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Abstract. We introduce a new framework for designing and analyzing
algorithms. Our framework applies best to problems that are inapprox-
imable according to the standard worst-case analysis. We circumvent
such negative results by designing guarantees for classes of instances,
parameterized according to properties of the optimal solution. We also
make sure that our parameterized approximation, called PArametrized
by the Signature of the Solution (PASS) approximation, is the best pos-
sible. We show how to apply our framework to problems with additive
and submodular objective functions such as the capacitated maximum
facility location problems. We consider two types of algorithms for these
problems. For greedy algorithms, our framework provides a justification
for preferring a certain natural greedy rule over some alternative greedy
rules that have been used in similar contexts. For LP-based algorithms,
we show that the natural LP relaxation for these problems is not optimal
in our framework. We design a new LP relaxation and show that this LP
relaxation coupled with a new randomized rounding technique is optimal
in our framework.
In passing, we note that our results strictly improve over previous results
of Kleinberg, Papadimitriou and Raghavan [JACM 2004] concerning the
approximation ratio of the greedy algorithm.

1 Introduction

Many important optimization problems in practice are inapproximable in the-
ory. Practitioners deal with inapproximability issues by designing heuristics that,
while provably bad on some instances, appear to perform well in practice. But
for theoreticians, designing a formal framework to help guide algorithmic devel-
opment for inapproximable problems has proved largely elusive.

In this paper, we present a new framework, called PArametrized by the Signa-
ture of the Solution (PASS) approximations. Our framework attempts to catego-
rize instances according to how “easy” or “hard” they are, and design guarantees
for all instances simultaneously with a single algorithm (the offered guarantee
? Work performed in part at Microsoft Research.
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depends on the class of the instance and will degrade to arbitrarily bad factors for
inapproximable problems, but in a controlled way). We show how this framework
can be applied to a general class of optimization problem, including capacitated
maximum facility location, that can be described as maximizing a non-decreasing
submodular revenue function minus a linear cost function. We then show how
the new framework affects the choice of algorithms. Two standard approaches
for handling such problems are via greedy and LP-based algorithms. We study
a natural greedy algorithm and prove that it is an optimal PASS approximation
whereas other greedy algorithms that give optimal worst-case approximations
are not. For LP-based algorithms, we show that a natural LP relaxation can-
not be used to design an optimal PASS approximation. Instead, we provide a
different LP relaxation and an associated rounding technique that is optimal.
Our new LP relaxation is unconventional in the sense that instead of providing
an upper bound on the optimal solution (this is a maximization problem), it
provides a lower bound.

The current paper outlines the theory of PASS approximations. We describe
the general technique and how to apply this technique to a wide range of the-
oretical problems using both greedy and LP-based algorithms. In a companion
paper [3], we apply the notion of approximation developed here to a specific
problem (banner advertising) of practical significance. This problem is a special
case of the broad class of problems studied in this paper.

The rest of the paper is organized as follows. After defining the problems, in
Section 2, we describe the theory of PASS approximation, and compare it with
previous approaches proposed to deal with the hardness of approximation. The
summary of results is given in Section 3. The greedy and an LP-based algorithms
for these problems are presented respectively in Sections 4 and 5.

Problem Studied

In this paper, we mainly focus on the maximum facility location problem [1, 2]:

Maximum Facility Location (MFL). A set F of m facilities is given. For
every facility i, there is an opening cost of ci. There is also a set J of n clients.
The revenue of connecting client j to facility i is uij ≥ 0 (this may be interpreted
as a client revenue minus a connection cost). Every client can connect to at most
one open facility (or none). The goal in MFL is to open some facilities and
connect clients to them so as to maximize the total revenue from the connected
clients minus the total cost of the opened facilities.

For comparison with some previous work [6], we shall discuss also the follow-
ing problem that [6] call the variable catalog segmentation problem.

Catalog Segmentation Problem. A company has a collection of products and
a collection of potential clients. Clients have various levels of interest associated
with each type of product. The company wishes to produce several types of
catalogs, each type containing a subset of the products (the number of products
in a catalog may be limited by considerations such as weight), and mail to every
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potential client at most one catalog (presumably, of a type that would be of
interest to the client). Assuming that producing a catalog-type has unit cost, and
that for each type i and client j there is a expected revenue of uij from mailing
a catalog of type i to client j, which catalogs should the company produce in
order to maximize its expected profit (expected benefit minus production cost)?
If all potential types of catalogs can be listed beforehand and all values uij are
known, then this is a special case of MFL, with the catalogs serving as facilities.
(In [6] it is assumed that all types of catalogs cost the same to produce, and
we follow this assumption in our presentation. More generally, we may associate
a cost ci for producing the catalog of type i, and then the problem becomes
equivalent to MFL.)

Most of our results apply to a general class of maximizing submodular set
functions, called submodular maximum facility location, that can be described as
maximizing a non-decreasing submodular revenue function minus a linear cost
function.

Submodular Maximum Facility Location (SMFL). Consider a set N of
n facilities and a set function f : 2N → R+. For any subset S ⊂ N , f(S) =
R(S)− c(S), where R is a non-negative non-decreasing submodular set function
corresponding to the revenue, and c(S) =

∑
i∈S ci is a linear cost function. As a

result, set function f is a non-monotone submodular function and the goal is to
find a subset S that maximizes f(S). 5 We assume a value oracle for the revenue
function R and a description for the cost c (this is of polynomial size) are given.

MFL is a special case of SMFL. Moreover, one can show (details omitted)
that capacitated maximum facility location (CMFL), in which every facility has
a capacity that limits the number of clients that it can serve, is also a special case
of SMFL. Other examples include a variety of optimization problems such as set
buying, catalog segmentation [6], banner ad allocation problem with guaranteed
delivery [3], maximizing influence in social networks [5, 8], and optimal sensor
installation for outbreak detection [7].

2 The theory of PASS approximation

In this section we describe the notion of PASS approximation for the maximum
facility location problem; in Section 4.2 we show how this notion extends to
submodular maximum facility location. First note that for these problems the
value of the objective function may be negative for some feasible solutions. As
is often the case with objective functions that may be negative, the MFL prob-
lems are NP-hard to approximate within any constant factor (see for example
Theorem 1). Therefore, researchers have attempted to present other types of
performance guarantees. As we discuss in the next section, most of previous
attempts suffer in that they do not prove guarantees with regard to the real
5 Note that function f can be possibly negative and therefore the result of

Feige et al. [4] does not apply.



4

optimum value on every instance. Nonetheless, there are large classes of inter-
esting instances in which the approximation ratio can be much better than the
worst-case guarantees, for example if the cost of opening facilities is far from
the revenue one can get from the open facilities. Our goal is to get a better un-
derstanding of the approximation ratio, exposing classes of input instances for
which a constant approximation ratio is possible.

Let us first describe an attempt that fails to resolve our concerns.
Relatively small costs. Based on the intuition of the previous paragraph,

for 0 < α < 1, let us call an instance α-bounded if for every facility, the cost
of opening the facility is at most α times the revenue one gets by connecting
all clients to the facility. Is it the case that when α is sufficiently small there
is a constant approximation for MFL for α-bounded instances? The answer is
negative. The proof involves starting from a hard to approximate instance of
MFL, and adding an additional client that provides revenue max(ci/α) regardless
of which facility services it. This forces the instance to be α-bounded, while
increasing the value of an optimal solution by only max(ci/α). An appropriate
choice of parameters leads to the desired hardness result.

We now discuss a performance measure introduced by Kleinberg et al [6].
Unlike the notion of an α-bounded instance discussed previously, the idea is to
use the notion of α-boundedness not with respect to the input instance, but
rather with respect to its optimal solution. Namely, call a solution α-bounded if
the total cost of opening the facilities in this solution is at most an α-fraction of
the total revenue derived from all clients in the solution. 6 In [6], it is shown that
for the catalog segmentation problem, whenever α is bounded away from 1, the
approximation ratio of a natural greedy algorithm is a constant (that tends to 1
as α tends to 0). An exact statement of this result of [6] appears in Theorem 4.
Our notion of performance guarantee can be viewed as a generalization of the
notion used in [6]. A more detailed comparison between our work and that of [6]
will appear in Section 4.

Consider an arbitrary MFL instance I and an arbitrary feasible solution S.
For each facility i open in S, let ci be its opening cost, and let ri =

∑
uij (where

the sum is taken over clients j connected to facility i in S) be the total revenue
derived from clients connected in S to facility i. 7 Let αi denote the ratio ci/ri.
Intuitively, a value of αi close to 0 indicates that opening the facility i was a
favorable decision, because the revenue ri that resulted from this opening came
at relatively little cost. A value of αi close to 1 indicates that the opening of
facility i may have been questionable, as most of the revenue ri is offset by the
cost ci. On a global scale, the total revenue of S is R(S) =

∑
i∈S ri, the total cost

is C(S) =
∑
i∈S ci, and the value of solution S is V (S) = R(S)−C(S). Similar to

the local values αi, we shall use α to denote an aggregate value α = C(S)/R(S).

6 Technically, in [6] a different parameter µ is considered, which in our terminology is
µ = 1

α
−1. It is straightforward to translate results expressed in terms of µ to results

expressed in terms of α and vice versa.
7 A better notation might be to write ri(S) instead of ri, but we use ri for brevity.
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Definition 1. Given an instance I of MFL and a feasible solution S, and using
notation as above.

– The expanded signature of S is the collection {(qi, αi)}, where i ranges over
all facilities open in S, qi = ri/R(S), and αi = ci/ri.

– The signature sig(S) of S is the collection {(qi, αi)} obtained from the ex-
panded signature by unifying components that share the same value of αi.
Namely, in the signature i no longer refers to a specific facility, all αi are
distinct, ri denotes the total revenue that comes from open facilities which
share the same αi value (namely ri =

∑
facilities i′:α′

i=αi
ri′), and qi denotes

the fraction of revenue that comes from open facilities which share the same
αi value (namely, qi = ri/R(S)).

Fig. 1. An instance of the facility location problem: the costs of the facilities and the
revenue from the clients (on the edges). An optimal solution is depicted by solid lines.
The expanded signature is {( 1

2
, 1

2
), ( 1

4
, 1

2
), ( 1

4
, 3

4
)}, the signature is {( 3

4
, 1

2
), ( 1

4
, 3

4
)}, and

the summary signature is 9
16

.

Note that for every signature
∑
qi = 1, and that if all open facilities in S have

the same value αi then the signature is (1, α), in which case we abbreviate it to
α. When open facilities have different values of αi we may view α = C(S)/R(S)
as a parameter that to some extent summarizes the signature, even though it
does not have the same distinguishing power among solutions as the signature
does. Using α as a summary signature will be convenient when we compare
our results against previous results of [6]. Also, it is important to distinguish
between the expanded signature and the signature in order to be able to talk
about asymptotics in the hardness results as for any fixed expanded signature
there are a fixed number of facilities. For the positive results, the notions of
expanded signature and signature are interchangeable by changing the index of
summation, and the reader may find it easier to interpret the positive results
using the expanded signature.

In our framework of PASS approximation, we express the approximation
ratios of algorithms as a function of the signature. Observe that an instance
may have multiple different signatures (one for each feasible solution). Our ap-
proximation ratios will apply to all of them (and hence to the best of them).
Nevertheless, the reader may find it convenient to think of the signature of an
instance as that of (one of) its optimal solution(s). Given any feasible solution
(e.g., an optimal one) with signature S, for every index i solution S generates a
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value of ri(1− αi) from facilities with α value equal to αi. Our algorithms may
open facilities different than those opened by S, but our accounting method will
show that our algorithms recover value at least v̂i = ri(1− αi − αi ln 1

αi
) in ex-

change to the value generated by S from index i. This parameter v̂i is therefore
called the recoverable value, and, as we will prove, it is the optimal recoverable
value (i.e., it is NP-hard to recover more). Note that 0 ≤ v̂i ≤ ri, with v̂i = 0
when αi = 1 (i.e., we can’t recover any value from facilities whose cost equals
their revenue) and v̂i = ri when αi = 0 (i.e., we can recover all the revenue from
facilities with zero cost). To simplify the presentation in this paper, and with no
significant effect on the results, we pretend that quantities such as lnx can be
computed exactly in polynomial time for every x.

3 Our Results

We first present a hardness result and then give tight greedy and LP-based
algorithms for MFL. The proof is omitted in the current version.

Theorem 1. Let sig = {(qi, αi)} be an arbitrary signature, and consider the
class of MFL instances that have an optimal solution with signature sig. For
simplicity of notation, for each such instance, normalize the costs and revenues
such that the revenue of the optimal solution having signature sig is 1, and hence
its value is 1 −

∑
qiαi. Then on this class of instances, for every ε > 0, it is

NP-hard to find a solution of value
∑
v̂i + ε where v̂i = qi(1− αi − αi ln 1

αi
).

Corollary 1. For any ε > 0 and α = C(S)/R(S), for any optimal solution S,
it is NP-hard to approximate MFL within a ratio better than 1−α−α ln 1

α

1−α + ε.

We show that there are algorithms with approximation ratios that match
the hardness results, and moreover do so for wider classes of problems. The
first class of algorithms that we consider is that of greedy algorithms. We shall
distinguish between two types of greedy algorithms depending on whether it is
greedy with respect to margin or to rate. Only one of these versions is optimal
in our framework.

Theorem 2. Let I be an arbitrary instance of MFL, let S be an arbitrary fea-
sible solution and let {(qi, αi)} be the signature of S. For simplicity of notation,
normalize the costs and revenues in I such that the revenue of S is 1, and hence
its value is 1 −

∑
qiαi. Then the greedy-rate algorithm produces a solution of

value at least
∑
v̂i where v̂i = qi(1− αi − αi ln 1

αi
).

Corollary 2. The greedy-rate algorithm approximates MFL within a ratio of at
least 1−α−α ln 1

α

1−α , where α = C(S)/R(S) for any optimal solution S.

Remark: As shown in Section 4.2, the result above holds for SMFL problem,
under the appropriate definition of signature. We also remark that Corollaries 1
and 2 are each stronger than previous results proved in [6]. These issues will be
discussed in Section 4.
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The next class of algorithms that we consider is based on linear program-
ming. It is also possible to show that the natural linear programming relaxation
does not result in approximation ratios that match the hardness results of Theo-
rem 1 (the details are omitted in this version). Hence, we introduce a new linear
program, called the recoverable value LP, whose objective is to maximize the
(fractional) recoverable value rather than the (fractional) true value.8 We then
show that the LP can be rounded to give a feasible solution of value not lower
than the recoverable value of the LP.

Theorem 3. The recoverable value LP for MFL can be solved in polynomial
time. For every input instance and feasible solution S with signature {(qi, αi)},
the LP has a solution of value at least as high as

∑
v̂i, where v̂i = ri(1 − αi −

αi ln 1
αi

). Any solution of the LP can be rounded in random polynomial time
to give a feasible solution of expected value at least as high as the value of the
objective function in the LP solution.

3.1 Why use our notion of PASS approximation?

In this section we present arguments in favor of our notion of PASS approxima-
tion. The point that we will try to make is that performance measures guide the
design of algorithms, and our performance measure appears to us to be a very
good guide. We assume in the discussion below that the true goal is to maximize
revenue minus cost, and compare various approaches that can be used in order
to circumvent the inapproximability results for this measure. Recall that our
approach of PASS approximation is to express the approximation ratio not as a
function of the size of the input instance, but as of its signature.

As mentioned, MFL and SMFL are NP-hard to approximate. Therefore,
researchers have attempted to present other types of performance guarantees.
One existing theoretical approach for coping with inapproximable problems is
to change the objective function in a way that preserves the spirit of the original
problem. For example, one might consider the complement of the objective (e.g.,
vertex cover as opposed to independent set), or bicriteria approximations (e.g.,
bisection in graphs). In [2, 1] the approach taken was to measure the quality of
a solution on a shifted scale which is always nonnegative. This is equivalent to
changing the objective function by adding to it a sufficiently large constant that
ensures that all solutions have nonnegative value. As an example, consider algo-
rithms for MFL based on linear programming. In [1] a combination of a linear
program and rounding technique is designed. They show that the approxima-
tion ratio of 2(

√
2− 1) that they obtain is best possible (matches the integrality

gap), but with respect to a shifted scale of the objective function. As we do not
claim the same about our linear programming approach, then clearly there are
instances in which the algorithm of [1] is better than ours. Likewise, there are
instances on which our LP plus rounding gives better results (because we are
8 We note this relaxation is not a relaxation in the usual sense, because the value of

the objective function of the LP is a lower bound on the value of an optimal solution,
rather than an upper bound.
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optimal with respect to the structural approximation measure, whereas [1] are
not). Hence it appears as if the results are incomparable. Nevertheless, we would
like to convince the reader that even though the result of [1] is interesting math-
ematically, it does not really provide the kind of algorithmic insights that are
relevant to the original problem. To obtain an approximation ratio of 2(

√
2− 1)

with respect to the shifted scale, it is safe to open every facility with probability
at least 1− 2(

√
2− 1) (and at most 1), regardless of the cost of the facility, and

regardless of whether any client wants to connect to the facility. This is a simple
(and obviously counterproductive) rule of thumb that comes out of the shifted
scale performance measure, and in fact the algorithm of [1] follows it. We view
this as evidence that the shifted scale performance measure is not a good guide
in the design of algorithms (with respect to the original objective function).

One can also show that other approaches designed to analyze heuristics, in-
cluding optimizing with respect to a budget constraint, average-case and smoothed
analysis, do not provide a desirable performance measure for the MFL problem.
Details are omitted.

In comparison with [6], note that the approximation ratio in [6] is expressed
as a function of one parameter that we refer to as the summary signature α.
What is the advantage of presenting the more complicated signature {(qi, αi)}?
We see two advantages (beyond the obvious advantage of always providing a
performance guarantee that is at least as good as that provided by the summary
signature). One is prescriptive: the design of our LP is a natural consequence
of our signature, valuing each star according to its own recoverable value. It
would have been very difficult to design and analyze it without having at least
implicitly a notion similar to the detailed signature. The other advantage is
conceptual: our signature enjoys closure properties that the summary signature
does not have. Given two disjoint instances of SMFL, the detailed signature
becomes simply the union of the original detailed signatures, and the output
guarantee (approximation ratio times value of optimal solution) is simply the
sum of output guarantees of the two instances. For the summary signature, this
is not true.
LP-based vs. greedy algorithms. The performance guarantees that we prove
for the greedy algorithm and the LP-based algorithm are the same, and for
the greedy algorithm we prove this performance guarantee for a wider range
of instances (SMFL rather than just MFL). So what is the point of having an
LP-based algorithm? There are several reasons to do this.

Most importantly, there is a conceptual difference between the use of PASS
approximation framework for our greedy versus LP-based algorithms. For our
greedy algorithm, the theory of structural approximation is descriptive. It de-
scribes the approximation ratios of existing algorithms, and may guide us in the
choice of the greedy rule to use. For the LP-based approach, however, the theory
of PASS approximation is not only descriptive, but also prescriptive. It guides us
in the design of new algorithms. The definitions of the signature and recoverable
value define for us the linear program and the rounding technique. While in our
examples, the greedy algorithms happens to be tight, the LP-based approach
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may still be of value for other problems precisely because of it’s prescriptive
nature – it is designed to produce tight algorithms. For this reason, we consider
the LP-based approach to be a significant contribution of our paper.

Another reason is so as to diversify our algorithmic toolbox. Even though the
current paper is concerned with a class of problems for which the LP approach
does not seem to offer significant advantages over the greedy approach, this need
not be the case for other classes of problems. The development of a methodology
of how to use linear programming relaxations in the context of structural ap-
proximation (which turns out to be different than the way linear programming
relaxations are typically used in “classical” approximation) is anticipated to lead
to rewards in future work.

4 A greedy approach

One standard approach for the MFL problems are greedy algorithms. In this
section, we describe two plausible greedy algorithms for SMFL, and prove that
one of them is optimal with regards to the PASS approximation. Given a set S
of facilities, let C(S) denote the total cost of facilities in S, let R(S) denote the
revenue of the optimum assignment given that the open facilities are those in S,
and let V (S) = R(S)− C(S) denote the total value of S. Given a facility i, let
M(i|S) denote the marginal revenue of i with respect to S. Namely, M(i|S) =
R(S ∪ {i})−R(S). If i ∈ S then M(i|S) = 0.

The greedy algorithms construct a solution iteratively by selecting facilities
that maximize some function of the marginal revenue M(i|S). Given a partial
solution (set of open facilities) S, the greedy-rate algorithm opens the facility i

which maximizes the rate of increase in value, i.e., M(i|S)−ci
M(i|S) , provided that this

rate is positive. The greedy-margin algorithm simply opens the facility with the
largest marginal value, i.e., M(i|S)− ci, provided that this value is positive.

The greedy step can be implemented in polynomial time for the special cases
of SMFL mentioned in Section 1. (For example, for CMFL, implementing the
greedy step involves computing the optimal assignment of clients to the open
facilities subject to the capacity constraints. This can be solved in polynomial
time via an algorithm for the so called B-matching problem in bipartite graphs.)
However, in general, the greedy step for SMFL might be NP-hard.

4.1 Comparison to KPR

The greedy-margin algorithm was studied by Kleinberg, Papadimitriou, and
Raghavan [6] for the catalogue segmentation problem (and generalizations which
maintain the property of uniform-cost facilities). 9 They proved the following
theorem (Theorems 2.3 and 2.4 in [6]):
9 The greedy algorithm specified prior to Theorem 2.3 in [6] does not specify a rule of

which facility to open next, as long as its marginal revenue is larger than its cost.
However, the proof of Theorem 2.4 in [6] is based on the use of a greedy-margin rule,
without stating this explicitly.
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Theorem 4. [Kleinberg, Papadimitriou and Raghavan.] For the catalogue
segmentation problem, the greedy-margin algorithm achieves an approximation
ratio of at least 1 + α − 2

√
α, where α = C(S)/R(S) for any optimal solution

S. There are instances on which the approximation ratio of the algorithm is no
better than 1− α.

In this section, we will improve upon this result by generalizing the analysis to
accommodate non-uniform facility costs and providing improved approximation
guarantees (Theorem 2) together with a matching NP-hardness result (Theo-
rem 1). In doing so, we must be careful with our choice of greedy algorithm. We
have defined two natural greedy algorithms – the greedy-rate and the greedy-
margin algorithm – and in fact in uniform-cost settings such as that of [6] these
two algorithms coincide as the rate of a facility is monotone in its marginal
revenue. But for non-uniform facility costs, as the following simple example il-
lustrates, the greedy-margin algorithm gives very poor results.

Example. There are n clients and n+ 1 facilities. Facility i, 1 ≤ i ≤ n, has
cost 1, revenue 2 for client i, and 0 revenue for all other clients; Facility n+1 has
cost n − 2 and revenue 1 per client. The optimal solution will open the first n
facilities for a value of n, whereas the greedy-margin rule will open only facility
n+ 1 for a value of 2.

By contrast, for the greedy-rate algorithm, the approximation ratio that we
prove is strictly better than that proved in [6]. See Figure 2 for a detailed com-
parison of our bounds with those of [6].

Fig. 2. The solid line is the approximation ratio of the greedy-rate algorithm plotted
for α ∈ [0, 1], as proved in Corollary 2. For every value of α improving over this
approximation ratio is NP-hard, as proved in Theorem 1. The dashed and dotted lines
depict the lower and upper bounds proved in [6].
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4.2 Approximation as a function of α

In this section, we prove Corollary 2 which gives an approximation factor for the
greedy rate algorithm as a function of the summary signature α. The following
simple observation (appearing in [6]) is of key importance, and hence we state
it as a lemma.

Lemma 1. Let i be a facility and let S and T be sets of facilities. Then the
marginal revenue of facility i with respect to S is at least as large as the loss in
marginal revenue of T when facility i is added to S.

M(i|S) ≥M(T |S)−M(T |S ∪ {i})

Proof. By the fact that the revenue function is nondecreasing, we have R(S ∪
{i} ∪ T ) ≥ R(S ∪ T ). Breaking each revenue to a sum of marginal revenues we
have R(S) +M(i|S) +M(T |S ∪{i}) ≥ R(S) +M(T |S). Canceling the R(S) and
subtracting M(T |S ∪ {i}) from both sides, the lemma is proved. �

We now proceed to prove our improved bounds. As stated, our analysis ap-
plies to any problem with a nondecreasing submodular revenue function and
linear cost function.

Lemma 2. The value of the greedy-rate algorithm is at least R(O)(1−α−α ln 1
α )

where O is an optimal solution, and α = C(O)/R(O).

Proof. We analyze the value of greedy-rate up to the first point in time in
which its total revenue meets or exceeds R(O) − C(O). Let µ(x) denote the
rate at which the value obtained by the greedy-rate algorithm increases when
it has already made a revenue of x. Observe that at a point when greedy has
already made a revenue of x < R(O) − C(O), the marginal revenue of O is at
least R(O)−x (by Lemma 1). By submodularity of the revenue function, at this
point there must be at least one facility of O with rate R(O)−x−C(O)

R(O)−x . The rate
at which the value increases at each point in time is at least as high as the rate
one would get by choosing the highest rate among the facilities of O at the same
time. Therefore, µ(x) ≥ R(O)−x−C(O)

R(O)−x . As the total value of greedy-rate, V (G),
is the integral of the rate of increase of the value, we have:

V (G) =
∫
µ(x)dx ≥

∫ R(O)−C(O)

0

R(O)− x− C(O)
R(O)− x

dx

= R(O)
∫ 1−α

0

1− x− α
1− x

dx

= R(O)
∫ 1−α

0

(1− α

1− x
)dx

= R(O)(1− α− α(ln
1

1− (1− α)
− ln 1))

= R(O)(1− α− α ln
1
α

) �
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The approximation ratio of Corollary 2 follows from Lemma 2 together with
the fact that V (O) = R(O)(1−α). The NP-hardness results appear in Theorem 1,
and they naturally provide examples where the approximation ratio of greedy-
rate is no better than claimed even in the special case of linear revenue functions
and uniform costs.

4.3 Approximation as a function of the signature

The approximation ratio in Corollary 2 is expressed as a function of the summary
signature α, whereas stronger performance guarantees can be given by expressing
the approximation ratio as a function of the signature {qi, αi}, as stated in
Theorem 2.

In fact, we prove Theorem 2 for the general submodular facility location
problems. To do so, we should extend the notion of a signature to a solution for
submodular maximum facility location. The difficulty is that even though the
cost of every open facility is well defined, its revenue is not. Hence we refine the
notion of a solution to be represented not as a set of open facilities, but as an
ordered set (a tuple). Namely, the open facilities are given (after renaming) in
some order 1, 2, . . . (even though this order is irrelevant to the actual value of
the solution). Thereafter, a refined parameter α′i in the expanded signature is
defined relative to the marginal revenue of facility i with respect to this order.
That is, α′i = ci/Mi, where here Mi is shorthand notation for M(i|{1, . . . , i− 1}).
Likewise, we define q′i = Mi/

∑
Mj . Using this notation, we can now strengthen

Lemma 2. The proofs of the lemmas are omitted.

Lemma 3. Let S be an arbitrary (ordered) solution for submodular maximum
facility location with expanded signature {(q′i, α′i)} and total revenue normalized
to 1. Then the value of the greedy-rate algorithm is at least

∑
i∈S q

′
i(1 − α′i −

α′i ln 1
α′
i
).

To motivate the following lemma, observe that Lemma 3 by itself does not
capture the notion of PASS approximation that we have for the special case of
MFL. For a given set of open facilities in MFL, the optimal choice of allocation
of clients might not correspond to revenues ri per facility that are equal to Mi for
any ordering of facilities. For example, if there are two facilities and two clients,
where client i has revenue 2 if connected to facility i and revenue 1 if connected
to the other facility, then in the optimal solution r1 = r2 = 2, whereas for any
ordering M1 = 3 and M2 = 1.

Lemma 4. Let S be an arbitrary solution for maximum facility location with
expanded signature {(qi, αi)}. Then there is an ordering of the facilities of S
giving

∑
i∈S q

′
i(1− α′i − α′i ln 1

α′
i
) ≥

∑
i∈S qi(1− αi − αi ln 1

αi
).

The combination of Lemmas 3 and 4 imply Theorem 2 (and also the gener-
alization of Theorem 2 to SMFL).
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5 A linear programming approach

In this section, we develop an LP-based approach for MFL. It is based on an
interplay between the notions of the true value of a solution and the recover-
able value of the solution. Recall that the recoverable value (see definition in
Section 2), which in general is lower than the true value, represents our approx-
imation goal in the sense that we wish to find a solution of true value at least
equal to that of the recoverable value of the best integral solution. First we in-
troduce a new LP relaxation for the general problem called the recoverable value
relaxation. This LP captures the natural constraints for the MFL problem, but
has an objective function describing the recoverable value of the solution rather
than the true value. Hence the LP provides a fractional solution that maximizes
the recoverable value, and we denote this value by V̂f . We round this fractional
solution to an integral one of (expected) true value at least V̂f , thus meeting
our approximation goal. Moreover, we can solve the recoverable value LP in
polynomial time.

While our approach is general, we have been unable to analyze it for CMFL
or more general variants, and leave this as an open question.

5.1 An LP relaxation

Recall that in the MFL problem, each facility i ∈ F has an opening cost of ci
and each client j ∈ J has a revenue uij for being connected to facility i. We
call pair (i, T ) of a facility i and a subset T of clients connected to it a star.
Let xiT be an indicator variable of star (i, T ), i.e., that facility i is opened and
connected to clients j ∈ T . The revenue of connecting the clients in T to facility
i is riT =

∑
j∈T uij . For every star (i, T ) we associate a recoverable value which

is v̂iT = riT (1−αiT −αiT ln 1
αiT

), where αiT = ci
riT

. Then the optimal fractional
recoverable value is described by the following LP, called the recoverable value
LP relaxation.

maximize
∑

v̂iTxiT (1)

subject to
∑

i,T :j∈T
xiT ≤ 1 j ∈ J

∑
T⊆J

xiT ≤ 1 i ∈ F

xiT ≥ 0 i ∈ F , T ⊆ J

The first inequality guarantees that each client contributes revenue to at most
one facility and the second inequality guarantees that each facility is opened at
most once. Every integral solution satisfies these constraints. Hence the value of
the LP is at least as large as the recoverable value of the best integer solution
(the one maximizing the recoverable value).

Let V̂f be the optimal fractional recoverable value, namely, the optimal value
to the above LP. Let Vf be the fractional true value associated with this solu-
tion, namely

∑
(riT −ci)xiT . Typically, LP-relaxations provide upper bounds for
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maximization problems. In contrast, it is not in general true that Vf provides an
upper bound on the true value of the best integer solution. Instead, as Lemma 5
will show, V̂f provides a lower bound.

Our LP has exponentially many variables; however, we can solve it using the
ellipsoid method. We solve the separation oracle of the dual linear program using
a greedy algorithm. This algorithm exploits concavity of the recoverable values
and some other structural properties of the dual.

Our randomized rounding procedure is composed of two steps: The first step
considers facilities independently. Facilities of 0-cost are always opened. For the
remaining facilities, αiT > 0. For each such facility i and each star (i, T ) let
βiT = xiT ln 1

αiT
. Let βi =

∑
T βiT . We open facility i with probability min[βi, 1].

The first step might open several facilities with overlapping sets of clients. In
the second step, we assign any over-demanded client j to the facility to which it
contributes the maximum revenue. The following lemma yields Theorem 3. For
the lack of space, the proof is omitted here.

Lemma 5. Consider an optimal fractional solution of LP (1), with fractional
recoverable value V̂f . For the MFL problem, our randomized rounding technique
achieves an integral solution of expected (true) value at least V̂f .
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5. Kempe, D., Kleinberg, J., Éva Tardos: Maximizing the spread of influence through a
social network. In: KDD ’03: Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, New York, NY, USA, ACM
(2003) 137–146

6. Kleinberg, J.M., Papadimitriou, C.H., Raghavan, P.: Segmentation problems. J.
ACM 51(2) (2004) 263–280

7. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.S.:
Cost-effective outbreak detection in networks. In: KDD. (2007) 420–429

8. Mossel, E., Roch, S.: On the submodularity of influence in social networks. In:
Proceedings of ACM STOC. (2007) 128–134


