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ABSTRACT
A well-known result in game theory known as “the Folk
Theorem” suggests that finding Nash equilibria in repeated
games should be easier than in one-shot games. In con-
trast, we show that the problem of finding any (approxi-
mate) Nash equilibrium for a three-player infinitely-repeated
game is computationally intractable (even when all payoffs
are in {−1, 0, 1}), unless all of PPAD can be solved in ran-
domized polynomial time. This is done by showing that
finding Nash equilibria of (k + 1)-player infinitely-repeated
games is as hard as finding Nash equilibria of k-player one-
shot games, for which PPAD-hardness is known (Daskalakis,
Goldberg and Papadimitriou, 2006; Chen, Deng and Teng,
2006; Chen, Teng and Valiant, 2007). This also explains
why no computationally-efficient learning dynamics, such as
the “no regret” algorithms, can be rational (in general games
with three or more players) in the sense that, when one’s op-
ponents use such a strategy, it is not in general a best reply
to follow suit.
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1. INTRODUCTION
Complexity theory provides compelling evidence for the

difficulty of finding Nash Equilibria (NE) in one-shot games.
It is NP-hard in a two-player n × n game to determine
whether there exists a NE in which both players get non-
negative payoffs [14]. Recently it was shown that the prob-
lem of finding any NE is PPAD-hard [7], even in the two-
player n × n case [3], even for ε-equilibria for inverse poly-
nomial ε [4], and even when all payoffs are ±1 [5]. PPAD-
hardness implies that a problem is at least as hard as discrete
variations of finding Brouwer fixed-points, and thus presum-
ably computationally intractable [19].

Repeated games, ordinary games played by the same play-
ers a large — usually infinite — number of times, are be-
lieved to be a different story. Indeed, a cluster of results
known as the Folk Theorem1 (see, for example, [1, 11, 12,
21]) predict that, in a repeated game with infinitely many
repetitions and/or discounting of future payoffs, there are
mixed NE (functions mapping histories of play by all play-
ers to a distribution over the next round strategies for each
player) which achieve a rich set of payoff combinations called
the individually rational region — essentially anything above
what each player can absolutely guarantee for him/herself
(see below for a more precise definition). In the case of pris-
oner’s dilemma, for example, a NE leading to full collabo-
ration (all players playing “mum” ad infinitum) is possible.
In fact, repeated games and their Folk Theorem equilibria
have been an arena of early interaction between Game The-
ory and the Theory of Computation, as play by resource-
bounded automata was also considered [22, 21, 20, 18].

Now, there is one simple kind of mixed NE that is im-
mediately inherited from the one-shot game: Just play a
mixed NE each time. In view of what we now know about
the complexity of computing a mixed NE, however, this is

1Named this way because it was well-known to game theo-
rists far before its first appearance in print.



hardly attractive computationally. Fortunately, in repeated
games the Folk Theorem seems to usher in a space of out-
comes that is both much richer and computationally benign.
In fact, it was recently pointed out that, using the Folk The-
orem, a pure NE can indeed be found in polynomial time for
any repeated game with two players [16].

The main result in this paper is that, for three or more
players, finding a NE in a repeated game is PPAD-complete,
under randomized reductions. This follows from a simple
reduction from finding NE in k-player one-shot games to
finding NE in k + 1-player repeated games, for any k (the
reverse reduction is immediate). In other words, for three
or more players, playing the mixed NE each time is not
as bad an idea in terms of computational complexity as it
may seem at first. In fact, there is no general way that
is computationally easier. Our results also hold for finding
approximate NE, called ε-NE, for any inverse-polynomial ε
and discounting parameter, and even in the case where the
game has all payoffs in the set {−1, 0, 1}.

To understand our result and its implications, it is use-
ful to explain the Folk Theorem. Looking at the one-shot
game, there is a certain “bottom line” payoff that any player
can guarantee for him/herself, namely the minmax payoff:
The best payoff against a worst-case mixed strategy by ev-
erybody else. The vector of all minmax payoffs is called the
threat point of the game, call it θ. Consider now the convex
hull of all payoff combinations achievable by pure strategy
plays (in other words, the convex hull of all the payoff data);
obviously all mixed and pure NE are in this convex hull.
The individually rational region consists of all points x in
this convex hull such that such that x ≥ θ coordinate-wise.
It is clear that all Nash equilibria lie in this region. Now the
Folk Theorem, in its simplest version, takes any payoff vec-
tor x in the individually rational region, and approximates
it with a rational (no pun) point x̃ ≥ θ (such a rational
payoff is guaranteed to exist if the payoff data are rational).
The players then agree to play a periodic schedule of plays
that achieve, in the limit, the payoff x̃ on the average. The
agreement implicit in the NE further mandates that, if any
player ever deviates from this schedule, everybody else will
switch to the mixed strategy that achieves the player’s min-
max. It is not hard to verify that this is a mixed NE of the
repeated game. Since every mixed NE can play the role of
x, it appears that the Folk Theorem indeed creates a host of
more general, and at first sight computationally attractive,
equilibria.

To implement the Folk Theorem in a computationally fea-
sible way, all one has to do is to compute the threat point
and corresponding punishing strategies. The question thus
arises: what is the complexity of computing the minmax
payoff? For two players, it is easy to compute the min-
max values (since in the two-player case this reduces to a
two-player zero-sum game), and the Folk theorem can be
converted to a computationally efficient strategy for play-
ing a NE of any repeated game [16]. In contrast, we show
that, for three or more players, computing the threat point
is NP-hard in general (Theorem 1).

But a little reflection reveals that this complexity result
is no real obstacle. Computing the threat point is not nec-
essary for implementing the Folk Theorem. In fact our
negative result is more general. Not only these two familiar
approaches to NE in repeated games (playing each round
the one-shot NE, and implementing the Folk Theorem) are

both computationally difficult, but also any algorithm for
computing a mixed NE of a repeated game with three or more
players can be used to compute a mixed NE of a two-person
game, and hence it cannot be done in polynomial time, un-
less there is a randomized polynomial-time algorithm for
every problem in PPAD (Theorem 3). In other words, the
Folk Theorem gives us hope that other points in the indi-
vidually rational region will be easier to compute than the
NE; well, they are not.

We feel that this result is conceptually important as it dis-
pels a common belief in game theory, stemming from the folk
theorem, that it is easy to play equilibria of repeated games.
Our analysis has interesting negative game-theoretic impli-
cations regarding learning dynamics. An example is the ele-
gant no-regret strategies, which have been shown to quickly
converge to the set of correlated equilibria [13] of the one-
shot game, even in games with many players (see [2] Chap-
ter 4 for a survey). Our result implies that, for more than
two players (under the same computational assumption), no
computationally efficient general game-playing strategies are
rational in the sense that if one’s opponents all employ such
strategies, it is not in general a best response in the repeated
game to follow suit. Thus the strategic justification of no-
regret algorithms is called into question.

Like all negative complexity results, those about comput-
ing NE have spawned a research effort focusing on approx-
imation algorithms [4, 8], as well as special cases [5, 9, 10].
As we have mentioned, our results already severely limit
the possibility of approximating a NE in a repeated game;
but the question remains, are there meaningful classes of
games for which the threat point is easy to compute? In
Section 4, we show that computing the threat point in con-
gestion games (a much studied class of games of special in-
terest in Algorithmic Game Theory) is NP-complete. This
is true even in the case of network congestion games with
linear latencies on a directed acyclic graph (DAG). (It is
open whether the NE of repeated congestion games can be
computed efficiently.) In contrast, the techniques of [9, 10]
can be applied to show that the threat point can be approx-
imated by a PTAS in the case of anonymous games with a
fixed number of strategies — another broad class of great
interest [6]. This of course implies, via the Folk Theorem,
that NE are easy to approximate in repeated anonymous
games with few strategies; however, this comes as no sur-
prise, since in such games even NE can be so approximated
[10]. In further contrast, for the even more restricted class
of symmetric games (albeit with an unbounded number of
strategies), we show that computing the threat point in re-
peated games are as hard as in the general case. It is an
interesting open question whether there are natural classes
of games (with three or more players) with an intractable
NE problem, for which however the threat point is easy to
compute or approximate; that is, classes of games for which
the Folk Theorem is useful.

Organization. We give next some definitions and no-
tation. In Section 2, we show that computing the threat
point is NP-complete. In Section 3, we show that comput-
ing NE of a repeated game with k+1-players is equivalent to
computing NE of a k-player one-shot game, and extend this
result to ε-NE. Finally, in Section 4, we show that our neg-
ative results hold even for symmetric games and congestion
games.



1.1 Definitions and Notation
A game G = (I, A, u) consists of a set I = {1, 2, . . . , k} of

players, a set A = ×i∈IAi of action profiles where Ai is the
set of pure actions2 for player i, and a payoff function
u : A → Rk that assigns a payoff to each player given an
action for each player. We write ui : A→ R for the payoff to
player i, so u(a) =

(
u1(a), . . . , uk(a)

)
. We use the standard

notation a−i ∈ A−i = ×j∈I\{i}Aj to denote the actions of
all players except player i.

Let ∆i = ∆(Ai) denote the set of probability distribu-
tions over Ai and ∆ = ×i∈I∆i. A mixed action αi ∈ ∆i

for player i is a probability distribution over Ai. An k-
tuple of mixed actions α = (α1, . . . , αk) determines a prod-
uct distribution over A where α(a) =

∏
i∈I αi(ai). We ex-

tend the payoff functions to α ∈ ∆ by expectation: ui(α) =
Ea∼α [ui(a)] , for each player i.

Definition 1 (Nash Equilibrium). Mixed action pro-
file α ∈ ∆ is an ε-NE (ε ≥ 0) of G if,

∀ i ∈ I ∀ āi ∈ Ai ui(α−i, āi) ≤ ui(α) + ε.

A NE is an ε-NE for ε=0.

For any game G = (I, A, u), we denote the infinitely re-
peated game by G∞. In this context, G is called the stage
game. In G∞, in each period t = 0, 1, 2, . . . , each player
chooses an action ati ∈ Ai. A history ht = (a0, a1, . . . , at−1) ∈
(A)t is the choice of strategies in each of the first t periods,
and h∞ = (a0, a1, . . .) describes the infinite game play.

A pure strategy for player i in the repeated game is a
function si : A∗ → Ai, where A∗ =

⋃∞
t=0(A)t, and si(h

t) ∈
Ai determines what player i will play after every possible
history of length t. A mixed strategy for player i in the
repeated game is a function σi : A∗ → ∆i, where σi(h

t) ∈ ∆i

similarly determines the probability distribution by which
player i chooses its action after each history ht ∈ (A)t.

We use the standard discounting model to evaluate pay-
offs in such an infinitely repeated game. A mixed strategy
profile σ = (σ1, . . . , σk) induces a probability distribution
over histories ht ∈ (A)t in the natural way. The infinitely-
repeated game with discounting parameter 1− δ ∈ (0, 1)
is denoted G∞(δ). The expected discounted payoff to
player i of σ = (σ1, . . . , σk) is

pi(σ) = δ

∞∑
t=0

(1− δ)tEht

[
Eat∼σ(ht)

[
ui(a

t)
]]
,

where the expectation is over action profiles at ∈ A drawn
according to the independent mixed strategies of the players
on the tth period. The δ multiplicative term ensures that,
if the payoffs in G are bounded by some M ∈ R, then the
discounted payoffs will also be bounded by M . This fol-
lows directly from the fact that the discounted payoff is the
weighted average of payoffs over the infinite horizon.

For G = (I, A, u), G∞(δ) = (I, (A∗)A, p) can be viewed as
a game as above, where (A∗)Ai denotes the set of functions
from A∗ to Ai. In this spirit, an ε-NE of G∞ is thus a
vector of mixed strategies σ = (σ1, . . . , σk) such that,

∀ i ∈ I ∀ s̄i : A∗ → Ai pi(σ−i, s̄i) ≤ pi(σ) + ε.

2To avoid confusion, we use the word action in stage games
(played once) and the word strategy for repeated games.

This means that no player can increase its expected dis-
counted payoff more than ε by unilaterally changing its mixed
strategy (function). A NE of G∞ is an ε-NE for ε = 0.

1.1.1 Computational Definitions
Placing game-playing problems in a computational frame-

work is somewhat tricky, as a general game is most naturally
represented with real-valued payoffs while most models of
computing only allow finite precision. Fortunately, our re-
sults hold for a class of games where the payoffs are all in
{−1, 0, 1}, so we define our models in this case.

A win-lose game is a game in which the payoffs are in
{−1, 1}, and we define a win-lose-draw game to be a game
whose payoffs are in {−1, 0, 1}. We say a game is n × n if
A1 = A2 = [n] and similarly for n × n × n games. We
now state a recent result about computing Nash equilibria
in two-player n× n win-lose games due to Chen, Teng, and
Valiant. Such games are easy to represent in binary and
their (approximate) equilibria can be represented by rational
numbers.

Fact 1. (From [5]) For any constant c > 0, the problem
of finding an n−c-NE in two-player n× n win-lose games is
PPAD-hard.

For sets X and Y, a search problem S : X → P(Y) is the
problem of, given x ∈ X , finding any y ∈ S(x). A search
problem is total if S(x) 6= ∅ for all x ∈ X . The class PPAD
[19] is a set of total search problems. We do not define that
class here — a good definition may be found in [7]. To
prove PPAD-hardness (under randomized reductions) for a
search problem, it suffices to give a (randomized) reduction
from the problem of finding an n−c-NE for two-player n×n
win-lose games.

We now define a strategy machine for playing repeated
games. Following the game-theoretic definition, a strategy
machine Mi for player i in G∞ is a Turing machine that
takes as input any history ht ∈ At (any t ≥ 0), where actions
are represented as binary integers, and outputs a probability
distribution over Ai represented by a vector of fractions of
binary integers that sum to 1.3 A strategy machine is said
to have runtime R(t) if, for any t ≥ 0 and history ht ∈ At,
its runtime is at most R(t). With a slight abuse of notation,
we also denote by Mi : ht → ∆i the function computed
by the machine. We are now ready to formally define the
Repeated Nash Equilibrium Problem. We define the problem
with respect to n× n× n games.

Definition 2 (RNE). Let 〈ε, δ, R〉n≥2 be a sequence of

triplets, where εn > 0, δn ∈ (0, 1), and Rn : N → N. The
(εn, δn, Rn)-RNE problem is the following: given a win-lose-
draw game G of size n ≥ 2, output three machines, each
running in time Rn(t), such that the strategies computed by
these three machines are an εn-NE to G∞(δn).

We define it with respect to ε-NE to show that even com-
puting approximate equilibria is hard. However, the results

3We note that several alternative formulations are possible
for the definition of strategy machines. For simplicity, we
have chosen deterministic Turing machines. (The limita-
tion to rational-number output is not crucial because our
results apply to ε-NE as well.) A natural alternative for-
mulation would be randomized machines that output pure
actions. Our results could be extended to such a setting in
a straightforward manner using sampling.



showing that it is hard to compute approximate equilibria
are for ε decreasing to 0 at an inverse polynomial rate. This
is why the above definition is with respect to a sequence of
εn.

2. THE COMPLEXITY OF THE THREAT
POINT

The minmax value for player i of game G is defined to be,

θi(G) = min
α−i∈∆−i

max
αi∈∆i

ui(αi, α−i).

The threat point (θ1, . . . , θk) is key to the definition of the
standard folk theorem, as it represents the worst punishment
that can be inflicted on each player if the player deviates
from some coordinated behavior plan.

Theorem 1. Given a three-player n × n × n game with
payoffs ∈ {0, 1}, it is NP -hard to approximate the minmax
value for each of the players to within 1/(3n2).

The above theorem also implies that it is hard for the players
to find mixed actions that achieve the threat point within
< 1/(3n2). For, suppose that two players could find strate-
gies to force the third down to its threat value. Then they
could approximate the threat value easily by finding an ap-
proximate best response for the punished player and esti-
mating its expected payoff, by sampling.

Proof. The proof is by a reduction from the NP-hard
problem of 3-colorability. For notational ease, we will show
that it is hard to distinguish between a minmax value of 1

n

and 1
n

+ 1
3n2 in 3n × 3n × 2n games. More formally, given

an undirected graph (V,E) with |V | = n ≥ 4, we form a 3-
player game in which, if the graph is 3-colorable, the minmax
value for the third player is 1/n, while if the graph is not
3-colorable, the minmax value is ≥ 1/n+ 1/(3n2).

P1 and P2 each choose a node in V and a color for that
node (ideally consistent with some valid 3-coloring). P3 tries
to guess which node one of the players has chosen by picking
a player (1 or 2) and a node in V . Formally, A1 = A2 =
V × {r, g, b} and A3 = V × {1, 2}.

The payoff to P3 is 1 if either (a) P1 and P2 are exposed
for not choosing a valid coloring or (b) P3 correctly guesses
the node of the chosen player. Formally,

u3((v1, c1), (v2, c2), (v3, i)) =


1 if v1 = v2 and c1 6= c2

1 if (v1, v2) ∈ E and c1 = c2

1 if vi = v3

0 otherwise

In the case of either of the first two events above, we say
that P1 and P2 are exposed. The payoffs to P1 and P2 are
irrelevant for the purposes of the proof. Notice that if the
graph is 3-colorable, then the threat point for player 3 is
1/n. To achieve this, let c : V → {r, g, b} be a coloring.
Then P1 and P2 can choose the same mixed strategy which
picks (v, c(v)) for v uniformly random among the n nodes.
They will never be exposed for choosing an invalid coloring.
Furthermore, P3 will guess a player and the corresponding
node correctly with probability 1/n. Hence P3 will achieve
expected payoff exactly 1/n. They cannot force player 3 to
achieve less because there will always be some node that one
player chooses with probability at least 1/n.

It remains to show that if the graph is not 3-colorable,
then for any (α1, α2) ∈ ∆1×∆2, there is a (possibly mixed)
action for P3 that achieves expected payoff at least 1/n +
1/(3n2).

Case 1: there exists i ∈ {1, 2} and v ∈ V such that
player i has probability at least 1/n + 1/(3n2) of choosing
v. Then we are done because P3 can simply choose (v, i) as
his action.

Case 2: each player i ∈ {1, 2} has probability at most
1/n+ 1/(3n2) of choosing any v ∈ V . We will have P3 pick
action (v, 2) for a uniformly random node v ∈ V . Hence, P3
will succeed with its guess with probability 1/n, regardless
of what P1 and P2 do, and independent of whether or not
the two players are exposed.

It remains to show that this mixed action for P3 achieves
payoff at least 1/n+ 1/(3n2) against any α1, α2 that assign
probability at most 1/n + 1/(3n2) to every node. To see
this, a simple calculation shows that if αi assigns probability
at most 1/n + 1/(3n2) to every node, this means that αi
also assign probability at least 2/(3n) to every node. Let E
be the event that the first two players are exposed, P1(v1)
be the event that the first player chooses v1, and similarly
P2(v2) be the event that the second player chooses v2. Then,
the probability of the first two players being exposed is,

Pr[E] ≥
∑

v1,v2∈V

Pr[P1(v1)]Pr[P2(v2)]Pr[E|P1(v1), P2(v2)]

≥ 4

9n2

∑
v1,v2∈V

Pr[E|P1(v1), P2(v2)] ≥ 4

9n2
.

The last step follows from the probabilistic method. To see
this, note that the sum in the inequality is the expected num-
ber of inconsistencies over all n2 pairs of nodes, if one were
to take two random colorings based on the two distributions
of colors. If the expectation were less than 1, it would mean
that there was some consistent coloring, which we know is
impossible. Finally, the probability of P3 achieving a payoff
of 1 is ≥ 1/n+ (1− 1/n)4/(9n2), which is ≥ 1/n+ 1/(3n2)
for n ≥ 4.

3. THE COMPLEXITY OF PLAYING RE-
PEATED GAMES

Take a k-player game G = (I = {1, 2, . . . , k}, A, u). We
will construct an player-kibitzer version of G, a simple (k +

1)-player game Ĝ such that, in the NE of the infinitely re-

peated Ĝ∞, the first k players must be playing a NE of G.
The construction is given in Figure 3. A few observations
about this construction are worth making now.

• It is not difficult to see that a best response by the

kibitzer in Ĝ gives the kibitzer payoff 0 if and only if
the players mixed actions are a NE of G. Similarly,
a best response gives the kibitzer ε if and only if the
mixed actions of the players are an ε-NE of G but not
an ε′-NE of G for all ε′ < ε. Hence, the intuition is that
in order to maximally punish the kibitzer, the players
must play a NE of G.

• While we show that such games are difficult to “solve,”
the threat point and individually rational region of any
player-kibitzer game are trivial. They are the origin
and the singleton set containing the origin, respec-



Given: k-player game G = (I = {1, 2, . . . , k}, A, u)

Ĝ = (Î = {1, 2, . . . , k + 1}, Â, û) is the player-kibitzer ver-
sion of G:

r = k + 1 (notational convenience)

Âi =

{
Ai if i 6= r

{(j, āj)|1 ≤ j ≤ k, āj ∈ Aj} if i = r

ûi(a, (j, āj)) =


0 if i /∈ {j, r}
uj(a)− uj(āj , a−j) if i = j

uj(āj , a−j)− uj(a) if i = r

Figure 1: The player-kibitzer version of k-player
game G. Players i = 1, 2, . . . , k, are the players, player
r = k + 1 is the kibitzer. The kibitzer and at most
one other player may receive a nonzero payoff. The
kibitzer singles out player j and suggests alternative
action āj. The kibitzer and player j exchange the
difference between how much j would have received
had all the players played their chosen actions in G
and how much j would have received had j played
āj instead. All other payoffs are 0.

tively.4

• If G is an n× n game, then Ĝ is a n× n× 2n game.

• If the payoffs in G are in {0, 1}, then the payoffs in Ĝ
are in {−1, 0, 1}. If the payoffs in G are in [−B,B],

then the payoffs in Ĝ are in [−2B, 2B].

Theorem 2. For any k-player game G, let Ĝ be the player-
kibitzer version of G as defined in Figure 3. (a) At any NE

of the infinitely repeated Ĝ∞, the mixed strategies played by
the players at each period t, are a NE of G with probability

1. (b) For any ε > 0, δ ∈ (0, 1), at any ε-NE of Ĝ∞(δ), the
mixed strategies played by the players in the first period are
a
(
k+1
δ
ε
)
-NE of G.

Proof. We first observe that any player in Ĝ, fixing its
opponents’ actions, can guarantee itself expected payoff ≥ 0.
Any player can do this simply by playing an action that is a
best response, in G, to the other players’ actions, as if they
were actually playing G. In this case, the kibitzer cannot
achieve expected positive payment from this player. On the
other hand, the kibitzer can guarantee 0 expected payoff by
mimicking, say, player 1 and choosing α̂r(1, a1) = α̂1(a1) for
all a1 ∈ A1.

Since each player can guarantee itself expected payoff ≥ 0

in Ĝ, and Ĝ is a zero-sum game, then the payoffs at any NE

of Ĝ∞ must be 0 for all players. Otherwise, there would be
some player with negative expected discounted payoff, and

4Considering that Folk theorems are sometimes stated in
terms of the set of strictly individually rational payoffs (those
which are strictly larger than the minmax counterparts), our
example may seem less convincing because this set is empty.
However, one can easily extend our example to make this
set nonempty. By doubling the size of each player’s action
set, one can give each player i the option to reduce all of its
opponents payoffs by ρ > 0, at no cost to player i, making
the minmax value −ρk for each player. For ρ < ε/(2k), our
analysis remains qualitatively unchanged.

that player could improve by guaranteeing itself 0 in each
stage game.

Now, suppose that part (a) of the theorem was false. Let
t be the first period in which the mixed actions of the play-
ers may not be a NE of G, with positive probability. The
kibitzer may achieve a positive expected discounted payoff
by changing its strategy as follows. On period t, the kibitzer
plays a best response (j, āj) where j is the player that can
maximally improve its expected payoff on period t and āj
is player j’s best response during that period. After period
t, the kibitzer could simply mimic player 1’s mixed actions,
and achieve expected payoff 0. This would give the kibitzer
a positive expected discounted payoff, which contradicts the

fact that they were playing a NE of Ĝ∞.

For part (b), note that at any ε-NE of Ĝ∞, each player
must have discounted payoff at least −ε. As the repeated
game is a zero-sum game (because the single-shot game is
a zero-sum game), this implies that the kibitzers (expected)
discounted payoff cannot be greater than kε. Therefore,
given that it’s an ε-NE, any change in kibitzer’s strategy
can give the kibitzer at most (k + 1)ε. Now, suppose on
the first period, the kibitzer played the best response to the
players’ first-period actions, â0

r = b(α̂0
−r), and on each sub-

sequent period guaranteed expected payoff 0 by mimicking
player 1’s mixed action. Then this must give the kibitzer
discounted payoff ≤ (k + 1)ε, implying that the kibitzer’s
expected payoff on period 0 is at most (k + 1)ε/δ, and that
the player’s mixed actions on period 0 are a (k + 1)ε/δ-NE
of G.

The above theorem implies that given an algorithm for
computing ε-NE for (k + 1)-player repeated games, one im-
mediately gets an algorithm for computing ( k+1

δ
ε)-NE for

one-shot k-player games. Combined with the important

point that the payoffs in Ĝ are bounded by a factor of 2
with respect to the payoffs in G, this is already a meaning-
ful reduction, but only when ε is small and δ is large. This
is improved by our next theorem.

Lemma 1. Let k ≥ 1, ε > 0, δ ∈ (0, 1), T = d1/δe, G be a
k-player game, strategy machine profile M = (M1, . . . ,Mk+1)

be an ε
4k

-NE of Ĝ∞(δ), and R ≥ 1 be such that the runtime
of Mi on any history of length ≤ T = d1/δe is at most R.
Then the algorithm of Figure 3 outputs an ε-NE of G in
expected runtime that is poly(1/δ, log(1/ε), R, |G|).

Proof. Let br : ∆−r → Ar be any best response function
for the kibitzer in the stage game G. On each period t, if
the kibitzer plays br(σ̂−r(h

t)), then let its expected payoff
be denoted by zt, where, ρt = ur

(
M−r(h

t), br(M−r(h
t))
)

and zt = Eht

[
ρt
]
≥ 0. Note that ρt is a random variable

that depends on ht. As observed before, M−r(h
t) is a ρt-

NE of G. Note that we can easily verify if a mixed action
profile is an ε-equilibrium in poly(|G|), i.e., time polynomial
in the size of the game. Hence, it suffices to show that the
algorithm encounters M−r which is an ε-NE of G in expected
polynomial time. We next argue that any execution of Step
2 of the algorithm succeeds with probability ≥ 1/2. This
means that the expected number of executions of Step 2 is
at most 2. Since each such execution is polynomial time,
this will suffice to complete the proof.

Imagine that the algorithm were run for t = 0, 1, 2, . . .
rather than stopping at T = d1/δe. Also as observed before,



Given: k-player G, ε > 0, T ≥ 1, strategy machines M =

(M1, . . . ,Mk+1) for Ĝ∞.

1. Let h0 := (), r = k + 1.

2. For t = 0, 1, . . . , T :

• If σ = M−r(h
t) is an ε-NE of G, then stop and

output σ.

• Let atk+1 be best response to M−r(h
t) in Ĝ

(break ties lexicographically).

• Choose actions at−(k+1) independently according

to M−r(h
t), respectively.

• Let ht+1 := (ht, at).

Figure 2: Algorithm for extracting an approximate

NE of G from an approximate NE of Ĝ∞.

the kibitzer’s expected payoff is at most (k+1)ε/(4k) ≤ ε/2,
or else there would be some player that could improve over
M by more than ε/(4k). Hence,

ε/2 ≥ E[δ

∞∑
0

(1− δ)tρt]

≥ δE[

T∑
0

(1− δ)tρt],

where we used the fact that E[ρt] = zt ≥ 0. By Markov’s
inequality, this summation is at most ε with probability at
least 1/2. In this event, as the summation has d1/δe terms,
we see that some term, say the t’th term, is at most ε. Hence
the strategy profile of the players at the t’th round is an ε-
Nash equilibrium.

Theorem 3. Let c1, c2, c3 > 0 be any positive constants.
The problem 〈ε, δ, R〉n-RNE, for any εn = n−c1 , δn ≥ n−c2

and R(t) = (nt)c3 is PPAD-hard under randomized reduc-
tions.

Proof. Let c1, c2, c3 > 0 be arbitrary constants. Suppose

that one had a randomized algorithm Â for the 〈ε, δ, T 〉n-
RNE problem, for εn = n−c1 , δn ≥ n−c2 and R(t) = (nt)c3 .
Then we will show that there is a randomized polynomial-
time algorithm for finding a n−c-NE in two-player n × n
win-lose games, for c = c1/2, establishing Theorem 3 by
way of the Fact 1.

In particular, suppose we are given an n × n game G. If
n ≤ 82/c1 is bounded by a constant, then we can brute-force
search for an approximate equilibrium in constant time, since
we have a constant bound on the magnitude of the denomi-
nators of the rational-number probabilities of some NE. Oth-
erwise, we have n−c ≥ 8n−c1 , so it suffices to find an 8n−c1 -
NE of G by a randomized polynomial-time algorithm.

We run Â on Ĝ (Ĝ can easily be constructed in time poly-
nomial in n). With constant probability, the algorithm is
successful and outputs strategy machines M1,M2,M3 such

that the strategies they compute are an n−c1 -NE of Ĝ∞(δ).
By Lemma 1, the extraction algorithm run on this input will
give a 4kn−c1 = 8n−c1 -NE of G.

4. SPECIAL CASES OF INTEREST
We already know that our negative complexity results

(about computing the threat point and playing repeated
games) hold even for the special case of win-lose-draw games.
But what about the many other important restricted classes
of games treated in the literature?

First, we consider congestion games, a class of games of
central interest in algorithmic game theory, and show that
computing the threat point of congestion games with many
players is hard to compute. Briefly, in a congestion game the
actions of each player are source-sink paths (sets of edges),
and, once a set of paths are chosen, the nonpositive payoff of
each player is the negation of the sum over all edges in the
chosen path of the delays of those edges, where each edge has
a delay function mapping its congestion (the number of cho-
sen paths that go through it) to the nonnegative integers. Of
special interest are congestion games in which the paths are
not abstract sets of objects called“edges,”but are instead ac-
tual paths from source to sink (where each player may have
his/her own source and sink) in a particular graph (ideally,
a DAG). These are called network congestion games.

Theorem 4. Computing the threat point in a network
congestion game on a DAG is NP-complete.

Proof. We give a reduction from SAT. In fact, we shall
start from a stylized NP-complete special case of SAT in
which all clauses have either two literals (“short” clauses)
or three literals (“long” clauses), and each variable appears
three times, once positively in a short clause, once nega-
tively in a short clause, and once in a long clause (positively
or negatively). It is straightforward to show that such a
problem is NP-complete, as any 3-SAT can be converted
into such a form by replacing a variable xi that occurs k
times with new variables xi1, . . . , xik and a cycle of clauses,
(xi1, x̄i2), (xi2, x̄i3), . . . , (xik, x̄i1) forcing them to be equal.

Given such an instance, we construct a network congestion
game as follows. We consider two types of delay functions.
The first is a zero-delay which is always 0. The second is
a step-delay which is 0 if the congestion on the edge is ≤ 1
and is 1 if the congestion is ≥ 2. Say there are n variables,
x1, . . . , xn, in the formula. Then there are n+1 players, one
for each variable, and another player (“the victim”) whose
threat level we are to compute. The players sources’ are
s1, . . . , sn and s (one for each variable xi and one for the
victim) and sinks t1, . . . , tn, t, respectively. For each short
clause c, there are two nodes ac and bc, with a step-delay
edge from ac to bc. Each ac has two incoming zero-delay
edges, one from each source si where xi or x̄i belongs to c.
Similarly, each bc has two outgoing zero-delay edges (plus
possible additional outgoing edges, discussed next), one to
each ti such that xi or x̄i belongs to c. For each long clause
c, there are nodes uc and vc with a step-delay edge from uc
to vc. Each uc as three incoming edges, one from each bc′
where short clause c′ has a variable in common with c (with
the same positivity/negation). Each vc has three outgoing
zero-delay edges, one to each ti such that xi or x̂i belongs
to c.

Finally, we add zero-delay edges from s to each ac and
each uc, and zero-delay edges from each bc and vc to t. Now,
each player 1, . . . , n, can saturate either one of the two edges
corresponding to the positive/negative appearances it has in
short clauses and possibly also the long clause to which the
variable belongs. However, if it saturates edges correspond-



ing to both short and long clause, they must have the same
positive/negative occurrence of the variable.

We claim that the minmax for the victim is −1 if the
clauses are satisfiable, and at least 1−3n

3n
otherwise. For the

if part, suppose that there is a satisfying truth assignment,
and each variable-player chooses the path that goes through
the short clause corresponding to the value of its variable
and then through the long clause if possible. Then it is easy
to see that all paths available to the victim are blocked by
at least one flow, and thus any strategy chosen will result in
utility −1 or less. Conversely, if the formula is unsatisfiable,
by choosing a path from s through a random edge (ac, bc)
to t, uniformly at random over c, the victim will guarantee
a utility of at least 1−3n

3n
, since at least one path must now

be left unblocked. It is easy to see that, because of the step
nature of the delay functions, this is guaranteed even if the
opponents randomize.

In many settings, repeated games and the Folk Theorem
come up in the literature in the context of symmetric games
such as the prisoner’s dilemma. A game is symmetric if it
is invariant under any permutation of the players; that is,
the action sets are the same, and, for any permutation π of
the set of players [n], the utility of player i when player j
plays aj for j = 1, . . . , n is the same as the utility of player
π(i) when player π(j) plays aj for j = 1, . . . , n. Do the
negative results in the previous two sections hold in the case
of symmetric games? The next theorem partially answers
this question.

A game is symmetric if it is invariant under any permu-
tation of the players; that is, the action sets are the same,
and, for any permutation π of the set of players [k], that the
utility of player i when player j plays aj for j = 1, . . . , k is
the same as the utility of player π(i) when player π(j) plays
aj for j = 1, . . . , k. Do the negative results in the previous
two sections hold in the case of symmetric games? The next
theorem partially answers this question.

Theorem 5. Given a symmetric three-player n×n×n
game whose payoffs are in {0, 1}, it is NP-hard to approxi-
mate the minmax value to within 12/n2.

Proof. We essentially symmetrize the construction in
the NP-completeness proof of Theorem 1 symmetric. We
assume we have an n-node graph (V,E). Now, the action
set of each player is simply V × {r, g, b} × {1, 2}, i.e., each
player picks a vertex, a color, and a number. Since the game
is symmetric, it suffices to define the payoff to player 3:

u3

 (v1, c1, b1),
(v2, c2, b2),
(v3, c3, b3)

 =



1 if v1 = v2 and c1 6= c2

1 if (v1, v2) ∈ E and c1 = c2

1 if b1 = b2

1 if v3 = v1 and b3 = b1

1 if v3 = v2 and b3 = b2

0 otherwise

What is happening is that the payoff to a player is essentially
the payoff that would be given to that player had she been
player 3 in the game defined in the proof of Theorem 1, and
player 1 had been player number b1, and player 2 had been
player b2. However, since the players don’t have numbers
now, we force the other two players to pick player numbers
so as to identify themselves. They have incentive to pick
different player numbers.

This is a 6n × 6n × 6n game. Again, we claim that it
is NP-hard to distinguish between the case where the min-
max value is 1

n
and 1

n
+ 1

3n2 , which suffices for the theorem.
Again, if the graph is 3-colorable, then the minmax value
is 1/n. This is done by choosing a valid coloring, and each
player i = 1, 2, choosing a random node along with its colors
and b1 = 1, b2 = 2. (So players 1 and 2 can choose which
players they represent from the former game.) Conversely,
player 3 can guarantee at least 1/n by playing (v3, r, 2) for
v3 uniformly at random.

It remains to show that if the graph is not 3-colorable,
then for any (α1, α2) ∈ ∆1×∆2, there is a (possibly mixed)
action for P3 that achieves expected payoff at least β =
1/n + 1/(3n2). For i, j ∈ {1, 2}, let pij be the probability
that player i chooses bi = j. Then the payoff to player 3 is,

p11p21 + p12p22 + p12p21s+ p11p22t,

where s and t are the expected payoffs to player 3 given
that players 1, 2 chose b1 = 2, b2 = 1, and b1 = 1, b2 = 2,
respectively. If p11, p21 ≥ 1/2 or p12, p22 ≥ 1/2, then player
3’s payoff will be at least 1/4, regardless. So, WLOG we
may assume that p11, p22 ≥ 1/2. Next, we claim,

p11p21+p12p22+p12p21s+p11p22t ≥ p11p21+p12p22+p11p22β.

This is because, if player 3 played to maximize t (rather
than best responding to the true plays of players 1 and 2),
then the case where b1 = 1, b2 = 2 is exactly the game in
Theorem 1, for which we know that player 3 has a best
response which gives ≥ β and of course s ≥ 0 in any case.
(Note that p11 = p22 = 1 will give the above displayed
expression a value of β, as desired.)

Next, let p11 = 1
2

+ x, p22 = 1
2

+ y, for x, y ∈ [0, 1/2],
we have that player 3’s expected payoff is at least, (after
simplifying the above displayed expression)

1

2
+
β

4
+ (x+ y)

β

2
− xy(2− β),

where β = 1
n

+ 1
3n2 . In turn, this can be rewritten as,

1

2
+
β

4
+

β2

4(2− β)
−(2−β)

(
x− β

2(2− β)

)(
y − β

2(2− β)

)
The above expression is clearly minimized at x = y = 1/2
for sufficiently small β, in which case the expression has
a value of β, as desired. Intuitively, this just means that
at some point the best strategy for players 1 and 2 is to
choose b1 6= b2 deterministically, i.e., not to randomize over
b1, b2.

We conjecture that it is PPAD-hard to play repeated sym-
metric games with three or more players, but the special-
ization of this result to the symmetric case is much more
challenging. The obvious problem is the inherent asymme-
try of the player-kibitzer game, but the real problem is the
resistance of symmetry to many sophisticated attempts to
circumvent it in repeated play.

5. CONCLUSIONS
We have shown that a k-player one shot game can easily

be converted to a (k + 1)-player repeated game, where the
only NE of the repeated game are NE of the one-shot game.
Since a one-shot game can be viewed as a repeated game
with discounting parameter δ = 1, our reduction generalizes



recent PPAD-hardness results regarding NE for δ = 1 to all
δ ∈ (0, 1], showing that repeated games are not easy to play
— the Folk Theorem notwithstanding. Note that our the-
orems are essentially independent of game representation.
They just require the player-kibitzer version of a game to be
easily representable. Moreover, our simple reduction should
easily incorporate any new results about the complexity of
one-shot games that may emerge.

6. REFERENCES
[1] Aumann, R. and L. Shapley “Long-term competition: a

game-theoretic analysis,” mimeo, Hebrew University,
1976. (Reprinted in Megiddo, N. (ed.), 1994. Essays in
Game Theory in Honor of Michael Maschler, 1-15,
Springer Verlag, Berlin.)

[2] Blum, A. and Y. Mansour (2007) Learning, Regret
Minimization, and Equilibria. In Algorithmic Game
Theory (eds. N. Nisan, T. Roughgarden, E. Tardos, and
V. Vazirani), Cambridge University Press.

[3] Chen, X., and X. Deng (2006) Settling the Complexity
of 2-Player Nash-Equilibrium. In Proceedings of the
47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 261–272.

[4] Chen, X., Deng, X., and Teng, S. (2006) Computing
Nash Equilibria: Approximation and Smoothed
Complexity. In Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science
(FOCS), 603–612.

[5] Chen, X., S. Teng and P. Valiant (2007) The
approximation complexity of win-lose games. In
Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithm.

[6] Daskalakis, C. personal communication.

[7] Daskalakis, C., P. Goldberg, C. Papadimitriou (2006)
The complexity of computing a Nash equilibrium. In
Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC), 71–78.

[8] Daskalakis, C., A. Mehta, and C. H. Papadimitriou
“Progress in approximate Nash equilibria,” EC 2007.

[9] Daskalakis, C. and C. H. Papadimitriou “Computing
equilibria in anonymous games,” 2007 FOCS.

[10] Daskalakis, C. and C. H. Papadimitriou “On the
exhaustive algorithm for Nash equilibria,” manuscript.

[11] Fudenberg, D. and E. Maskin“The Folk Theorem in
repeated games with discounting or with incomplete
information,” Econometrica, 1986.

[12] Fudenberg, D., D. Levine and E. Maskin “The Folk
Theorem with imperfect public information,”
Econometrica 1994.

[13] Foster, D. and R. Vohra (1997) Regret in the on-line
decision problem. Games and Economic Behavior,
21:40-55.

[14] Gilboa, I. and E. Zemel (1989) Nash and correlated
equilibria: Some complexity considerations, Games and
Economic Behavior 1:80–93.

[15] Lipton, R., E. Markakis and A. Mehta (2003) Playing
large games using simple strategies. In Proceedings of
the 4th ACM conference on Electronic commerce (EC),
36–41.

[16] Littman, M., and P. Stone (2005) A polynomial-time
Nash equilibrium algorithm for repeated games.
Decision Support Systems 39(1): 55-66.

[17] Nash, J. (1951) Noncooperative games. Ann Math,
54:286–295.

[18] Neyman, A. (1985) Bounded Complexity Justifies
Cooperation in the Finitely Repeated Prisoner’s
Dilemma. Eco- nomic Letters, 19: 227-229.

[19] Papadimitriou, C. (1994) On the complexity of the
parity argument and other inefficient proofs of
existence. Journal of Computer and System Sciences,
498–532.

[20] Papadimitriou, C. and M. Yannakakis (1994) On
complexity as bounded rationality. In Proceedings of the
Twenty- Sixth Annual ACM Symposium on Theory of
Computing, 726–733.

[21] Rubenstein, A. (1986) Finite automata play the
repeated prisoner’s dilemma. Journal of Economic
Theory, 39:83–96.

[22] Smale, S. (1980) The prisoner’s dilemma and
dynamical systems associated to non-cooperative
games. Econometrica, 48:1617-1634.


