
A Case Study: Proving Paxos with the IOA Toolkit �Niole Immorlia, Toh Ne Win yMay 25, 2002AbstratPaxos is an important distributed algorithm that implements onsensus in the presene ofstopping failures. It was introdued by Leslie Lamport in 1990 and published in 1998 [8℄. Inthis paper, we present a formal safety proof of the Paxos algorithm using an interative theoremprover. Using the I/O automaton [13℄ model of Paxos from Lynh and Shvartsman [11℄, wede�ne a forward simulation from Paxos to the onsensus spei�ation using several intermediateautomata and present and prove invariants of eah automaton. Through this ase study, wehighlight the power and use of the IOA language and toolkit.1 IntrodutionDistributed onsensus is an important problem that aptures a ore issue in many omputer sieneappliations suh as onsistent distributed databases. The problem addresses the situation in whihthere is a set of n proesses. Eah proess an propose a value, but eventually they all must agreeon a ommon value. The onsensus proedure must be safe at all times. That is, the ommon valuemust be a proposed value, there must be at most one ommon value, and no proess should everagree on a value di�erent from the ommon value. Furthermore, the onsensus proedure mustbe live. That is, eventually all proesses should learn the value. The onsensus proedure shouldwork even in the presene of asynhronous proesses, benign proess failures, and message loss anddupliation.As an example, suppose there are n terminals t1; : : : ; tn and a user at eah terminal ti. Theterminals maintain a distributed database. Eah user proposes a value �(ti) for database entry �.The terminals run a onsensus proedure to deide whih value �(ti) will be assigned to databaseentry �. The onsensus proedure guarantees that the database will be onsistent and omplete(i.e. return the same value for � no matter what terminal it is aessed from) even in the preseneof benign terminal failures.The general problem of onsensus has been studied extensively in the literature [10, 4, 8, 9, 11℄.As early as 1985, it was known that the onsensus problem an not be solved at all in a ompletelyasynhronous setting, even with at most one faulty proess [4℄. Thus, in order to design an algorithmfor onsensus, the onsensus onditions had to be relaxed. In 1990, Lamport sari�ed the livenessondition and designed an algorithm known as Paxos to implement onsensus safely [8, 9℄. In 2002,Lynh and Shvartsman formalized the orretness proof of Paxos and provided a performaneanalysis under ertain timing and failure assumptions [11℄.�Projet Report for 6.962/6.897yfnikle, tohng�theory.ls.mit.edu 1

This paper presents a formal, mehanized proof of the safety properties of the Paxos algorithm.Via an interative theorem prover toolkit, we prove the Paxos algorithm implements the onsensusspei�ation. That is, we show every possible externally observable outome of the Paxos algorithmis also an externally observable outome of the onsensus spei�ation. We �rst de�ne both thePaxos algorithm and the onsensus spei�ation as input/output automata [13℄ using the IOAlanguage [6℄. To prove that Paxos implements onsensus, we de�ne a forward simulation relationfrom the Paxos automaton to the onsensus automaton. We translate our automata and forwardsimulation onjeture into a form readable by the Larh Prover [5℄, using an automated translationtool IOA2LSL [2℄. This work is largely based on the algorithm ode and de�nitions introdued byLynh and Shvartsman in [11℄. Our main ontribution is the automated proof of this ompliateddistributed algorithm, and the disovery of new invariants that are needed for the proof. Weprovide a omplete and detailed proof that Paxos implements onsensus and also demonstrate theperformane of the IOA toolkit on a ompliated distributed algorithm.The rest of this paper is organized as follows. Setion 2 gives a short introdution to most of themathematial de�nitions and theorems that we need. Setion 3 formalizes the onsensus problemand Paxos solution and introdues the input/output automata spei�ation of eah one. Setion 4presents the formal proof and disusses the use of the IOA toolkit.2 Mathematial FoundationsMuh e�ort has been exerted during the years to formalize the notion of algorithms and dis-tributed systems. There are several standard models suh as Temporal Logi of Ations (TLA) [7℄and input/output (I/O) automata [13℄. In addition to these models, there are several standardproof methods for implementation theorems. These methods inlude omposition [14℄ and simu-lations [12℄. Here we give a brief overview of the models and methods used in our proofs and theautomated tools designed to support them.2.1 I/O automataWe will de�ne all the algorithms we desribe in terms of input/output or I/O automata. Theseautomata reason about algorithms in terms of the their state mahine representation.De�nition 1 An em I/O automaton A is made up of four parts:� states(A) is a state spae, usually written as a ross produt of some variables.� start(A) � states(A) is a set of start states.� sig(A) is a signature that lists the ations of the automaton. The signature spei�es the typeof eah ation as either input, output, or internal.� trans(A) � states(A)�ations(A)�states(A) is a transition relation that tells whih ationsare enabled at whih states, and the e�ets of the ations. Input ations are always enabled.An exeution of an I/O automaton is a sequene of interleaved ations and states. The set ofall possible exeutions is written as exes(A). A trae of an exeution is the sequene of all theexternal (i.e. input or output) ations in the exeution. The set of all traes is written as traes(A).Often we would like to prove statements of the form \nothing bad happens" in the exeutionof an algorithm. For example, one might wish to prove that during the exeution of Kruskal'sminimum spanning tree algorithm, the graph that the algorithm is building is always a tree or aforest. Suh properties are alled safety properties.2

De�nition 2 A safety property P is a set of traes, traes(P) suh that� traes(P) is nonempty.� traes(P) is pre�x-losed: all �nite pre�xes of a trae in traes(P) are also in traes(P).� traes(P) is limit-losed: if an in�nite sequene of traes �1; �2; ::: are in traes(P) and eah�i is a pre�x of �i+1, then the trae � that is the limit of the sequene is also in traes(P).One way to show that a safety property holds is through invariants. An invariant is a predi-ate of the states that holds at every point in every reahable exeution. Another way to provea saftey property is via a simulation relation. If automaton B satis�es a safety property andtraes(A) � traes(B), then A satis�es the safety property. We an show traes(A) � traes(B)by showing that there exists a forward simulation relation f from an implementation automaton Ato a spei�ation automaton B.De�nition 3 A forward simulation relation f from A to B is a relation from states of A to statesof B that satis�es:� Every start state of A orresponds to a start state of B:8s2start(A)9u2start(B)f(s; u)� For every enabled transition (s; a; s0) of A and every state u of B suh that f(s; u), there isa orresponding exeution fragment � of B suh that trae(a) = trae(�) and f(s0; last(�))where last(�) is the last state in the exeution fragment �.If a forward simulation relation exists between A and B, we write A ! B. In order to showf(s0; u0), we usually use invariants1 of A and the hypothesis that f(s; u). Sometimes the relation fis diÆult to de�ne. In these ases, it an be useful to de�ne one or several intermediate automataC1; : : : ; Ck and prove the k + 1 forward simulation relations A! C1; C1 ! C2; : : : ; Ck ! B. Thistehnique is know as suessive re�nement.When reasoning about distributed systems, humans often �nd it easier to onsider a system ofautomata. However, all the tehniques we have developed for proving safety reason about singleautomata. Thus it is useful to de�ne a formal way of ombining separate automata that forma single system into a single automaton that represents that system. We would like to de�nethis ombination in suh a way that safety properties of the ombined automata imply safetyproperties of the individual automata. Although we do not take the time to de�ne it formally here,the tehnique hinted at exists and is alled omposition. Basially omposition requires that thesignatures of the automata be ompatible. It forms the ombined (or omposed) automaton byonsidering ross produts of states of the omponent automata and allowing a transition wheneverthe projeted transition is valid on every omponent automaton.2.2 The IOA ToolkitThe IOA language allows I/O automata to be written as programs. The signature of the automatais delared at the begining of the program. The states are delared by listing the state variables,and the start state is impliit in the variable initializers. Eah transition ontains a (onjoined) setof preonditions. Transition e�ets may be spei�ed delaratively (as a prediate on pre and post1Tehnially, we also have to also show that s and u are reahable states. However, for the simulation, we are onlyinterested in the reahable states, where the invariants have been proven to hold.3

states) or imperatively (using assignments). Safety properties an be expressed as invariants andas simulation relations in the IOA ode itself. These are heked during exeution and are writtenas proof obligations for the theorem prover tool, Larh Prover (LP).LP [5℄ is a theorem prover that uses multi-sorted �rst-order logi. In order to onvert an IOAprogram and its invariants and simulation relations into �rst order logi for LP, we use a toolIOA2LSL. The I/O automaton's transitions beome assertions in LP's body of knowledge abouthow pre and post states of the automaton relate.The veri�ation of safety properties involves the veri�ation of invariants and the proof of asimulation relation. Bogdanov [2℄ developed standard ways to proeed with these proofs in LP. Theproofs are by indution on the ations of the automaton. To prove an invariant Inv holds in allreahable states, we �rst prove that Inv holds in the start state. Then we prove that if Inv holdson state s, and if a is a valid ation from s, Inv also holds on the post state s0. In LP, we writeprove Start(s) => Inv(s)prove Inv(s) /\ isStep(s, a, s') => Inv(s')To prove a relation f(s; u) de�ned in the IOA ode is a forward simulation between the states s ofthe implementation automaton A and the states u of the spei�ation automaton B, we �rst provethe start state orrespondene and then we show that every enabled ation of A has a orrespondingexeution fragment that maintains the relation. In LP, we writeprove Start(s) => \E u : States[UpperLevel℄ (f(s, u) /\ Start(u))prove isStep(s, a, s') /\ f (s, u) =>\E beta : Exes[UpperLevel℄(trae(beta) = trae(a)/\ f(s', last(u, beta)))/\ exeFrag(u, beta)where beta is an exeution fragment of the upper level automaton, last(u; beta) is the last stateof the fragment, and exeFrag(u; beta) is a prediate indiating that beta is a valid exeution fromu. Both invariants and simulation relation proofs are ompleted using indution on the ations ofthe implementation automaton A. In LP, we begin the proof by writingresume by indution on a : Ations[A℄LP then produes a proof subgoal for eah possible ation the implementation automaton antake. Then one usually spei�es the orresponding exeution fragment of the spei�ation automa-ton. Most of the reativity of the proofs lies in these steps, but most of the work lies in provingthat the last state of the spei�ation automaton's exeution fragment does indeed orrespond tothe last state of the implementation automaton's transition.3 The Problem and SolutionWe would like to solve the problem of distributed onsensus. Given a set of asynhronous proessorsonneted via a network, we would like to design an algorithm that allows the proessors to reaha onsensus regarding some value. In order to design suh an algorithm, we �rst must formalizethe notion of distributed onsensus. For simpliity of presentation, we postpone the treatment ofnode failures until our disussion of the automaton desription of distributed onsensus.4

De�nition 4 Suppose we are given a set of nodes N and a set of proposed values V (t), initiallyempty. At any moment t in time, a value v may be added to V (t) (i.e. V (t) grows monotonially).The nodes N are said to satisfy distributed onsensus if at every moment t in time there is somehosen value v 2 V (t) suh that eah n 2 N either has outputed v exatly one or has not outputa value.Notie that distributed onsensus is a safety property of an automaton Cons. Intuitively, thisis beause if Cons fails to satisfy distributed onsensus, then it fails at some partiular moment intime. Formally, let init(n; v) be the input ation that adds v to the set V (t) and for eah n 2 N ,let deide(n; v) be the output ation that n outputs v. Then distributed onsensus is the set of alltraes (�1; : : : ; �k) for 0 � k � 1 where �i = init(mi; ui) or �i = deide(ni; vi) suh that� vi = vj for all i; j (i.e. the hosen value is onsistent)� for all i there is some j < i suh that vi = uj (i.e. the hosen value was proposed at sometime in the past)� ni 6= nj for all i 6= j (i.e. nodes only hoose one)Clearly, this is nonempty, pre�x-losed, and limit-losed.Notie the trivial automaton that simply has no output satis�es distributed onsensus. Thisorresponds to the elimination of the liveness ondition from our intuitive notion of onsensus. Aswe argued in Setion 1, it is unfortunately neessary to eliminate the liveness from onsensus if wewish to �nd an implementation.As distributed onsensus is a safety property, we an de�ne an automaton whose traes areexatly those of distributed onsensus, exept now we inlude node failures. We all this au-tomaton Cons. Let initiated, deided, and failed be sets of nodes and proposed and hosen besets of values. The initiated, proposed, and hosen sets are self-explanatory. The deided setrepresents nodes that have outputed a value. The failed set represents nodes that have failed.These sets are the variables of Cons and form its state spae, so states(Cons) = initiated �deided � failed � proposed � hosen. There is just one start state start(Cons) = finitiated =;; deided = ;; failed = ;; proposed = ;; hosen = ;g. The signature onsists of four ationssig(Cons) = finput init(n; v); input fail(n); output deide(n; v); internal hooseV al(v)g. Thetransition relation an be viewed as preonditions and e�ets of the ations and is as follows: theinput ation init(n; v) has no preondition (in fat, input ations must always be enabled) and addsnode n to initiated and value v to proposed unless node n has failed in whih ase the state doesnot hange. The input ation fail(n) adds node n to failed. The internal ation hooseV al(v) hasthe preondition that hosen is empty and has the e�et of adding v to hosen. Finally, the outputation deide(n; v) has the preondition that n 2 initiated � failed, n 62 deided, and v 2 hosenand adds n to deided. Figure 3 shows the IOA desription of this automaton.We will refer to the onsensus automaton Cons as the spei�ation automaton. We now presentthe algorithm Paxos that solves the distributed onsensus problem. First we provide a high-leveldesription of the algorithm, and then we de�ne an implementation automaton Paxos that desribesthis algorithm. The Paxos algorithm was �rst introdued by Lamport [8℄. It is a three-phasealgorithm that satis�es distributed onsensus. As with Cons, proesses in Paxos are initiated withproposed values and an fail.The Paxos algorithm introdues two new onepts | ballots and quorums. Ballots have iden-ti�ation numbers and values. The identi�ation numbers have a total ordering de�ned on them.Eah proess has a unique set of ballots whih it an initiate. The total ordering of ballots allowsall the proesses of the Paxos algorithm to agree on the same ballot when they all reeive multiple5

automaton Conssignatureinput init(i : Node, v : Value)input fail(i : Node)output deide (i : Node, v : Value)internal hooseVal (v : Value)statesinitiated : Set[Node℄ := { },proposed : Set[Value℄ := { },hosen : Set[Value℄ := { },deided : Set[Node℄ := { },failed : Set[Node℄ := { }transitionsinput init (i, v)e�if : (i in failed) theninitiated := initiated union {i};proposed := proposed union {v};elseinitiated := initiated;�internal hooseVal (v)prev in proposed andhosen = { }e�hosen := {v};output deide (i, v)prei in initiated and: (i in deided) and: (i in failed) andv in hosene�deided := deided union {i};input fail (i)e�failed := failed union {i};Figure 1: Cons Automaton IOA Desription
6

ballots. Quorums are sets of nodes. There are two types of quorums | read quorums and writequorums. The quorums are designed suh that for all read quorums r and all write quorums w,r \ w 6= ;. For example, one feasible quorum design is to have one read quorum onsisting ofall the nodes and one write quorum also onsisting of all the nodes. This design is instrutive inunderstanding the algorithm. Another more optimal design is to arrange the nodes in a matrix andhave the rows be the read quorums and the olumns be the write quorums. Then any read quorumhas an intersetion of size one with a write quorum. The intersetion property of quorums preventstwo proesses that have reeived di�erent sets of ballots from deiding on di�erent ballots.Algorithm 5 Throughout the algorithm, proesses gossip about eah other. In partiular, they passaround information onerning what values have been proposed, what ballots have been proposed,what ballots have been assigned what values, who has voted for what, and who has abstained fromwhat. Also, a proess may vote at any moment during any phase for a ballot that it has reeivedand not abstained from, and it may abstain from a ballot if it has reeived a larger ballot. Forlarity, we will talk about two kinds of proesses | leaders and learners. Leaders propose ballotsand assign values to ballots. Learners abstain from and vote on ballots. Note a proess an be botha leader and a learner.1. In the �rst phase of the algorithm, leaders propose ballots. Eah learner whih has heard aboutthis ballot proposal through the gossip is now free to abstain from smaller ballots that it hasnot voted for.2. In the seond phase, a leader onsiders the votes of a read quorum. It �nds the largest ballotb from whih a read quorum has not abstained. If there is no suh b, then the leader knowsall ballots less than its ballot have failed, so the leader assigns a proposed value to its ballot.If there is suh a b, the leader takes the value of b and assigns this value to its own ballot.3. In the third phase, when a proess hears that a write quorum has voted for a ballot, it maydeide on that ballot's value.At this point, it is instrutive to onsider an example.Example 6 Suppose there are 3 proesses, dubya, ashroft, and rumsfeld, whih have beeninitiated with the values \axis of evil", \fear of god", and \war on terror". We will let the setof read quorums and the set of write quorums onsist of the single set fashroft; rumsfeldg.Suppose the universe of ballot identi�ers is the integers with the usual ordering. WLOG assumedubya beomes a leader proess. For brevity of exposition, we will pretend the gossip in this irleof proessors is highly eÆient, and proesses learn eah other's information immediately. We willnot reord this gossip in the Paxos transription. Then a possible exeution of Paxos is as follows:1. dubya assigns value \fear of god" to ballot 12. dubya proposes ballot 2 to ashroft and rumsfeld. Now ashroft and rumsfeldmay abstainfrom ballot 1.3. ashroft votes on ballot 24. dubya proposes ballot 3 to ashroft and rumsfeld. Now rumsfeld may abstain from ballot2 even though ashroft has already voted for ballot 2.5. rumsfeld and ashroft abstain from ballot 1. Now a read quorum has abstained from ballot1, so ballot 2 an be assigned any value.6. rumsfeld abstains from ballot 2. Now ballot 2 an not sueed, but it an not fail either (i.e.it will never be the ase that a read quorum or a write quorum agrees on whether to vote orabstain from this ballot). Therefore, ballot 2 must be assigned a value.7

7. dubya assigns value \axis of evil" to ballot 28. rumsfeld and ashroft vote for ballot 3. Notie proesses an vote for ballots that don'thave a value.9. dubya assigns value \axis of evil" to ballot 310. all three proesses deide on the value of ballot 3, \axis of evil". Note the proesses had towait for a value to be assigned to ballot 3 before they ould deide on it.This de�nition of Paxos arises quite naturally from the requirements of distributed onsensusas argued by Lamport [8℄. However, to formally prove that Paxos satis�es distributed onsensusrequires a bit more work. First we must de�ne an implementation automaton Paxos that desribesPaxos, and then we must prove that there is a simulation relation from Paxos to Cons. Thede�nition of the Paxos automaton is presented in Appendix A.We have arrived at this I/O automaton de�nition by omposing all the node automata and allthe hannel automata. Every ation and every state variable is indexed by the individual nodeautomaton whih the ation/state variable orresponds to. Thus, if in the underlying system node2 is initialized with value d, the Paxos automaton will have an ation of the form init(2; d) and willadd d to node 2's set of proposed values proposed[2℄ proposed[2℄ [fdg. This is di�erent fromthe Cons automaton where there was just one global set of proposed values.In the underlying system, nodes ommuniate to eah other through hannels. All the internalsend and rev ations are artifats of the hannel automata. In the underlying system, there is onehannel automaton for every pair of node automaton, and so the send and rev ations are indexedby two nodes. The underlying hannel automaton may dupliate messages, reorder messages, andlose messages, but it may not reate messages. We model these properties of the hannel automatonby maintaining a set of messages S in the hannel. The send ation adds its input message s tothe set S. The rev ation has as a preondition s 2 S.Now we will argue the IOA desription in Appendix A atually desribes Algorithm 5, Paxos.The gossip is ahieved via the send and rev ations. Voting is represented by the vote ationand abstention by the abstain ation. The onditions of voting and abstention are preonditionsof the orresponding ation. The ballot proposals from phase 1 are initiated by a newBallotation and ompleted by a makeBallot ation. The presene of newBallot, makeBallot, andthe doMakeBallot variable is a tehnial detail. We write Paxos in this way simply to make itomposable with a timed version of Paxos in future work. The seond phase of Algorithm 5 isenoded in the assignV alue(i; b; v) ation. This lets automaton i assigns value v to ballot b if�8b0 < b; b0 2 dead� _ �9b00 < b; val(b00) = v ^ (8b0; b00 < b0 < b; b0 2 dead)�where b0 and b00 are any ballots in the universe of ballots and dead is the set of ballots from whihproess i knows that a read quorum has abstained. This ondition ensures that the value v whih iassigns to b is onsistent with all smaller ballots, as Algorithm 5 states. The third and �nal phaseof Algorithm 5 is enoded by the internal ation, internalDeide, in whih a proess adds a ballotto its sueeded set, and the external output ation deide in whih a proess deides on a value ofa ballot in its sueeded set. We have enoded this third phase in two steps in order to allow moreexibility in our automaton | a proess an deide internally long before it beomes inative, anda proess an deide internally on a ballot that doesn't have a value.We have omitted a few tehnial details from our desription of the IOA ode. These detailsare not essential to an understanding of the algorithm and proof, but are neessary to atually runthe proof in the Larh Prover. These details inlude the mode and failed variables, the indexingof quorums on ballots, the implementation of dead mentioned above, the de�nition of minBallotfor the smallest ballot and the nil value for ballots whih have not been assigned a value.8

4 The ProofWe prove that Paxos satis�es distributed onsensus by de�ning a forward simulation from the Paxosautomaton to the Cons automaton. The orretness of this proof follows from the disussion inSetion 2. We will use two re�nements in order to prove the forward simulation. The �rst re�nementis a forward simulation from an automaton alled Global1 to Cons. The seond re�nement is aforward simulation from an automaton alled Global2 to Global1. These suessive re�nementsallow us to prove the simulation relation inrementally by breaking up the proof into oneptualhunks. This has the advantage of making eah individual proof easier and giving us more insightinto the algorithm itself. In order for the forward simulations to work, we de�ne Global1 andGlobal2 with the same input and output ations | init(i; v), fail(i), and deide(i; v) | as Cons.The Global1 automaton aptures most of the essene of the Paxos automaton. It introdues asimpli�ed notion of learning apabilities by de�ning internal abstain and vote ations. However,there are several major di�erenes between Global1 and Paxos. Global1 is not a omposition ofnode automaton. This means there is no node ommuniation and so all the hannel ations aremissing from Global1. Furthermore, the makeBallot, assignV al and internalDeide ations areations of the automaton as a whole. In terms of the algorithmi desription of Paxos, Global1enodes the �rst, seond, and third phase in makeBallot, assignV al, and internalDeide/deide.The makeBallot ation just ensures new ballots have a distint identi�er from old ballots. TheinternalDeide ation just ensures sueeded ballots have a write quorum that has voted for them.These two ations are essentially idential to the orresponding Paxos automaton ations. TheassignV al(b; v) ation is slightly di�erent and in fat does not fully apture the orrespondingPaxos automaton ation. Instead of just heking the largest ballot b0 < b from whih a readquorum has not abstained, it heks that every ballot b0 < b is either dead or has value v.The seond re�nement is a forward simulation from an automaton alled Global2 to an automa-ton alled Global1. The Global2 automaton is exatly the same as the Global1 automaton exeptin the assignV al(b; v) ation. This transition is a full implementation of the seond phase of thePaxos algorithm; it only heks that the largest ballot b0 < b from whih a read quorum has notabstained has value v if suh a b0 exists.As mentioned in Setion 2.2, we prove the simulation relation for eah implementation-spei�ationautomaton pair in LP using strutural indution on the ations of the implementation automaton.The proofs use several invariants of the automata. We also prove these invariants in LP.4.1 Global1 to ConsAlthough not the longest in terms of length, this relation is oneptually the most importantbeause it onnets the deision of the onsensus spei�ation with the use of ballots. Intuitively,when a ballot is voted on by a quorum in Global1, the orresponding ation in Cons is to hoosea value to deide on. Thus, internalDeide should orrespond to hooseV al, and the simulationrelation we have is:forward simulation from Global1 to Cons:Cons.initiated = Global1.initiated^ Cons.proposed = Global1.proposed^ Cons.deided = Global1.deided^ Cons.failed = Global1.failed^ 8 v : Value ((9 b : Ballot (b in Global1.sueeded ^ Global1.val[b℄ = embed(v)))) v in Cons.hosen)^ 8 v : Value (v in Cons.hosen) 9 b : Ballot (b in Global1.sueeded ^ Global1.val[b℄ = embed(v)))9

The last two lauses are the important ones | they are a bionditional in [11℄, but foronveniene in LP, we hoose to separate them. They say that the values of the ballots inGlobal1:sueeded are the same as those in Cons:hosen.Even though this onept is lear, there are a few aveats that do not allow a diret orre-spondene. First, internalDeide an happen to more than one ballot (or more than one onthe same ballot), while hooseV al requires that Cons:hosen be empty. Thus, the seond timeinternalDeide happens in Global1, the orresponding exeution in Cons is not hooseV al but theempty sequene. In LP, we handle this situation by doing a ase analysis where the witness for theexistentially quanti�ed exeution � is di�erent in eah ase.Another aveat is that Global1 allows ballots to be voted and internally deided on before theirvalues are assigned. This does not apparently a�et the orretness of the algorithm2, but makesthe proof more ompliated, beause we need to take into aount two new ases:� When internalDeide �res on a ballot without a value, the orresponding � exeution is theempty sequene, even if Global1:sueeded was empty.� When assignV al is �red, it ould be assigning a value to a ballot already inGlobal1:sueeded.In this ase, the orresponding � is hooseV al.One these ases are handled, witness exeutions for internal ations of Global1 are as follows.Ations vote, makeBallot and abstain always have � = fg. Ation internalDeide(b) has � = fgif there exists a ballot in Global1:sueeded that already has a value or if b does not have a value.If b has a value and sueeded does not, then � = hooseV al(val[b℄). Lastly, assignV al has� = fg = fg if it is assigning a value to a ballot not in sueeded, but orresponds to hooseV alotherwise.4.1.1 Invariants UsedLynh [11℄ mentioned four invariants neessary to prove the simulation relation:� The set of voted ballots is disjoint from the set of abstained ballots.� If v is the value of a ballot, then v was proposed.� The set of sueeded ballots is disjoint from the set of dead ballots.� If b and b0 are two ballots suh that b has a value and b0 < b, then either the value of b0 equalsthe value of b or b0 is dead.We have added another invariant used in the simulation relation proof:� The set of sueeded ballots is a subset of the set of designated (i.e. made) ballots.and two invariants used to prove the �ve main invariants themselves:� If a ballot has sueeded, then a write quorum has voted for it.� If a ballot is not designated (i.e. it has not been made), its value is nil.The IOA desription of these invariants follows.invariant Inv1 of Global1: 8 i : Node (8 b : Ballot (b in voted[i℄) : (b in abstained[i℄)))invariant Inv2 of Global1: 8 b : Ballot (val[b℄ 6= nil) val[b℄.val in proposed)2It may redue the fault tolerane spei�ations. 10

invariant Inv3 of Global1: 8 b : Ballot (b in sueeded) : (b in dead(abstained)))invariant Inv4 of Global1: 8 b : Ballot 8 b' : Ballot((val[b℄ 6= nil ^ b' < b)) val[b'℄ = val[b℄ _ b' in dead(abstained))invariant Inv5 of Global1: 8 b : Ballot (b in sueeded) b in ballots)invariant Inv6 of Global1:8 b_Inv6 : Ballot(b_Inv6 in sueeded)9 b_qInv6 : Ballot8 n_Inv6 : Node(n_Inv6 in wquorums(b_qInv6)) b_Inv6 in voted[n_Inv6℄))invariant Inv7 of Global1:8 b_Inv7 : Ballot(: (b_Inv7 in ballots)) val[b_Inv7℄ = nil)Invariants 1 through 4 were the original ones. Inv1 and Inv3 are atually written as intersetionsin [11℄ but we rewrote them in terms of elements to better work with our set axioms in LP. Wefound that Inv5 was neessary beause makeBallot assigns a value to the newly-reated ballot,so we must ensure that sueeded ballots do not have their values hanged. Inv6 was used in theproof of Inv3 and Inv7 in the proof of Inv4.The property that quorums interset was used in the simulation relation and the proof of Inv3.4.2 Global2 to Global1The state variables of the Global2 automaton were not di�erent from those of the Global1 automa-ton. Thus the simulation relation was an equality mapping:forward simulation from Global2 to Global1:Global1.initiated = Global2.initiated^ Global1.proposed = Global2.proposed^ Global1.deided = Global2.deided^ Global1.failed = Global2.failed^ Global1.val = Global2.val^ Global1.ballots = Global2.ballots^ Global1.abstained = Global2.abstained^ Global1.voted = Global2.voted^ Global1.sueeded = Global2.sueededThe only non-trivial transition was assignV al. Even then, the LP proof was 9 lines for thistransition.We expeted to use no invariants for proving this simulation relation, but we found that anequivalent of Inv4 was neessary. Nevertheless, the simulation relation was ultimately a trivialproof. The witness exeutions also had a one-to-one orrespondene.4.3 Paxos to Global2Although the simulation relation proof from fully distributed Paxos to Global2 was longer thanthe previous two, this was mainly beause Paxos had more transitions. Coneptually, the relationbetween the two automata was straightforward: the union of the data in the distributed Paxos isthe state of Global2. In IOA, this was written as:11

forward simulation from Paxos to Global2:8 i : Node (i in Global2.initiated , Paxos.mode[i℄ 6= idle)^ 8 v : Value (v in Global2.proposed , (9 i : Node (v in Paxos.proposed[i℄)))^ 8 i : Node (i in Global2.deided , Paxos.mode[i℄ = done)^ 8 i : Node (i in Global2.failed , Paxos.failed[i℄)^ 8 b : Ballot (b in Global2.sueeded , (9 i : Node (b in Paxos.sueeded[i℄)))^ 8 b : Ballot (Global2.val[b℄ = Paxos.val[b.proid℄[b℄)^ 8 i : Node (Global2.voted[i℄ = Paxos.voted[i℄[i℄)^ 8 i : Node (Global2.abstained[i℄ = Paxos.abstained[i℄[i℄)^ 8 b : Ballot (b in Global2.ballots , (9 i : Node (b in Paxos.ballots[i℄)))Notie that there is no union operator appearing anywhere. This is beause IOA does notsupport union over variables in a set (it only supports unions between two variables). However, theseond onjunt is the equivalent of saying that Global2:proposed is the union of proposed valuesin eah of the Paxos automata.Note also that eah automaton's program state (idle, ative, done) and failure state (failed)diretly mapped to Global2 variables after the hanges we made in 5.The witness exeutions of Global2 were again straightforward: every ation done by a Paxosautomaton had the same-named orresponding ation in Global2, exept for doMakeBallot, whihhad the empty exeution. For example, a vote ation in Paxos resulted in a vote ation in Global2.Of ourse, there are some ations in Global2, suh as internalDeide that are not assoi-ated with a partiular node. For these, whenever internalDeide was �red in Paxos, we �redinternalDeide in Global2. This is possible beause Global2 allows for repeats of previouslyperformed internal ations, so multiple internalDeide on the same ballot by di�erent nodes isaeptable.We notied that even though the simulation relation involved 9 lauses, no single ation involvedproving more than 4 of them. Most either went through immediately (in the ase of fail or any ofthe hannel sends) and the others mainly required 2-3 lauses. This is beause LP noties whihstate variables hange, and automatially proves the simulation relation onjunt for unhangedvariables.4.3.1 Invariants UsedThere were 5 invariants needed for the proof, even though [11℄ mentioned 3 (listed as 1-3 here).invariant DistInv1 of Paxos: 8 i : Node (8 j : Node (abstained[j℄[i℄ subseteq abstained[i℄[i℄))invariant DistInv2 of Paxos: 8 i : Node (8 j : Node (voted[j℄[i℄ subseteq voted[i℄[i℄))invariant DistInv3 of Paxos: 8 i : Node (8 b : Ballot (val[i℄[b℄ 6= nil) val[i℄[b℄ = val[b.proid℄[b℄))invariant DistInv4 of Paxos: 8 i : Node (8 b : Ballot (b in ballots[i℄) b in ballots[b.proid℄))invariant DistInv5 of Paxos: 8 b : Ballot (: (b in ballots[b.proid℄)) (val[b.proid℄)[b℄ = nil)DistInv4 andDistInv5 were required for the last lause of the simulation relation inmakeBallotand the sixth lause in assignV al.4.4 Misellaneous proof detailsThere was only one plae in the simulation relation where had to expliitly use quorums, andthis was in internalDeide, where we had to prove that a write quorum existed in Global1 given12

that one existed in Global2. However, we never had to use read quorums beause LP ould usedead ballots without referring to quorums, and we did not need the property that read and writequorums interset.However, it must be noted that quorum intersetion is needed for Paxos to properly implementGlobal1. It just happens that the property is not used in the proof beause it is spei�ed as anaxiom. The advantage for us was that the proof of Paxos, whih we expeted to be more omplexthan than of Global1, was atually simpler in many ways.Initially, we were unsure of how to implement the quorum spei�ation in [11℄. In the end, wesettled on the idea of parameterizing quorums using a dummy variable as shown in Appendix B sothat we ould allow LP's �rst order logi to understand the onept \there exists a quorum" whihwould normally be a quanti�ation over sets.When we started trying to prove the simulation relations, however, we attempted to add anotherlevel of re�nement between Global2 and Paxos, alled Global3, so that Global1 and Global2 woulduse a single quorum and Global3 would expand to use di�erent quorums that obeyed the intersetionproperty. This, we thought, would make the proofs of Global1 and Global2 easier. What we foundout, however, was the proving Global1 with multiple quorums was not diÆult, but we were unableto �nd a simulation relation between Global3 and Global2. Thus, we hanged the suessivere�nement bak to the one presented in [11℄.5 ConlusionUsing the IOA language and the Larh Prover, we were able to take the I/O automaton spei�ationof Lamport's Paxos algorithm, written in [11℄ and prove its orretness. Some of the lessons learnedfor formal veri�ation with LP inlude:� When using hannels, write the program so that the preondition of the send transition tothe hannel holds on hannel ontents at all times.� Suessive re�nement is a useful tehnique for managing algorithm omplexity. However, thesize of proofs in simulation relations is not proportional to the length of the algorithms used,but rather to the oneptual di�erenes between di�erent abstration levels.� There is still too muh extra work in using an interative theorem prover. Muh of our timewas spent trying to understand what LP was trying to do rather than leading the tool towardsa proof.5.1 Further workWe suggest that Paxos's liveness properties ould be proved using the urrent set of IOA tools andsimple temporal logi in LP. We also onsider the idea of reduing the work it takes to disoverinvariants.5.1.1 LivenessThe algorithm in [11℄ used timing to provide for liveness properties. However, the timing propertieswere only introdued in the Paxos automaton and were not part of the suessive re�nement aswith the safety proofs. We were able to ignore the timed ballot trigger automaton beause we wereonly proving safety properties. 13

Ideally, we would like to speify liveness properties at the Cons automaton level and use sim-ulation relations as with safety to show that Paxos is live. The advantage of suh a method isthat proofs would be similar to safety proofs in that they reason over individual transitions ratherthan over exeutions. One way to prove liveness would be to use suessive re�nement with timedautomata as desribed in [12℄. However, the IOA language urrently does not support timed au-tomata.[1℄ suggests a method for doing this using the standard I/O automaton model augmented withminimal temporal logi, using \liveness preserving simulation relations". A liveness preservingsimulation relation is a standard simulation relation augmented by a liveness \lattie" funtionthat, maps the liveness properties of the lower level automaton to the liveness properties of theupper level automaton. Liveness properties are always expressed in omplemented-pairs form:�}A! �}Bwhih reads \always eventually A implies always eventually B" where A and B are states ofthe I/O automaton.Eah omplemented pair in the upper level automaton has to be satis�ed by omplementedpairs in the lower level automaton. This is done by providing a \lattie", or direted ayli graphof omplemented pairs in the lower automaton.We would like to implement this as a standard method for proving liveness in IOA with LPor another prover. Implementing this method would involve a one-time ost of axiomatizing theomplemented-pairs temporal logi in LP, followed by a modeling of the desired algorithms' livenessproperties. With Paxos for example, a property we may wish to have in the Cons automaton is:8i�}[i 2 initialized℄! �}[:(i 2 failed)! i 2 deided℄That is, an initialized proess eventually deides if it does not fail.5.1.2 Invariant disoveryFor the invariants of Paxos, we were given the important ones in [11℄, but these were not enough tofully prove the simulation relations. Disovering whih invariants were needed using LP took time,and would have taken longer had we not already had some invariants given in [11℄. One way toalleviate the problem would be to use runtime information to suggest invariants that may be truefor the program. These invariants ould then be human- or omputer-�ltered to be used in proofsof larger properties like simulation relations.Daikon [3℄ is a tool that performs the dynami, runtime analysis desribed above. Daikon analready proess IOA data and output invariants in IOA syntax. It annot disover all invariants,but the ones that it disovers are often enough to prove important program properties. UsingDaikon for Paxos and other IOA programs is studied further in [15℄. Presently, Daikon is able todisover the �rst �ve invariants in the simulation relation from Global1 to Cons. However, theremay not yet be enough data to see how using Daikon would generalize.A Paxos IOA desription
14

axioms AuxDistaxioms Null(Value)type ModeType = enumeration of idle, ative, doneautomaton Global2signatureinput init (i : Node, v : Value)input fail (i : Node)output deide (i : Node, v : Value)internal makeBallot (b : Ballot)internal abstain (i : Node, B : Set[Ballot℄)internal assignVal (b : Ballot, v : Value)internal vote (i : Node, b : Ballot)internal internalDeide (b : Ballot)statesinitiated : Set[Node℄ := { },proposed : Set[Value℄ := { },deided : Set[Node℄ := { },failed : Set[Node℄ := { },ballots : Set[Ballot℄ := { },sueeded : Set[Ballot℄ := { },val : Array[Ballot, Null[Value℄℄ := onstant(nil),voted : Array[Node, Set[Ballot℄℄ := onstant({ }),abstained : Array[Node, Set[Ballot℄℄ := onstant({minBallot})transitionsinput init (i, v)e�if : (i in failed) theninitiated := initiated union {i};proposed := proposed union {v};elseproposed := proposed;�;input fail (i)e�failed := failed union {i}internal makeBallot(b)pre8 b' : Ballot (b' in ballots) (b' 6= b)) / b 6= minBallote�ballots := ballots union {b};val[b℄ := nil;internal assignVal (b, v)preb in ballots / val[b℄ = nil / v in proposed / ((8 b' : Ballot (b' < b) (b' in dead(abstained))))_(9 b'': Ballot (val[b''℄ = embed(v) ^ 8 bd' : Ballot (b'' < bd') bd' in dead(abstained)))))e�val[b℄ := embed(v);internal vote(i, b)prei in initiated / : (i in failed) / b in ballots / : (b in abstained[i℄)e�voted[i℄ := voted[i℄ union {b};internal abstain (i, B)prei in initiated / : (i in failed) / voted[i℄ intersetion B = { }e�abstained[i℄ := abstained[i℄ union B;internal internalDeide(b)preb in ballots / 9 b_qID : Ballot 8 j : Node (j in wquorums(b_qID)) b in voted[j℄)e�sueeded := sueeded union {b};output deide(i, v)hoose b : Ballotprei in initiated / : (i in deided) / : (i in failed) / b in sueeded / embed(v) = val[b℄e�deided := deided union {i};
automaton Paxossignatureinput init (i_Me : Node, v_Init : Value)input fail (i_Me : Node)output deide (i_Me : Node, v_Deide : Value)internal newBallot (i_Me : Node)internal makeBallot (i_Me : Node, b_MakeBallot : Ballot)internal abstain (i_Me : Node, B_Abstain : Set[Ballot℄)internal assignVal (i_Me : Node, b_AssignVal : Ballot, v_AssignVal : Value)internal vote (i_Me : Node, b_Vote : Ballot)internal internalDeide (i_Me : Node, b_InternalDeide : Ballot)internal sendProposed (i_Me : Node, j_You : Node, v_SProposed : Value)internal sendBallot (i_Me : Node, j_You : Node, b_SBallot : Ballot)internal sendValue (i_Me : Node, j_You : Node, b_SValue : Ballot, v_SValue : Value)internal sendVote (i_Me : Node, j_You : Node, k_SVote : Node, b_SVote : Ballot)internal sendAbstained (i_Me : Node, j_You : Node, k_SVote : Node, B_SVote : Set[Ballot℄)internal revProposed (i_Me : Node, j_You : Node, v_RProposed : Value)internal revBallot (i_Me : Node, j_You : Node, b_RBallot : Ballot)internal revValue (i_Me : Node, j_You : Node, b_RValue : Ballot, v_RValue : Value)internal revVote (i_Me : Node, j_You : Node, k_RVote : Node, b_RVote : Ballot)internal revAbstained (i_Me : Node, j_You : Node, k_RVote : Node, B_RVote : Set[Ballot℄)statesmode : Array[Node, ModeType℄ := onstant(idle),failed : Array[Node, Bool℄ := onstant(false),proposed : Array[Node, Set[Value℄℄ := onstant({ }),ballots : Array[Node, Set[Ballot℄℄ := onstant({ }),doMakeBallot : Array[Node, Bool℄ := onstant(false),val : Array[Node, Array[Ballot, Null[Value℄℄℄ := onstant(onstant(nil)),voted : Array[Node, Array[Node, Set[Ballot℄℄℄ := onstant(onstant({ })),abstained : Array[Node, Array[Node, Set[Ballot℄℄ ℄:= onstant(onstant({minBallot})),sueeded : Array[Node, Set[Ballot℄℄ := onstant({ })transitionsinput init (i_Me, v_Init)e�if (failed[i_Me℄) thenproposed[i_Me℄ := proposed[i_Me℄;else if (mode[i_Me℄ = idle ^ : failed[i_Me℄) thenmode[i_Me℄ := ative;proposed[i_Me℄ := proposed[i_Me℄ union {v_Init};elseproposed[i_Me℄ := proposed[i_Me℄ union {v_Init};��internal newBallot (i_Me)e�if (: failed[i_Me℄) thendoMakeBallot[i_Me℄ := true;elsedoMakeBallot[i_Me℄ := doMakeBallot[i_Me℄;�;input fail (i_Me)e�failed[i_Me℄ := true;internal makeBallot(i_Me, b_MakeBallot)pre: failed[i_Me℄;doMakeBallot[i_Me℄;8 b'_MakeBallot : Ballot (b'_MakeBallot in ballots[i_Me℄) b'_MakeBallot < b_MakeBallot);b_MakeBallot.proid = i_Me;b_MakeBallot 6= minBallot;e�ballots[i_Me℄ := insert(b_MakeBallot, ballots[i_Me℄);val[i_Me℄[b_MakeBallot℄ := nil;doMakeBallot[i_Me℄ := false;internal assignVal (i_Me, b_AssignVal, v_AssignVal)pre: failed[i_Me℄;b_AssignVal in ballots[i_Me℄;b_AssignVal.proid = i_Me;val[i_Me℄[b_AssignVal℄ = nil;v_AssignVal in proposed[i_Me℄;((8 b'_AssignVal : Ballot (b'_AssignVal < b_AssignVal)(b'_AssignVal in dead(abstained[i_Me℄))))_(9 b''_AssignVal: Ballot(val[i_Me℄[b''_AssignVal℄ = embed(v_AssignVal)^ 8 bd'_AssignVal : Ballot (b''_AssignVal < bd'_AssignVal)bd'_AssignVal in dead(abstained[i_Me℄)))))e�val[i_Me℄[b_AssignVal℄ := embed(v_AssignVal);internal vote(i_Me, b_Vote)premode[i_Me℄ 6= idle;: failed[i_Me℄;b_Vote in ballots[i_Me℄;val[i_Me℄[b_Vote℄ 6= nil;: (b_Vote in abstained[i_Me℄[i_Me℄)e�voted[i_Me℄[i_Me℄ := voted[i_Me℄[i_Me℄ union {b_Vote};internal abstain (i_Me, B_Abstain)premode[i_Me℄ 6= idle;: failed[i_Me℄;8 b_Abstain : Ballot ((b_Abstain in B_Abstain))9 b'_Abstain : Ballot (b'_Abstain in ballots[i_Me℄ ^ b_Abstain < b'_Abstain));voted[i_Me℄[i_Me℄ intersetion B_Abstain = { };e�abstained[i_Me℄[i_Me℄ := abstained[i_Me℄[i_Me℄ union B_Abstain;internal internalDeide(i_Me, b_InternalDeide)pre: failed[i_Me℄;mode[i_Me℄ = ative;b_InternalDeide in ballots[i_Me℄;9 b_qID : Ballot 8 j : Node (j in wquorums(b_qID)) b_InternalDeide in voted[i_Me℄[j℄)e�sueeded[i_Me℄ := sueeded[i_Me℄ union {b_InternalDeide};output deide(i_Me, v_Deide)hoose b_Deide : Ballotpre: failed[i_Me℄;mode[i_Me℄ = ative;b_Deide in sueeded[i_Me℄;embed(v_Deide) = val[i_Me℄[b_Deide℄;e�mode[i_Me℄ := done;internal sendProposed (i_Me, j_You, v_SProposed)pre: failed[i_Me℄;mode[i_Me℄ 6= idle;v_SProposed in proposed[i_Me℄;internal sendBallot (i_Me, j_You, b_SBallot)pre: failed[i_Me℄;mode[i_Me℄ 6= idle;b_SBallot in ballots[i_Me℄;internal sendValue (i_Me, j_You, b_SValue, v_SValue)pre: failed[i_Me℄;mode[i_Me℄ 6= idle;embed(v_SValue) = val[i_Me℄[b_SValue℄;internal sendVote (i_Me, j_You, k_SVote, b_SVote)pre: failed[i_Me℄;mode[i_Me℄ 6= idle;b_SVote in voted[i_Me℄[k_SVote℄;internal sendAbstained (i_Me, j_You, k_SVote, B_SVote)pre: failed[i_Me℄;mode[i_Me℄ 6= idle;B_SVote subseteq voted[i_Me℄[k_SVote℄;%% FIXME: eventually use sets and invariantsinternal revProposed (i_Me, j_You, v_RProposed)prev_RProposed in proposed[i_Me℄;e�if (mode[j_You℄ 6= idle ^ : failed[j_You℄) thenproposed[j_You℄ := insert(v_RProposed, proposed[j_You℄);�;internal revBallot (i_Me, j_You, b_RBallot)preb_RBallot in ballots[i_Me℄;e�if (mode[j_You℄ 6= idle ^ : failed[j_You℄) thenballots[j_You℄ := insert(b_RBallot, ballots[j_You℄);�;internal revValue (i_Me, j_You, b_RValue, v_RValue)preembed(v_RValue) = (val[i_Me℄)[b_RValue℄;e�if (mode[j_You℄ 6= idle ^ : failed[j_You℄) then(val[j_You℄)[b_RValue℄ := embed(v_RValue);�;internal revVote (i_Me, j_You, k_RVote, b_RVote)preb_RVote in voted[i_Me℄[k_RVote℄;e�if (mode[j_You℄ 6= idle ^ : failed[j_You℄) then(voted[j_You℄)[k_RVote℄ := insert(b_RVote, (voted[j_You℄)[k_RVote℄);�;internal revAbstained (i_Me, j_You, k_RVote, B_RVote)preB_RVote subseteq abstained[i_Me℄[k_RVote℄;e�if (mode[j_You℄ 6= idle ^ : failed[j_You℄) then(abstained[j_You℄)[k_RVote℄ := B_RVote union (abstained[j_You℄)[k_RVote℄;�;forward simulation from Paxos to Global2:8 i : Node (i in Global2.initiated , Paxos.mode[i℄ 6= idle)^ 8 v : Value (v in Global2.proposed , (9 i : Node (v in Paxos.proposed[i℄)))^ 8 i : Node (i in Global2.deided , Paxos.mode[i℄ = done)^ 8 i : Node (i in Global2.failed , Paxos.failed[i℄)^ 8 b : Ballot (b in Global2.sueeded , (9 i : Node (b in Paxos.sueeded[i℄)))^ 8 b : Ballot (Global2.val[b℄ = Paxos.val[b.proid℄[b℄)^ 8 i : Node (Global2.voted[i℄ = Paxos.voted[i℄[i℄)^ 8 i : Node (Global2.abstained[i℄ = Paxos.abstained[i℄[i℄)^ 8 b : Ballot (b in Global2.ballots , (9 i : Node (b in Paxos.ballots[i℄)))invariant DistInv1 of Paxos: 8 i : Node (8 j : Node(abstained[j℄[i℄ subseteq abstained[i℄[i℄))invariant DistInv2 of Paxos: 8 i : Node (8 j : Node(voted[j℄[i℄ subseteq voted[i℄[i℄))invariant DistInv3 of Paxos: 8 i : Node (8 b : Ballot(val[i℄[b℄ 6= nil) val[i℄[b℄ = val[b.proid℄[b℄))invariant DistInv4 of Paxos: 8 i : Node (8 b : Ballot(b in ballots[i℄) b in ballots[b.proid℄))invariant DistInv5 of Paxos: 8 b : Ballot(: (b in ballots[b.proid℄)) (val[b.proid℄)[b℄ = nil)% This auses an error in ioaChek% invariant DistInv4 of Paxos: 8 i : Node (8 b : Ballot% b in ballots[i℄) b in ballots[b.proid℄)

Figure 2: Signature and States

15

transitionsinput init (i_Me, v_Init)e�if (mode[i_Me℄ = idle _ mode[i_Me℄ = ative) thenmode[i_Me℄ := ative;proposed[i_Me℄ := proposed[i_Me℄ union {v_Init};elseproposed[i_Me℄ := proposed[i_Me℄;�;internal newBallot (i_Me)e�if (mode[i_Me℄ = ative) thendoMakeBallot[i_Me℄ := true;elsedoMakeBallot[i_Me℄ := doMakeBallot[i_Me℄;�;input fail (i_Me)e�mode[i_Me℄ := failed;internal makeBallot(i_Me, b_MakeBallot)premode[i_Me℄ = ative;doMakeBallot[i_Me℄;8 b'_MakeBallot : Ballot (b'_MakeBallot in ballots[i_Me℄) b'_MakeBallot < b_MakeBallot);b_MakeBallot.proid = i_Me;e�ballots[i_Me℄ := insert(b_MakeBallot, ballots[i_Me℄);val[i_Me℄[b_MakeBallot℄ := nil;doMakeBallot[i_Me℄ := false;internal assignVal (i_Me, b_AssignVal, v_AssignVal)premode[i_Me℄ = ative;b_AssignVal in ballots[i_Me℄;b_AssignVal.proid = i_Me;val[i_Me℄[b_AssignVal℄ = nil;v_AssignVal in proposed[i_Me℄;((8 b'_AssignVal : Ballot (b'_AssignVal < b_AssignVal)(b'_AssignVal in dead(abstained[i_Me℄))))_(9 b''_AssignVal: Ballot(val[i_Me℄[b''_AssignVal℄ = embed(v_AssignVal)and 8 bd'_AssignVal : Ballot (b''_AssignVal < bd'_AssignVal)bd'_AssignVal in dead(abstained[i_Me℄)))))e�val[i_Me℄[b_AssignVal℄ := embed(v_AssignVal);Figure 3: Ations
16

internal vote(i_Me, b_Vote)premode[i_Me℄ 6= idle;mode[i_Me℄ 6= failed;b_Vote in ballots[i_Me℄;val[i_Me℄[b_Vote℄ 6= nil;: (b_Vote in abstained[i_Me℄[i_Me℄)e�voted[i_Me℄[i_Me℄ := voted[i_Me℄[i_Me℄ union {b_Vote};internal abstain (i_Me, B_Abstain)premode[i_Me℄ 6= idle;mode[i_Me℄ 6= failed;8 b_Abstain : Ballot ((b_Abstain in B_Abstain))9 b'_Abstain : Ballot (b'_Abstain in ballots[i_Me℄ and b_Abstain < b'_Abstain));voted[i_Me℄[i_Me℄ intersetion B_Abstain = { };e�abstained[i_Me℄[i_Me℄ := abstained[i_Me℄[i_Me℄ union B_Abstain;internal internalDeide(i_Me, b_InternalDeide)premode[i_Me℄ = ative;b_InternalDeide in ballots[i_Me℄;9 b_qID : Ballot 8 j : Node (j in wquorums(b_qID)) b_InternalDeide in voted[i_Me℄[j℄)e�sueeded[i_Me℄ := sueeded[i_Me℄ union {b_InternalDeide};output deide(i_Me, v_Deide)hoose b_Deide : Ballotpremode[i_Me℄ = ative;b_Deide in sueeded[i_Me℄;embed(v_Deide) = val[i_Me℄[b_Deide℄;e�mode[i_Me℄ := done; Figure 4: Ations

17

internal sendProposed (i_Me, j_You, v_SProposed)premode[i_Me℄ = ative;v_SProposed in proposed[i_Me℄;internal sendBallot (i_Me, j_You, b_SBallot)premode[i_Me℄ 6= idle;b_SBallot in ballots[i_Me℄;internal sendValue (i_Me, j_You, b_SValue, v_SValue)premode[i_Me℄ 6= idle;embed(v_SValue) = val[i_Me℄[b_SValue℄;internal sendVote (i_Me, j_You, k_SVote, b_SVote)premode[i_Me℄ 6= idle;b_SVote in voted[i_Me℄[k_SVote℄;internal sendAbstained (i_Me, j_You, k_SVote, B_SVote)premode[i_Me℄ 6= idle;B_SVote subset voted[i_Me℄[k_SVote℄;internal revProposed (i_Me, j_You, v_RProposed)internal revBallot (i_Me, j_You, b_RBallot)internal revValue (i_Me, j_You, v_RValue)internal revVote (i_Me, j_You, k_RVote, b_RVote)internal revAbstained (i_Me, j_You, k_RVote, B_RVote)Figure 5: Ations

18

B LSL Auxiliary Spei�ationsThe following are the LSL spei�ations used as axioms for all three Paxos algorithms.AuxDist : traitinludes TotalOrder(Ballot), TotalOrder(Node), Set(Ballot), Array(Node, Set[Ballot℄), Set(Node), IntegerBallot tuple of seqno : Int, proid : NodeintroduesdummyNode : ! Node,dummyValue : ! Value,dummyBallot : ! Ballot,minBallot : ! Ballot,__<__ : Ballot, Ballot ! Bool,__<__ : Node, Node ! Bool,wquorums : Ballot ! Set[Node℄,rquorums : Ballot ! Set[Node℄,dead : Array[Node, Set[Ballot℄℄ ! Set[Ballot℄,haveRQuorum : Array[Node, Set[Ballot℄℄, Ballot ! Bool,haveWQuorum : Array[Node, Set[Ballot℄℄, Ballot ! Bool,haveQuorum : Array[Node, Set[Ballot℄℄, Ballot ! BoolhaveNobody : Array[Node, Set[Ballot℄℄, Ballot ! Boolasserts withabstained, abs1, abs2 : Array[Node, Set[Ballot℄℄, b_WQuorum, b_RQuorum,b_DeadQuorum, b_Dead, b_NotMin : Ballot,n_Quorum, n_rQuorum, n_wQuorum, n_Dead : Node,voted : Array[Node, Set[Ballot℄℄,b_HaveWQuorum, b_qHaveWQuorum : Ballot,n_HaveWQuorum : Node,b_HaveRQuorum, b_qHaveRQuorum : Ballot,n_HaveRQuorum : Node,b_HaveQuorum, b_qHaveQuorum : Ballot,n_HaveQuorum : Node,a_HaveQuorum : Array[Node, Set[Ballot℄℄,a_HaveWQuorum : Array[Node, Set[Ballot℄℄,a_HaveRQuorum : Array[Node, Set[Ballot℄℄,b_Less, b_Greater : Ballotb_Less < b_Greater , (b_Less.seqno < b_Greater.seqno _(b_Less.seqno = b_Greater.seqno ^ b_Less.proid < b_Less.proid));b_Less = b_Greater , (b_Less.seqno = b_Greater.seqno^ b_Less.proid = b_Greater.proid);8 b_RQuorum (8 b_WQuorum (9 n_Quorum : Node(n_Quorum in(rquorums(b_RQuorum) intersetion wquorums(b_WQuorum)))));8 b_RQuorum (9 n_wQuorum : Node (n_wQuorum in (rquorums(b_RQuorum))));8 b_WQuorum (9 n_rQuorum : Node (n_rQuorum in (wquorums(b_WQuorum))));b_Dead in dead (abstained) , 9 b_DeadQuorum (8 n_Dead : Node(n_Dead in rquorums(b_DeadQuorum)) b_Dead in abstained[n_Dead℄));8 n_Dead : Node (abs1[n_Dead℄ subseteq abs2[n_Dead℄) dead(abs1) subseteq dead(abs2));8 b_NotMin (b_NotMin 6= minBallot) minBallot < b_NotMin);haveWQuorum (a_HaveWQuorum, b_HaveWQuorum) , 9 b_qHaveWQuorum (8 n_HaveWQuorum(n_HaveWQuorum in wquorums(b_qHaveWQuorum)) b_HaveWQuorum in a_HaveWQuorum[n_HaveWQuorum℄));haveNobody (a_HaveQuorum, b_HaveQuorum) , (8 n_HaveQuorum19

: (b_HaveQuorum in a_HaveQuorum[n_HaveQuorum℄));haveRQuorum (a_HaveRQuorum, b_HaveRQuorum) , 9 b_qHaveRQuorum (8 n_HaveRQuorum(n_HaveRQuorum in rquorums(b_qHaveRQuorum)) b_HaveRQuorum in a_HaveRQuorum[n_HaveRQuorum℄))

20

C Proof SriptsC.1 Paxos to Global2The following is the LP proof of the simulation relation from Paxos to Global2.learthaw Paxos2Global2forgetset name Zdel vars z_s, z_s' : States[Paxos℄del vars z_u, z_u' : States[Global2℄del vars beta : AtionSeq[Global2℄del vars v, vhak : Valuedel op sk_b : -> Ballotdel op sk_bn : -> Ballotdel op sk_i : -> Nodepr (F(z_s, z_u) /\ step (z_s, pi, z_s') /\ DistInv1(z_s)/\ DistInv2(z_s) /\ DistInv3(z_s) /\ DistInv4(z_s) /\ DistInv5(z_s)=> \E beta : AtionSeq[Global2℄ (exeFrag(z_u, beta)/\ F(z_s', last(z_u, beta)) /\ trae(beta) = trae(pi:Ations[Paxos℄)))<>make immune onres by ind on pi : Ations[Paxos℄<> init (n, v1)res by =>res by spe beta to init(n, v1) * {}% 3 requirements: failed/ative; initiated; proposedres by /\<> for doneres by ases z_s.failed[n℄<>[℄<>res by ases z_s.mode[n℄ = idle<>res by ases i = n[℄[℄[℄<> for idle/ativeres by ases z_s.failed[n℄<>[℄<>res by ases i = n<>res by ases z_s.mode[n℄ = idle[℄<>res by ases z_s.mode[n℄ = idle[℄[℄[℄<>res by ases z_s.failed[n℄<> Failedex TatiPaxos2G2_1.lp[℄<> Not failedres by ases embed(v1) = embed(v)<> We're the one doing the insertingres by spe i to n[℄ Someone else's value<>ex TatiPaxos2G2_1.lp[℄[℄[℄ res by /\[℄ init<> Fail (n)res by =>res by spe beta to fail(n) * {}[℄<> Deide (n, v1, b1)res by =>res by spe beta to deide (n, v1, b1) * {}% (z_s.val[n℄)[b1℄ = z_u.val[b1℄% /\ \E i:Node (b1 \in z_s.sueeded[i℄)% /\ \A i:Node 21

% (z_s.mode[i℄ = idle% <=> (if n = i then done else z_s.mode[i℄) = idle)% /\ \A i:Node% (z_s.mode[i℄ = done \/ i = n% <=> (if n = i then done else z_s.mode[i℄) = done)res by /\<> Level 5 subgoal for onjunt 1: (z_s.val[n℄)[b1℄ = z_u.val[b1℄% Value onsistenypr (z_s.val[n℄)[b1℄ ~= nilres by oninst i by n, b by b1 in *Hyp[℄<>% z_s.mode[i℄ = idle% <=> (if n = i then done else z_s.mode[i℄) = idleres by ases n = i[℄<>res by ases n = i[℄<> Level 5 subgoal for onjunt 2: \E i:Node (b1 \in z_s.sueeded[i℄)res by spe i to n[℄[℄<> enabled(z_s, newBallot(n))res by =>res by spe beta to {}[℄<> enabled(z_s, makeBallot(n, b1))res by =>res by spe beta to makeBallot (b1) * {}res by /\<> Current subgoal: ~(b1 \in z_s.ballots[i℄)res by oninst b by b1, i by i in *Hyp% ZImpliesHyp.1.13.2: b1 \in z_s.ballots[b1.proid℄ -> true% Now this violates preondition of unique ballotinst b'_MakeBallot by b1 in *Hyp[℄<>% b1.seqno = b.seqno \/ \E i:Node (b \in z_s.ballots[i℄)% <=> \E i:Node% (b% \in (if b1.proid = i% then insert(b1, z_s.ballots[b1.proid℄)% else z_s.ballots[i℄))res by ases b1 = b<>res by spe i to b1.proid[℄<>res by <=><>fix i as sk_i in *Hypres by spe i to sk_ires by ases b1.proid = sk_i[℄<>fix i as sk_i in *Hypres by spe i to sk_ires by ases b1.proid = sk_i[℄[℄<> Valset imm onres by ases b = b1<>[℄<>res by ases b1.proid = b.proid<> Same[℄<> Differentres by ases b.seqno = b1.seqno<> HACKass nil = z_u.val[b℄[℄[℄set imm off[℄[℄ /\[℄ makeBallot<> enabled(z_s, abstain(n, s7))res by =>res by spe beta to abstain(n, s7) * {}% Just one lause, yay! 22

res by ases n = i[℄<> enabled(z_s, assignVal(n, b1, v1))res by =>res by spe beta to assignVal(b1, v1) * {}% (\A b' (b'.seqno < b1.seqno => b' \in dead(z_u.abstained))% \/ \E b''% (z_u.val[b''℄ = embed(v1)% /\ \A bd'% (b''.seqno < bd'.seqno% => bd' \in dead(z_u.abstained))))% /\ \A b% ((if b.seqno = b1.seqno then embed(v1) else z_u.val[b℄)% = (if b1.proid = b.proid% then assign(z_s.val[b1.proid℄, b1, embed(v1))% else z_s.val[b.proid℄)% [b℄)% /\ \E i:Node (b1 \in z_s.ballots[i℄)% /\ \E i:Node (v1 \in z_s.proposed[i℄)res by /\<>res by ases \A b'_AssignVal (b'_AssignVal.seqno < b1.seqno => b'_AssignVal \in dead(z_s.abstained[b1.proid℄))<>pr \A b' (b'.seqno < b1.seqno => b' \in dead(z_u.abstained))res by =>inst b'_AssignVal by b' in *Hypset imm onpr \A i : Node ((z_s.abstained[b1.proid℄)[i℄ \subseteq z_u.abstained[i℄)set imm offinst n_Dead by i, abs1 by z_s.abstained[b1.proid℄, abs2 by z_u.abstained in Aux*res by ases dead(z_s.abstained[b1.proid℄) = dead(z_u.abstained)inst e by b', s1 by dead(z_s.abstained[b1.proid℄), s2 by dead(z_u.abstained) in Setinst e by b' in Set[℄<>fix b''_AssignVal as sk_b in *Hyppr \E b'' (z_u.val[b''℄ = embed(v1)/\ \A bd' (b''.seqno < bd'.seqno => bd' \in dead(z_u.abstained)))res by spe b'' to sk_b% Now show that (z_s.val[b1.proid℄)[sk_b℄ -> embed(v1) = z_u.val[sk_b℄inst i by b1.proid, b by sk_b in *Hyp% This removes first onjunt% Other goal: sk_b.seqno < bd'.seqno => bd' \in dead(z_u.abstained)res by =>inst bd'_AssignVal by bd' in Zset imm onpr \A i : Node ((z_s.abstained[b1.proid℄)[i℄ \subseteq z_u.abstained[i℄)set imm offinst n_Dead by i, abs1 by z_s.abstained[b1.proid℄, abs2 by z_u.abstained in Aux*inst e by bd', s1 by dead(z_s.abstained[b1.proid℄), s2 by dead(z_u.abstained) in Setinst e by bd' in Set[℄<>% (if b.seqno = b1.seqno then embed(v1) else z_u.val[b℄)% = (if b1.proid = b.proid% then assign(z_s.val[b1.proid℄, b1, embed(v1))% else z_s.val[b.proid℄)% [b℄res by ases b.proid = b1.proid<>res by ases b.seqno = b1.seqno<>[℄<>inst i by b1.proid, b by b in *Hyp[℄[℄<> Different pro IDs[℄[℄<> Level 5 subgoal for onjunt 3: \E i:Node (b1 \in z_s.ballots[i℄)res by spe i to b1.proid[℄<> Level 5 subgoal for onjunt 4: \E i:Node (v1 \in z_s.proposed[i℄)res by spe i to b1.proid[℄[℄ /\[℄ assignVal<> vote(n, b1)res by =>res by spe beta to vote(n, b1) * {}% Two onjuntsres by /\<> Level 5 subgoal for onjunt 1: \E i:Node (b1 \in z_s.ballots[i℄)res by spe i to n[℄<> 23

% (if n = i% then z_u.voted[n℄ \U insert(b1, {})% else z_u.voted[i℄)% = (if n = i% then assign(z_s.voted[n℄,% n,% z_u.voted[n℄ \U insert(b1, {}))% else z_s.voted[i℄)% [i℄res by ases i = n[℄[℄ vote<> enabled(z_s, internalDeide(n, b1))res by =>res by spe beta to internalDeide(b1) * {}% 3 onjuntsres by /\<>% ((b1.seqno = b.seqno /\ b1.proid = b.proid)% \/ \E i:Node (b \in z_s.sueeded[i℄)% <=> \E i:Node% (b% \in (if n = i% then z_s.sueeded[n℄ \U insert(b1, {})% else z_s.sueeded[i℄)))res by ases (b1.seqno = b.seqno /\ b1.proid = b.proid)% b is the generi guy in the upper automaton<>res by spe i to n[℄<>res by <=><>fix i as sk_i in *Hypres by spe i to sk_ires by ases n = sk_i[℄<>fix i as sk_i in *Hypres by spe i to sk_ires by ases n = sk_i[℄[℄[℄<> \E b_qID \A j:Node (j \in wquorums(b_qID) => b1 \in z_u.voted[j℄)% We have a quorumfix b_qID as sk_bn in *Hypres by spe b_qID to sk_bnres by =>inst j by j in Zres by ases z_u.voted[j℄ = (z_s.voted[n℄)[j℄inst i by j, j by n in *Hypinst e by b1, s1 by(z_s.voted[n℄)[j℄, s2 by z_u.voted[j℄ in Setinst e by b1 in Set[℄<> Level 5 subgoal for onjunt 3: \E i:Node (b1 \in z_s.ballots[i℄)res by spe i to n[℄[℄ intl deide<> enabled(z_s, sendProposed(n, n1, v1))ex TatiPaxos2G2_emptyBeta[℄<> enabled(z_s, sendBallot(n, n1, b1))ex TatiPaxos2G2_emptyBeta[℄<> enabled(z_s, sendValue(n, n1, b1, v1)ex TatiPaxos2G2_emptyBeta[℄<> enabled(z_s, sendVote(n, n1, n2, b1))ex TatiPaxos2G2_emptyBeta[℄<> enabled(z_s, sendAbstained(n, n1, n2, s7))ex TatiPaxos2G2_emptyBeta[℄<> enabled(z_s, revProposed(n, n1, v1))ex TatiPaxos2G2_emptyBeta% \E i:Node (v \in z_s.proposed[i℄)% <=> \E i:Node% (v% \in (if ~(z_s.mode[n1℄ = idle) /\ ~z_s.failed[n1℄24

% then assign(z_s.proposed,% n1,% insert(v1, z_s.proposed[n1℄))% else z_s.proposed)% [i℄)res by <=><>fix i as sk_i in *Hypres by spe i to sk_ires by ases ~(z_s.mode[n1℄ = idle) /\ ~z_s.failed[n1℄<>res by ases n1 = sk_i[℄<>[℄[℄<>set imm onres by ases v = v1<>set imm offres by spe i to n[℄<>set imm offfix i as sk_i in *Hypres by spe i to sk_ires by ases ~(z_s.mode[n1℄ = idle) /\ ~z_s.failed[n1℄res by ases n1 = sk_ipr embed(v1) ~= embed(v)inst t by v, t2 by v1 in Null[℄[℄[℄ ugh<> enabled(z_s, revBallot(n, n1, b1))ex TatiPaxos2G2_emptyBetares by <=><>fix i as sk_i in *Hypres by spe i to sk_ires by ases ~(z_s.mode[n1℄ = idle) /\ ~z_s.failed[n1℄<>res by ases n1 = sk_i[℄<>[℄[℄<>fix i as sk_i in *Hypres by ases ~(z_s.mode[n1℄ = idle) /\ ~z_s.failed[n1℄res by ases n1 = sk_i<>res by ases b \in z_s.ballots[sk_i℄<>res by spe i to sk_i[℄<>res by spe i to nres by onset imm onpr b = b1[℄[℄<>res by spe i to sk_i[℄[℄<> enabled(z_s, revValue(n, n1, b1, v1))ex TatiPaxos2G2_emptyBetares by ases ~(z_s.mode[n1℄ = idle) /\ ~z_s.failed[n1℄set imm onres by ases b1 = b<>set imm offres by ases n1 = b1.proidpr (z_s.val[n℄)[b℄ ~= nilres by oninst b by b, i by n in *Hyp[℄<>set imm offres by ases n1 = b.proidpr ~(b.seqno = b1.seqno /\ b.proid = b1.proid)inst b_Less by b, b_Greater by b1 in Aux*[℄[℄ revValue<> enabled(z_s, revVote(n, n1, n2, b1)) 25

ex TatiPaxos2G2_emptyBetares by ases ~(z_s.mode[n1℄ = idle) /\ ~z_s.failed[n1℄% Requirement: z_u.voted[i℄ = z_s.voted[i℄[i℄% n = sender, n1 = reeiver, n2 = information aboutres by ases n1 ~= i% First ase done% Now n1 = i, reeiver data being hangedres by ases n2 ~= i% First ase easy again% Now n = i, talking about info of senderpr b1 \in (z_s.voted[i℄)[i℄<>res by ases (z_s.voted[n℄)[i℄ = z_u.voted[i℄inst j by n, i by i in *Hypinst e by b1, s1 by (z_s.voted[n℄)[i℄, s2 by z_u.voted[i℄ in Setinst e by b1 in Set[℄pr b1 \in z_u.voted[i℄ass b \in s : Set[Ballot℄ => s = insert(b, s)inst b by b1, s by z_u.voted[i℄ in Z[℄<> enabled(z_s, revAbstained(n, n1, n2, s7))ex TatiPaxos2G2_emptyBetares by ases ~(z_s.mode[n1℄ = idle) /\ ~z_s.failed[n1℄% Requirement: z_u.voted[i℄ = z_s.voted[i℄[i℄% n = sender, n1 = reeiver, n2 = information aboutres by ases n1 ~= i% First ase done% Now n1 = i, reeiver data being hangedres by ases n2 ~= i% First ase easy again% Now n = i, talking about info of senderpr s7 \subseteq (z_s.abstained[i℄)[i℄<>ass s : Set[Ballot℄ \subseteq s1 : Set[Ballot℄ /\ s1 : Set[Ballot℄ \subseteq s2 : Set[Ballot℄ => s : Set[Ballot℄ \subseteq s2 : Set[Ballot℄inst j by n, i by i in *Hypinst s by s7, s1 by (z_s.abstained[n℄)[i℄, s2 by (z_s.abstained[i℄)[i℄ in Zres by on[℄pr s7 \subseteq z_u.abstained[i℄ass s1 : Set[Ballot℄ \subseteq s2 : Set[Ballot℄ => s1 : Set[Ballot℄ \U s2 = s2inst s1 by s7, s2 by z_u.abstained[i℄ in Z[℄[℄qedC.2 Global2 to Global2The following is the LP proof of the simulation relation from Global2 to Global1. Notie that it ismuh simpler than the proof from Paxos to Global2 or from Global1 to Cons.learthaw Global22Global1forgetset name Zdel vars z_s, z_s' : States[Global2℄del vars z_u, z_u' : States[Global1℄del vars beta : AtionSeq[Global1℄del vars v, vhak : Valuedel op sk_b : -> Ballotdel op sk_bn : -> Ballotdel op sk_i : -> Nodedel op sk_z1 : -> States[Global1℄del op sk_s1 : -> States[Global2℄del op StartRel : States[Global2℄ -> States[Global1℄ass StartRel(z_s:States[Global2℄) = [z_s.abstained, z_s.voted,z_s.val, z_s.sueeded, z_s.ballots, z_s.failed, z_s.deided,z_s.proposed, z_s. initiated℄ 26

pr start(z_s) => \E z_u (start(z_u) /\ F(z_s, z_u))<> Start of proofmake immune onres by =>res by spe z_u to StartRel(z_s)[℄pr (F(z_s, z_u) /\ step (z_s, pi, z_s') /\ Inv4(z_s) =>\E beta : AtionSeq[Global1℄ (exeFrag(z_u, beta) /\F(z_s', last(z_u, beta)) /\ trae(beta) = trae(pi:Ations[Global2℄)))make immune onres by ind on pi : Ations[Global2℄<> Indution proof<> enabled(z_s, init(n, v))res by =>res by spe beta to init(n, v) * {}[℄<> enabled(z_s, fail(n))res by =>res by spe beta to fail(n) * {}[℄<> enabled(z_s, deide(n, v, b1))res by =>res by spe beta to deide (n, v, b1) * {}[℄<> enabled(z_s, makeBallot(b1, s3))res by =>res by spe beta to makeBallot (b1, quorums) * {}[℄<> enabled(z_s, abstain(n, s13))res by =>res by spe beta to abstain(n, s13) * {}[℄<> enabled(z_s, assignVal(b1, v))res by =>res by spe beta to assignVal(b1, v) * {}res by =>% Level 5 subgoal for proof of =>:% z_s.val[b'℄ = embed(v)% \/ \A j:Node (j \in quorums => b' \in z_s.abstained[j℄)inst b' by b' in *Hypres by ases \A j:Node (j \in quorums => b' \in z_s.abstained[j℄)<> First ase easy[℄<> b' isn't dead yet remember, b' < b% Current subgoal: z_s.val[b'℄ = embed(v)fix b'' as sk_b in *Hypres by ases sk_b < b', sk_b = b', b' < sk_b<> Easy aseinst bd' by b', b' by b' in Z% Impossible[℄<> Easy ase[℄<> Not so easy, use Inv4inst b by sk_b, b' by b' in *Hyp[℄[℄[℄ assignVal<> enabled(z_s, vote(n, b1))res by =>res by spe beta to vote(n, b1) * {}[℄<> internalDeide(b1)res by =>res by spe beta to internalDeide(b1) * {}[℄[℄ End of indutionqedC.3 Global1 to ConsThis is the proof from Global1 to Cons. Although Global1 is a smaller program than Paxos, theproof is nearly as long as the simulation relation from Paxos to Global2.27

learthaw Global12Consforgetset name Zdel vars z_s, z_s' : States[Global1℄del vars z_u, z_u' : States[Cons℄del vars beta : AtionSeq[Cons℄del vars v, vhak : Valuedel op sk_b : -> Ballotdel op sk_bn : -> Ballotdel op sk_i : -> Nodedel op StartRel : States[Global1℄ -> States[Cons℄ass StartRel(z_s:States[Global1℄) = [{}, {}, {}, {}, {}℄ : States[Cons℄pr start(z_s) => \E z_u (start(z_u) /\ F(z_s, z_u))<> Start of proofmake immune onres by =>res by spe z_u to StartRel(z_s)[℄pr (F(z_s, z_u) /\ step (z_s, pi, z_s') /\Inv1(z_s) /\ Inv2(z_s) /\ Inv3(z_s) /\ Inv4(z_s) /\ Inv5(z_s) =>\E beta : AtionSeq[Cons℄ (exeFrag(z_u, beta) /\F(z_s', last(z_u, beta)) /\ trae(beta) = trae(pi:Ations[Global1℄)))make immune onres by ind on pi : Ations[Global1℄<> Indution proof<> enabled(z_s, init(n, v1))res by =>res by spe beta to init(n, v1) * {}[℄<> enabled(z_s, fail(n))res by =>res by spe beta to fail(n) * {}[℄<> enabled(z_s, deide(n, v1, b1))res by =>res by spe beta to deide (n, v1) * {}inst b by b1, v by v1 in *Hyp[℄<> enabled(z_s, makeBallot(b1))res by =>res by spe beta to {}res by /\<>res by =>inst v by v in *Hypfix b as sk_b in on-op(v)res by spe b to sk_bres by ases b1 = sk_binst b by sk_b in *Hyp[℄<>res by =>fix b as sk_b in on-op(b1)res by ases sk_b = b1<> First ase easy, impossible ase[℄<> Seond ase, sk_b ~= b1inst b by sk_b, v by v in *Hyp[℄ Booyeah![℄[℄<> enabled(z_s, abstain(n, s13))res by =>res by spe beta to {}[℄ ayup<> enabled(z_s, assignVal(b1, v1))res by =>res by ases \A b : Ballot (b \in z_s.sueeded => z_s.val[b℄ = nil)<> True ase, all vals are nil 28

res by ases ~(b1 \in z_s.sueeded)<> ~(b1 \in z_s.sueeded)res by spe beta to {}res by /\<>ex TatiG2C_1[℄<>ex TatiG2C_2[℄[℄<> True. New assigned ballot is in sueeded and nothing else has sueededres by spe beta to hooseVal(v1) * {}res by /\<> empty(z_u.hosen)ex TatiG2C_5[℄<> v in z_s.hosen => \E...res by =>res by spe b to b1[℄<> \E.... => v in z_s.hosenex TatiG2C_4[℄ \E...[℄ b1 \in z_s.sueeded[℄ true ase for all ballots being nil<> false ase, there are some ballots not nil% Use preondition on < operatorpr \E b : Ballot (b \in z_s.sueeded /\ ~(z_s.val[b℄ = nil))<> Some preliminariesset name temppr \E b ~(b \in z_s.sueeded => z_s.val[b℄ = nil)make immune onres by onfix b as sk_b in temp*res by spe b to sk_bres by ases z_s.val[sk_b℄ = nil[℄fix b as sk_bn in Z% sk_bn is one of the ballots that aren't nullres by spe beta to {}res by /\<>ex TatiG2C_1[℄<>res by =>fix b as sk_b in on-op(v)res by ases b1 = sk_b% v = value of inserted element b1<> True ase, show using < operatorres by ases sk_b < sk_bn, sk_b = sk_bn, sk_bn < sk_b<> sk_b < sk_bninst b' by sk_b, b by sk_bn in *Hypinst b by sk_b in *Hyp[℄ Apparently impossible ase, beause of invariant<> sk_b = sk_bn[℄<> sk_bn < sk_b Level 8% Something in ballots is < urrent insertionpr ~ (sk_bn \in dead(z_s.abstained))<>make immune oninst b by sk_bn in *Hyp[℄inst b by sk_bn, b' by sk_bn, v by v in *Hyp[℄[℄ b1 = sk_b<> b1 ~= sk_binst b by sk_b, v by v in *Hyp% Ppeviously in sueeded[℄[℄ sk_b ~= b1[℄[℄ assignVal<> vote enabled(z_s, vote(n, b1))res by => 29

res by spe beta to {}[℄ ayup<> enabled(z_s, internalDeide(b1))res by =>res by ases b1 \in z_s.sueeded<> Easy aseres by spe beta to {}res by /\<>ex TatiG2C_3[℄<>ex TatiG2C_4[℄ Easy ase<> b1 is atually newres by ases z_s.val[b1℄ = nil<> Another easy ase - deiding on a null ballotres by spe beta to {}res by /\<>ex TatiG2C_3[℄<>ex TatiG2C_4[℄[℄[℄<> b1 has a value. Now we're talkingres by ases \E b : Ballot (b \in z_s.sueeded /\ z_s.val[b℄ ~= nil)<> True ase, there are existing sueeded ballots with valuefix b as sk_bn in *CaseHypres by spe beta to {}res by /\<>ex TatiG2C_3[℄<>% Remember, goal is v \in u.hosen, where val[b = sk_b℄℄ = vres by =>fix b as sk_b in on-op(v)res by ases b1 = sk_b% This ase resumption is not neessary. There exists sk_b% that already holds what we want.<> True ase, show using < operatorres by ases sk_b < sk_bn, sk_b = sk_bn, sk_bn < sk_b<> sk_b < sk_bnpr z_s.val[sk_bn℄ = z_s.val[sk_b℄inst b' by sk_b, b by sk_bn in *Hyp% embed(v) = z_s.val[sk_bn℄% \/ sk_b \in dead(z_s.abstained)% -> truepr ~(sk_b \in dead(z_s.abstained))make immune onrewrite onres by ondel op sk_i : Ballot, Ballot -> Nodefix n_Quorum as sk_i(b_RQuorum, b_WQuorum) in Aux*del op sk_bq : -> Ballotfix b_qID as sk_bq in *Hypinst j by sk_i(b_DeadQuorum, sk_bq), b_WQuorum by sk_bq in Zinst n_Dead by sk_i(b_DeadQuorum, sk_bq) in *Hyprit *Hyp with Z, *Hyp[℄inst b' by sk_b, b by sk_bn in *Hypinst b by sk_b, v by v in *Hyp[℄ sk_b < sk_bn<> sk_b = sk_bn% Impossible[℄<> sk_bn < sk_binst b' by sk_bn, b by sk_b in *Hypinst v by v, b by sk_bn in *Hyp[℄[℄ sk_b = b1<> sk_b ~= b1inst b by sk_b, v by v in *Hyp[℄[℄[℄ b1 is new[℄ ballot already hosen 30

<> Ballot not yet hosenres by spe beta to hooseVal(z_s.val[b1℄.val) * {}res by /\<> z_s.val[b1℄.val \in z_s.proposedinst b by b1 in *Hyp[℄<> empty(z_u.hosen)ex TatiG2C_5[℄<> \A v (v \in z_u.hosen)...res by =>res by spe b to b1[℄<> \E....% v1 = newly assigned value% v = value on right side of what we have to proveres by =>fix b as sk_b in *Hyp.2inst b by sk_b in *Hyp[℄ \E...[℄ new value hosen[℄ internalDeide[℄ End of indutionqed

31

Referenes[1℄ Paul Attie. Liveness preserving simulation relations. PODC, 1998.[2℄ Andrej Bogdanov. Formal veri�ation of simulations between I/O automata. Master of engi-neering thesis, September 2000.[3℄ The Daikon Invariant Detetor User Manual, Deember 7, 2001.[4℄ Mihael J. Fisher, Nany A. Lynh, and Mihael Merritt. Impossibility of distributed on-sensus with one faulty proess. Journal of the ACM, (2):374{382, 1985.[5℄ Stephen J. Garland and John V. Guttag. A guide to LP, the Larh Prover. Tehnial Report 82,Digital Equipment Corporation, Systems Researh Center, 31 Deember 1991.[6℄ Stephen J. Garland, Nany A. Lynh, and Mandana Vaziri. IOA: A language for speify-ing, programming, and validating distributed systems. Tehnial report, MIT Laboratory forComputer Siene, 1997.[7℄ L. Lamport. The temporal logi of ations. ACM Transations on Programming Languagesand Systems, 16(3):872{923, May 1994.[8℄ Leslie Lamport. The part-time parliament. ACM Transations on Computer Systems, pages133{169, May 1998.[9℄ Leslie Lamport. Paxos made simple. to appear in SIGACT News, Nov 2001.[10℄ Nany Lynh. Distributed Algorithms. Morgan Kaufmann, San Franiso, CA, 1996.[11℄ Nany Lynh and Alex Shvartsman. Paxos made even simpler (and formal).[12℄ Nany Lynh and Frits Vandraager. Forward and bakward simulations, parts i and ii.http://theory.ls.mit.edu/tds/papers/Lynh, Otober 1994.[13℄ Nany A. Lynh and Mark R. Tuttle. An introdution to Input/Output automata. CWI-Quarterly, 2(3):219{246, September 1989.[14℄ Roberto Segala, Rainer Gawlik, Jorgen Sogaard-Andersen, and Nany Lynh. Liveness intimed and untimed systems. Information and Computation, 141(2):119{171, 1998.[15℄ Toh Ne Win and Mihael Ernst. Verifying distributed algorithms via dynami analysis andtheorem proving. http://theory.ls.mit.edu/tds/papers/Tohn, May 2002.

32

