idle;
mode[i_Me] # failed;
V b_Abstain : Ballot ((b_Abstain in B_Abstain) =
3 b’_Abstain : Ballot (b’_Abstain in ballots[i_Me] and b_Abstain < b’_Abstain));
voted[i_Me] [i_Me] intersection B_Abstain = {};
eff
abstained[i_Me] [i_Me] := abstained[i_Me][i_Me] union B_Abstain;

internal internalDecide(i_Me, b_InternalDecide)
pre

mode[i_Me] = active;

b_InternalDecide in ballots[i_Me];

3 b_qID : Ballot V j : Node (j in wquorums(b_qID) = b_InternalDecide in voted[i_Me] [j])
eff

succeeded[i_Me] := succeeded[i_Me] union {b_InternalDecide};

output decide(i_Me, v_Decide)
choose b_Decide : Ballot
pre
mode[i_Me] = active;
b_Decide in succeeded[i_Me];
embed(v_Decide) = val[i_Me] [b_Decide];
eff
mode[i_Me] := done;

Figure 4: Actions
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internal sendProposed (i_Me, j_You, v_SProposed)
pre

mode[i_Me] = active;

v_SProposed in proposed[i_Mel;

internal sendBallot (i_Me, j_You, b_SBallot)
pre
mode[i_Me] # idle;

b_SBallot in ballots[i_Me];
internal sendValue (i_Me, j_You, b_SValue, v_SValue)
pre

mode[i_Me] # idle;

embed (v_SValue) = val[i_Me] [b_SValue];
internal sendVote (i_Me, j_You, k_SVote, b_SVote)
pre

mode[i_Me] # idle;

b_SVote in voted[i_Me] [k_SVote];
internal sendAbstained (i_Me, j_You, k_SVote, B_SVote)
pre

mode[i_Me] # idle;

B_SVote subset voted[i_Me] [k_SVotel;

internal recvProposed (i_Me, j_You, v_RProposed)
internal recvBallot (i_Me, j_You, b_RBallot)
internal recvValue (i_Me, j_You, v_RValue)
internal recvVote (i_Me, j_You, k_RVote, b_RVote)

internal recvAbstained (i_Me, j_You, k_RVote, B_RVote)

Figure 5: Actions
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B LSL Auxiliary Specifications

The following are the LSL specifications used as axioms for all three Paxos algorithms.

AuxDist : trait
includes TotalOrder(Ballot), TotalOrder(Node), Set(Ballot), Array(Node, Set[Ballot]), Set(Node), Integer
Ballot tuple of seqno : Int, procid : Node

introduces
dummyNode : — Node,

dummyValue : — Value,

dummyBallot : — Ballot,

minBallot : — Ballot,

__<__ : Ballot, Ballot — Bool,

__<__ : Node, Node — Bool,

wquorums : Ballot — Set[Nodel,

rquorums : Ballot — Set[Node],

dead : Array[Node, Set[Ballot]] — Set[Ballot],
haveRQuorum : Array[Node, Set[Ballot]], Ballot — Bool,
haveWQuorum : Array[Node, Set[Ballot]] , Ballot — Bool,
haveQuorum : Array[Node, Set[Ballot]], Ballot — Bool
haveNobody : Array[Node, Set[Ballot]]l, Ballot — Bool

asserts with

abstained, absl, abs2 : Array[Node, Set[Ballot]], b_WQuorum, b_RQuorum,
b_DeadQuorum, b_Dead, b_NotMin : Ballot,
n_Quorum, n_rQuorum, n_wQuorum, n_Dead : Node,
voted : Array[Node, Set[Ballot]],
b_HaveWQuorum, b_gHaveWQuorum : Ballot,
n_HaveWQuorum : Node,

b_HaveRQuorum, b_gHaveRQuorum : Ballot,
n_HaveRQuorum : Node,

b_HaveQuorum, b_gHaveQuorum : Ballot,
n_HaveQuorum : Node,

a_HaveQuorum : Array[Node, Set[Ballot]],
a_HaveWQuorum : Array[Node, Set[Ballotl]],
a_HaveRQuorum : Array[Node, Set[Ballotl]],
b_Less, b_Greater : Ballot

b_Less < b_Greater & (b_Less.seqno < b_Greater.seqno V
(b_Less.seqno = b_Greater.seqno A b_Less.procid < b_Less.procid));

b_Less = b_Greater & (b_Less.seqno = b_Greater.seqno
A b_Less.procid = b_Greater.procid);

V b_RQuorum (V b_WQuorum (3 n_Quorum : Node
(n_Quorum in(rquorums(b_RQuorum) intersection wquorums(b_WQuorum)))));

V b_RQuorum (3 n_wQuorum : Node (n_wQuorum in (rquorums(b_RQuorum))));
V b_WQuorum (3 n_rQuorum : Node (n_rQuorum in (wquorums(b_WQuorum))));

b_Dead in dead (abstained) < 3 b_DeadQuorum (V n_Dead : Node
(n_Dead in rquorums(b_DeadQuorum) => b_Dead in abstained[n_Dead]));

V n_Dead : Node (absl[n_Dead] subseteq abs2[n_Dead] = dead(absl) subseteq dead(abs2));
V b_NotMin (b_NotMin # minBallot => minBallot < b_NotMin);

haveWQuorum (a_HaveWQuorum, b_HaveWQuorum) < 3 b_gHaveWQuorum (V n_HaveWQuorum
(n_HaveWQuorum in wquorums(b_qHaveWQuorum) = b_HaveWQuorum in a_HaveWQuorum[n_HaveWQuorum]));

haveNobody (a_HaveQuorum, b_HaveQuorum) < (V n_HaveQuorum
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- (b_HaveQuorum in a_HaveQuorum[n_HaveQuorum]));

haveRQuorum (a_HaveRQuorum, b_HaveRQuorum) < 3 b_gHaveRQuorum (V n_HaveRQuorum
(n_HaveRQuorum in rquorums(b_qHaveRQuorum) = b_HaveRQuorum in a_HaveRQuorum[n_HaveRQuorum]))
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C Proof Scripts

C.1 Paxos to Global2

The following is the LP proof of the simulation relation from Paxos to Global2.

clear
thaw Paxos2Global2
forget

set name Z

decl vars z_s, z_s’ : States[Paxos]
decl vars z_u, z_u’ : States[Global2]
decl vars beta : ActionSeq[Global2]
decl vars v, vhack : Value

decl op sk_b : -> Ballot
decl op sk_bn : -> Ballot
decl op sk_i : -> Node

pr (F(z_s, z_u) /\ step (z_s, pi, z_s’) /\ DistInvi(z_s)

/\ DistInv2(z_s) /\ DistInv3(z_s) /\ DistInv4(z_s) /\ DistInv5(z_s)

=> \E beta : ActionSeq[Global2] (execFrag(z_u, beta)

/\ F(z_s’, last(z_u, beta)) /\ trace(beta) = trace(pi:Actions[Paxos])))

make immune con
res by ind on pi : Actions[Paxos]

<> init (n, v1)
res by =>
res by spec beta to init(nm, v1) * {}
% 3 requirements: failed/active; initiated; proposed
res by /\
<> for done
res by cases z_sc.failed[n]

<>
[
<>
res by cases z_sc.mode[nc] = idle
<>
res by cases i = nc
[
[

<> for idle/active
res by cases z_sc.failed[n]

<>
[]
<>
res by cases i = nc
<>
res by cases z_sc.mode[nc] = idle
[]
<>
res by cases z_sc.mode[nc] = idle
[
[
[
<>
res by cases z_sc.failed[n]
<> Failed
ex TacticPaxos2G2_1.1lp
1
<> Not failed
res by cases embed(vl) = embed(v)
<> We’re the one doing the inserting
res by spec i to nc
[1 Someone else’s value
<>
ex TacticPaxos2G2_1.1p
|
1
[1 res by /\
[1 init

<> Fail (n)

res by =>
res by spec beta to fail(n) * {}
[
<> Decide (n, vi, bl)
res by =>
res by spec beta to decide (mc, vic, blc) * {}
% (z_sc.vallnc]) [blc] = z_uc.vallbic]
% /\ \E i:Node (blc \in z_sc.succeeded[i])
% /\ \A i:Node
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% (z_sc.mode[i] idle
% <=> (if nc = i then done else z_sc.mode[i]) = idle)
% /\ \A i:Node
% (z_sc.mode[i] = dome \/ i = nc
% <=> (if nc = i then done else z_sc.mode[i]) = dome)
res by /\
<> Level 5 subgoal for conjunct 1: (z_sc.vallnc]l)[bic] = z_uc.vallbic]
% Value consistency
pr (z_sc.vallnc])[bic] ~= nil
res by con
inst i by nc, b by blc in *Hyp
|
<>
% z_sc.mode[i] = idle
% <=> (if nc = i then done else z_sc.mode[i]) = idle
res by cases nc = i
[
<>
res by cases nc = i
[]

<> Level 5 subgoal for conjunct 2: \E i:Node (blc \in z_sc.succeeded[i])
res by spec i to nc

[
[
<> enabled(z_s, newBallot(n))
res by =>
res by spec beta to {}
[
< enabled(z_s, makeBallot(n, bl))
res by =>
res by spec beta to makeBallot (bic) * {}
res by /\
<> Current subgoal: ~(blc \in z_sc.ballots[i])

res by con

inst b by blc, i by ic in *Hyp

% ZImpliesHyp.1.13.2: blc \in z_sc.ballots[blc.procid]
% Now this violates precondition of unique ballot
inst b’_MakeBallot by blc in *Hyp

-> true

[
<>
% blc.seqno = b.seqno \/ \E i:Node (b \in z_sc.ballots[i])
% <=> \E i:Node
h (b
% \in (if blc.procid = i
% then insert(blc, z_sc.ballots[bic.procid]l)
Y% else z_sc.ballots[i]))
res by cases blc = b
<>
res by spec i to blc.procid
[
<>
res by <=>
<>
fix i as sk_i in *Hyp
res by spec i to sk_i
res by cases blc.procid = sk_i
[
<>
fix i as sk_i in *Hyp
res by spec i to sk_i
res by cases blc.procid = sk_i
[
[
<> Val
set imm on
res by cases b = bilc
<>
[
<>
res by cases blc.procid = bc.procid
<> Same
]
<> Different
res by cases bc.seqno = blc.seqgno
<> HACK
ass nil = z_uc.vall[bc]
]
]
set imm off
]
[MEWAN
[] makeBallot
<> enabled(z_s, abstain(n, s7))
res by =>
res by spec beta to abstain(nc, s7c) * {}

% Just one clause, yay!
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res by cases nc = i

1
<> enabled(z_s, assignVal(n, b1, v1))
res by =>
res by spec beta to assignVal(blc, vic) * {}
% (\A b’ (b’.seqno < blc.seqno => b’ \in dead(z_uc.abstained))
% \/ \E b’
% (z_uc.val[b’’] = embed(vic)
% /\ \A bd’
% (b’’.seqno < bd’.segno
% => bd’ \in dead(z_uc.abstained))))
% /N \A b
% ((if b.seqno = blc.segno then embed(vic) else z_uc.vall[bl)
% = (if blc.procid = b.procid
% then assign(z_sc.vall[blc.procid], bilc, embed(vic))
% else z_sc.vall[b.procid])
% [b])
% /\ \E i:Node (bic \in z_sc.ballots[i])
% /\ \E i:Node (vic \in z_sc.proposed[i])
res by /\
<>
res by cases \A b’_AssignVal (b’_AssignVal.seqno < blc.seqno => b’_AssignVal \in dead(z_sc.abstained[blc.procid]l))
<>
pr \A b’ (b’.seqno < blc.seqno => b’ \in dead(z_uc.abstained))
res by =>
inst b’_AssignVal by b’c in *Hyp
set imm on
pr \A i : Node ((z_sc.abstained[blc.procid])[i] \subseteq z_uc.abstained[i])
set imm off
inst n_Dead by i, absl by z_sc.abstained[blc.procid], abs2 by z_uc.abstained in Auxx*
res by cases dead(z_sc.abstained[blc.procid]) = dead(z_uc.abstained)
inst e by b’c, sl by dead(z_sc.abstained[blc.procid]), s2 by dead(z_uc.abstained) in Set
inst e by b’c in Set
1
<>
fix b’’_AssignVal as sk_b in *Hyp
pr \E b’’ (z_uc.val[b’’] = embed(vic)/\ \A bd’ (b’’.seqno < bd’.seqno => bd’ \in dead(z_uc.abstained)))
res by spec b’’ to sk_b
% Now show that (z_sc.vallblc.procid])[sk_b] -> embed(vic) = z_uc.vallsk_b]
inst i by blc.procid, b by sk_b in *Hyp
% This removes first conjunct
% Other goal: sk_b.segno < bd’.seqno => bd’ \in dead(z_uc.abstained)
res by =>
inst bd’_AssignVal by bd’c in Z
set imm on
pr \A i : Node ((z_sc.abstained[blc.procid])[i] \subseteq z_uc.abstained[i])
set imm off
inst n_Dead by i, absl by z_sc.abstained[blc.procid], abs2 by z_uc.abstained in Auxx
inst e by bd’c, sl by dead(z_sc.abstained[bilc.procid]), s2 by dead(z_uc.abstained) in Set
inst e by bd’c in Set
1
<>
% (if b.seqno = blc.seqno then embed(vic) else z_uc.vall[b])
% = (if blc.procid = b.procid
% then assign(z_sc.vallblc.procid], blc, embed(vic))
% else z_sc.val[b.procidl)
% [b]
res by cases b.procid = blc.procid
<>
res by cases bc.seqno = blc.seqno
<>
1
<>
inst i by blc.procid, b by bc in *Hyp
|
|
<> Different proc IDs
|
1
<> Level 5 subgoal for conjunct 3: \E i:Node (blc \in z_sc.ballots[i])
res by spec i to blc.procid
1
<> Level 5 subgoal for conjunct 4: \E i:Node (vic \in z_sc.proposed[i])
res by spec i to blc.procid
1
o/

[1 assignVal

<> vote(n, bil)
res by =>
res by spec beta to vote(nc, bilc) * {}
% Two conjunts

res by /\

<> Level 5 subgoal for conjunct 1: \E i:Node (blc \in z_sc.ballots[i])
res by spec i to nc

0

<>
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% (if nc = i

% then z_uc.voted[nc] \U insert(bilc, {})
% else z_uc.voted[i])
% = (if nc = i
% then assign(z_sc.voted[nc],
h nc,
% z_uc.voted[nc] \U imsert(blc, {}))
% else z_sc.voted[i])
% [i]l
res by cases i = nc
|
[1 vote

<> enabled(z_s, internalDecide(n, bil))
res by =>
res by spec beta to internalDecide(bic) * {}
% 3 conjuncts

res by /\
<>
% ((blc.seqno = b.seqno /\ blc.procid = b.procid)
% \/ \E i:Node (b \in z_sc.succeeded[i])
% <=> \E i:Node
% (b
% \in (if nc =i
% then z_sc.succeeded[nc] \U insert(bic, {})
% else z_sc.succeeded[i])))
res by cases (blc.seqno = b.seqno /\ bilc.procid = b.procid)
% bc is the generic guy in the upper automaton
<>
res by spec i to nc
1
<>
res by <=>
<>

fix i as sk_i in *Hyp
res by spec i to sk_i
res by cases nc = sk_i
0
<>
fix i as sk_i in *Hyp
res by spec i to sk_i
res by cases nc = sk_i
0
]
]
<> \E b_qID \A j:Node (j \in wquorums(b_qID) => bic \in z_uc.voted[j])
% We have a quorum
fix b_qID as sk_bn in *Hyp
res by spec b_qID to sk_bn

res by =>
inst j by jc in Z
res by cases z_uc.voted[jc]l = (z_sc.voted[nc])[jc]

inst i by jc, j by nc in *Hyp
inst e by blc, si by(z_sc.voted[nc]l)[jcl, s2 by z_uc.voted[jc] in Set
inst e by blc in Set

1

<> Level 5 subgoal for conjunct 3: \E i:Node (blc \in z_sc.ballots[il)
res by spec i to nc

1

[1 intl decide

< enabled(z_s, sendProposed(n, nl, vl))
ex TacticPaxos2G2_emptyBeta

]

<> enabled(z_s, sendBallot(n, ni, bl))
ex TacticPaxos2G2_emptyBeta

]

<> enabled(z_s, sendValue(n, ni, bil, vl)
ex TacticPaxos2G2_emptyBeta
]

< enabled(z_s, sendVote(n, nl, n2, bl))
ex TacticPaxos2G2_emptyBeta
]

< enabled(z_s, sendAbstained(n, nl, n2, s7))
ex TacticPaxos2G2_emptyBeta
]

<> enabled(z_s, recvProposed(n, ni, v1))
ex TacticPaxos2G2_emptyBeta

% \E i:Node (v \in z_sc.proposed[il)

% <=> \E i:Node

% (v

% \in (if “(z_sc.mode[n1] = idle) /\ "z_sc.failed[n1]
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% then assign(z_sc.proposed,

% ni,

% insert(vic, z_sc.proposed[n1]))
% else z_sc.proposed)

% [il)

res by <=>

<>

fix i as sk_i in *Hyp
res by spec i to sk_i

res by cases “(z_sc.modelnic] = idle) /\ ~“z_sc.failed[nic]
<>
res by cases nlc = sk_i
]
<>
]
]
<>

set imm on
res by cases vc = vic
<>
set imm off
res by spec i to nc
]
<>
set imm off
fix i as sk_i in *Hyp
res by spec i to sk_i
res by cases “(z_sc.mode[nic] = idle) /\ ~"z_sc.failed[nic]

res by cases nlc = sk_i
pr embed(vic) ~= embed(vc)
inst t by vc, t2 by vic in Null
]
]
[1 ugh

<> enabled(z_s, recvBallot(n, ni, bil))
ex TacticPaxos2G2_emptyBeta
res by <=>
<>
fix i as sk_i in *Hyp
res by spec i to sk_i

res by cases “(z_sc.mode[nic] = idle) /\ “z_sc.failed[nic]
<>
res by cases nlc = sk_i
]
<>
]
]
<>
fix i as sk_i in *Hyp
res by cases ~(z_sc.mode[nic] = idle) /\ ~“z_sc.failed[nic]
res by cases nlc = sk_i
<>
res by cases bc \in z_sc.ballots[sk_il
<>
res by spec i to sk_i
]
<>
res by spec i to nc
res by con
set imm on
pr bc = bilc
]
]
<>
res by spec i to sk_i
]
]

<> enabled(z_s, recvValue(n, ni, bil, v1))
ex TacticPaxos2G2_emptyBeta
res by cases “(z_sc.mode[n1] = idle) /\ “z_sc.failed[ni]
set imm on
res by cases blc = b
<>
set imm off
res by cases nlc = blc.procid
pr (z_sc.vallnc]l) [bc] ~= nil
res by con
inst b by bc, i by nc in *Hyp

]
<>
set imm off
res by cases nlc = bc.procid
pr ~(bc.seqno = bic.seqno /\ bc.procid = bilc.procid)
inst b_Less by bc, b_Greater by bilc in Aux*
]

[1 recvValue

<> enabled(z_s, recvVote(n, nl, n2, bl))
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ex TacticPaxos2G2_emptyBeta

res by cases “(z_sc.mode[n1] = idle) /\ ~z_sc.failed[n1]
% Requirement: z_uc.voted[i]l = z_sc.voted[il[i]

% nc = sender, nlc = receiver, n2c = information about
res by cases nlc "= i

% First case dome

% Now nlc = i, receiver data being changed

res by cases n2c "= ic

% First case easy again

% Now nc = ic, talking about info of sender

pr bilc \in (z_sc.voted[ic])[ic]
<>
res by cases (z_sc.voted[nc])[ic] = z_uc.voted[ic]
inst j by nc, i by ic in *Hyp
inst e by blc, sl by (z_sc.voted[nc])[ic]l, s2 by z_uc.voted[ic] in Set
inst e by blc in Set
|

pr blc \in z_uc.voted[ic]
ass b \in s : Set[Ballot] => s = insert(b, s)

inst b by blc, s by z_uc.voted[ic] in Z
1

< enabled(z_s, recvAbstained(n, nl, n2, s7))
ex TacticPaxos2G2_emptyBeta

res by cases “(z_sc.mode[n1] = idle) /\ ~z_sc.failed[n1]
% Requirement: z_uc.voted[i]l = z_sc.voted[il[il

% nc = sender, nlc = receiver, n2c = information about
res by cases nlc "= i

% First case done

% Now nic = i, receiver data being changed

res by cases n2c "= ic

% First case easy again

% Now nc = ic, talking about info of sender

pr s7c \subseteq (z_sc.abstained[ic])[ic]
<>
ass s : Set[Ballot] \subseteq sl : Set[Ballot] /\ s1 : Set[Ballot] \subseteq s2 : Set[Ballot] => s : Set[Ballot] \subseteq s2 : Set[Ballot]
inst j by nc, i by ic in *Hyp
inst s by s7c, sl by (z_sc.abstained[nc])[ic], s2 by (z_sc.abstained[ic])[ic] in Z
res by con
[]

pr s7c \subseteq z_uc.abstained[ic]

ass sl : Set[Ballot] \subseteq s2 : Set[Ballot] => s1 : Set[Ballot] \U s2 = s2
inst s1 by s7c, s2 by z_uc.abstained[ic] in Z

C.2 Global2 to Global2

The following is the LP proof of the simulation relation from Global2 to Globall. Notice that it is
much simpler than the proof from Paxos to Global2 or from Globall to Cons.

clear

thaw Global22Globall
forget

set name Z

decl vars z_s, z_s’ : States[Global2]
decl vars z_u, z_u’ : States[Globall]
decl vars beta : ActionSeq[Globall]
decl vars v, vhack : Value

decl op sk_b : -> Ballot
decl op sk_bn : -> Ballot

decl op sk_i : -> Node

decl op sk_zl : -> States[Globalll
decl op sk_si : -> States[Global2]

decl op StartRel : States[Global2] -> States[Globalil
ass StartRel(z_s:States[Global2]) = [z_s.abstained, z_s.voted,

z_s.val, z_s.succeeded, z_s.ballots, z_s.failed, z_s.decided,
z_s.proposed, z_s. initiated]
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pr start(z_s) => \E z_u (start(z_u) /\ F(z_s, z_u))
<> Start of proof

make immune con

res by =>

res by spec z_u to StartRel(z_sc)
]

pr (F(z_s, z_u) /\ step (z_s, pi, z_s’) /\ Invé4(z_s) =>
\E beta : ActionSeq[Globall] (execFrag(z_u, beta) /\

F(z_s’, last(z_u, beta)) /\ trace(beta) = trace(pi:Actions[Global2])))

make immune con
res by ind on pi : Actions[Global2]
<> Induction proof

<> enabled(z_s, init(n, v))

res by =>

res by spec beta to init(n, v) x {}
1
<> enabled(z_s, fail(n))

res by =>

res by spec beta to fail(n) * {}
1

<> enabled(z_s, decide(n, v, b1))

res by =>

res by spec beta to decide (nc, vc, blc) * {}
1

<> enabled(z_s, makeBallot(bi, s3))

res by =>

res by spec beta to makeBallot (blc, quorums) * {}
1

<> enabled(z_s, abstain(n, s13))

res by =>

res by spec beta to abstain(nc, s13c) * {}
]

<> enabled(z_s, assignVal(bl, v))

res by =>
res by spec beta to assignVal(blc, vc) * {}
res by =>

% Level 5 subgoal for proof of =>:
% z_sc.val[b’c] = embed(vc)

% \/ \A j:Node (j \in quorums => b’c \in z_sc.abstained[j])

inst b’ by b’c in *Hyp

res by cases \A j:Node (j \in quorums => b’c \in z_sc.abstained[j])

<> First case easy
]
<> b’c isn’t dead yet remember, b’c < bc
% Current subgoal: z_sc.vallb’c] = embed(vc)
fix b’’ as sk_b in *Hyp
res by cases sk b < b’c, sk.b = b’c, b’c < sk b
<> Easy case
inst bd’ by b’c, b’ by b’c in Z
% Impossible
]
<> Easy case
]
<> Not so easy, use Invéd
inst b by sk_b, b’ by b’c in *Hyp
]
]
[1 assignVal

<> enabled(z_s, vote(n, bl))

res by =>

res by spec beta to vote(nc, blc) * {}
1

<> internalDecide(b1)
res by =>
res by spec beta to internalDecide(blc) * {}
]
[1 End of induction
qed

C.3 Globall to Cons

This is the proof from Globall to Cons

. Although Globall is a smaller program than Paxos, the

proof is nearly as long as the simulation relation from Paxos to Global2.
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clear
thaw Globali2Cons
forget

set name Z

decl vars z_s, z_s’ : States[Globalll]
decl vars z_u, z_u’ : States[Cons]
decl vars beta : ActionSeq[Cons]

decl vars v, vhack : Value

decl op sk_b : -> Ballot
decl op sk_bn : -> Ballot
decl op sk_i : -> Node

decl op StartRel : States[Globall]l -> States[Cons]

ass StartRel(z_s:States[Globalll) = [{}, {}, {}, {3, {31
pr start(z_s) => \E z_u (start(z_u) /\ F(z_s, z_u))
<> Start of proof
make immune con
res by =>
res by spec z_u to StartRel(z_sc)
]

pr (F(z_s, z_u) /\ step (z_s, pi, z_s’) /\

States[Cons]

Invi(z_s) /\ Inv2(z_s) /\ Inv3(z_s) /\ Inv4(z_s) /\ Inv5(z_s) =>

\E beta : ActionSeq[Cons] (execFrag(z_u, beta) /\

F(z_s’, last(z_u, beta)) /\ trace(beta) = trace(pi:Actions[Globalll)))

make immune con
res by ind on pi : Actions[Globall]
<> Induction proof
<> enabled(z_s, init(n, v1))
res by =>
res by spec beta to init(m, v1) * {}
1

<> enabled(z_s, fail(mn))
res by =>
res by spec beta to fail(n) * {}

[

<> enabled(z_s, decide(n, v1, bl))
res by =>
res by spec beta to decide (nc, vic) * {}
inst b by blc, v by vic in *Hyp

[

<> enabled(z_s, makeBallot(bl))
res by =>
res by spec beta to {}
res by /\
<>
res by =>
inst v by vc in *Hyp
fix b as sk_b in con-op(vc)

res by spec b to sk_b
res by cases blc = sk_b
inst b by sk_b in *Hyp

[

<>
res by =>
fix b as sk_b in con-op(bic)
res by cases sk_b = bilc
<> First case easy, impossible case
[
<> Second case, sk_b "= bic

inst b by sk_b, v by vc in *Hyp

[1 Booyeah!

[

[

<> enabled(z_s, abstain(n, s13))

res by =>
res by spec beta to {}
[1 ayup

<> enabled(z_s, assignVal(bi, vi1))
res by =>

res by cases \A b : Ballot (b \in z_sc.succeeded => z_sc.val[b] = nil)

<> True case, all vals are nil
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res by cases “(blc \in z_sc.succeeded)
<> “(blc \in z_sc.succeeded)
res by spec beta to {}
res by /\
<>
ex TacticG2C_1
|
<>
ex TacticG2C_2
|
1

<> True. New assigned ballot is in succeeded and nothing else has succeeded
res by spec beta to chooseVal(vic) * {}

res by /\
<> empty(z_uc.chosen)
ex TacticG2C_5

]

<> v in z_sc.chosen => \E...
res by =>
res by spec b to bilc

]

<> \E.... => v in z_sc.chosen
ex TacticG2C_4

[0 \E...

[1 blc \in z_sc.succeeded
[1 true case for all ballots being nil

<> false case, there are some ballots not nil
% Use precondition on < operator

pr \E b : Ballot (b \in z_sc.succeeded /\ ~(z_sc.val[b]l = nil))
<> Some preliminaries

set name temp

pr \E b “(b \in z_sc.succeeded => z_sc.vall[b] = nil)

make immune con

res by con

fix b as sk_b in temp*

res by spec b to sk_b
res by cases z_sc.vallsk_b] = nil

]

fix b as sk _bn in Z
% sk_bn is one of the ballots that aren’t null

res by spec beta to {}
res by /\
<>
ex TacticG2C_1
]

<>
res by =>
fix b as sk_b in con-op(vc)
res by cases blc = sk_b

% vc = value of inserted element bilc
<> True case, show using < operator

res by cases sk b < sk bn, sk b = sk bn, sk bn < sk b
<> sk_b < sk_bn
inst b’ by sk_b, b by sk_bn in *Hyp
inst b by sk_b in *Hyp
[1 Apparently impossible case, because of invariant
<> sk_b = sk_bn
]
<> sk_bn < sk_b Level 8
% Something in ballots is < current insertion
pr ~ (sk_bn \in dead(z_sc.abstained))
<>
make immune con
inst b by sk_bn in *Hyp
u]
inst b by sk_bn, b’ by sk_bn, v by vc in *Hyp
]
[1 blc = sk.b
<> blc "= sk b
inst b by sk_b, v by vc in *Hyp
% Ppeviously in succeeded
]
[1 sk.b "= blc
]
[1 assignVal

<> vote enabled(z_s, vote(n, bl))
res by =>
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res by spec beta to {}
[1 ayup

<> enabled(z_s, internalDecide(b1))
res by =>
res by cases blc \in z_sc.succeeded
<> Easy case
res by spec beta to {}

res by /\
<>
ex TacticG2C_3
[
<>

ex TacticG2C_4

[1 Easy case
<> blc is actually new
res by cases z_sc.vallblc] = nil
<> Another easy case - deciding on a null ballot
res by spec beta to {}
res by /\
<>
ex TacticG2C_3
[]
<>
ex TacticG2C_4
[]
[]
[]
<> blc has a value. Now we’re talking
res by cases \E b : Ballot (b \in z_sc.succeeded /\ z_sc.val[b] ~= nil)
<> True case, there are existing succeeded ballots with value
fix b as sk_bn in *CaseHyp
res by spec beta to {}

res by /\

<>
ex TacticG2C_3

[

<>
% Remember, goal is vc \in uc.chosen, where vallb = sk_bl] = vc
res by =>

fix b as sk_b in con-op(vc)

res by cases blc = sk_b

% This case resumption is not necessary. There exists sk_b
% that already holds what we want.

<> True case, show using < operator

res by cases sk_b < sk_bn, sk_b = sk_bn, sk_bn < sk_b
<> sk_b < sk_bn
pr z_sc.vallsk_bn] = z_sc.vallsk_b]
inst b’ by sk_b, b by sk_bn in *Hyp

% embed(vc) = z_sc.val[sk_bn]
% \/ sk_b \in dead(z_sc.abstained)
h -> true

pr “(sk_b \in dead(z_sc.abstained))
make immune con

rewrite con

res by con

decl op sk_i : Ballot, Ballot -> Node
fix n_Quorum as sk_i(b_RQuorum, b_WQuorum) in Auxx

decl op sk_bg : -> Ballot
fix b_qID as sk_bq in *Hyp

inst j by sk_i(b_DeadQuorumc, sk_bq), b_WQuorum by sk_bq in Z
inst n_Dead by sk_i(b_DeadQuorumc, sk_bq) in *Hyp

crit *Hyp with Z, *Hyp

[
inst b’ by sk_b, b by sk_bn in *Hyp
inst b by sk_b, v by vc in *Hyp
[1 sk_b < sk_bn
<> sk b = sk_bn
% Impossible
[
<> sk_bn < sk_b
inst b’ by sk_bn, b by sk_b in *Hyp
inst v by vc, b by sk_bn in *Hyp
[
[1 sk_b = bic
<> sk_b "= bilc
inst b by sk_b, v by vc in *Hyp
[
]
[1 bilc is new
[1 ballot already chosen
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<> Ballot not yet chosen
res by spec beta to chooseVal(z_sc.vallblcl.val) * {}
res by /\
<> z_sc.val[bic].val \in z_sc.proposed
inst b by blc in *Hyp
[]
<> empty(z_uc.chosen)
ex TacticG2C_5

[

<> \A v (v \in z_uc.chosen)...
res by =>
res by spec b to bilc

[

<> \E....

% vic = newly assigned value
% vc = value on right side of what we have to prove
res by =>

fix b as sk_b in *Hyp.2

inst b by sk_b in *Hyp
[1\E...
[1 new value chosen
[1 internalDecide
[1 End of induction
qed
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