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Abstract
In many settings, competing technologies � for example,
operating systems, instant messenger systems, or document
formats � can be seen adopting a limited amount of com-
patibility with one another; in other words, the dif�culty in
using multiple technologies is balanced somewhere between
the two extremes of impossibility and effortless interoper-
ability. There are a range of reasons why this phenomenon
occurs, many of which � based on legal, social, or busi-
ness considerations � seem to defy concise mathematical
models. Despite this, we show that the advantages of limited
compatibility can arise in a very simple model of diffusion
in social networks, thus offering a basic explanation for this
phenomenon in purely strategic terms.

Our approach builds on work on the diffusion of innova-
tions in the economics literature, which seeks to model how a
new technology A might spread through a social network of
individuals who are currently users of technology B. We con-
sider several ways of capturing the compatibility of A and B,
focusing primarily on a model in which users can choose to
adopt A, adopt B, or � at an extra cost � adopt both A and
B. We characterize how the ability of A to spread depends on
both its quality relative to B, and also this additional cost of
adopting both, and �nd some surprising non-monotonicity
properties in the dependence on these parameters: in some
cases, for one technology to survive the introduction of an-
other, the cost of adopting both technologies must be bal-
anced within a narrow, intermediate range. We also extend
the framework to the case of multiple technologies, where
we �nd that a simple model captures the phenomenon of two
�rms adopting a limited �strategic alliance� to defend against
a new, third technology.

1 Introduction
Diffusion and Networked Coordination Games. A fun-
damental question in the social sciences is to understand the
ways in which new ideas, behaviors, and practices diffuse
through populations. Such issues arise, for example, in the
adoption of new technologies, the emergence of new social
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norms or organizational conventions, or the spread of hu-
man languages [2, 14, 15, 16, 17]. An active line of research
in economics and mathematical sociology is concerned with
modeling these types of diffusion processes as a coordination
game played on a social network [1, 5, 7, 13, 19].

We begin by discussing one of the most basic game-
theoretic diffusion models, proposed in an in�uential paper
of Morris [13], which will form the starting point for our
work here. We describe it in terms of the following tech-
nology adoption scenario, though there are many other ex-
amples that would serve the same purpose. Suppose there
are two instant messenger (IM) systems A and B, which are
not interoperable � users must be on the same system in
order to communicate. There is a social network G on the
users, indicating who wants to talk to whom, and the end-
points of each edge (v, w) play a coordination game with
possible strategies A or B: if v and w each choose IM sys-
tem B, then they they each receive a payoff of q (since they
can talk to each other using system B); if they each choose
IM system A, then they they each receive a payoff of 1− q;
and if they choose opposite systems, then they each receive
a payoff of 0 (re�ecting the lack of interoperability). Note
that A is the �better� technology if q < 1

2 , in the sense that
A-A payoffs would then exceed B-B payoffs, while A is the
worse technology if q > 1

2 .
A number of qualitative insights can be derived from a

diffusion model even at this level of simplicity. Speci�cally,
consider a network G, and let all nodes initially play B. Now
suppose a small number of nodes begin adopting strategy A
instead. If we apply best-response updates to nodes in the
network, then nodes in effect will be repeatedly applying the
following simple rule: switch to A if enough of your net-
work neighbors have already adopted A. (E.g. you begin
using a particular IM system � or social-networking site, or
electronic document format � if enough of your friends are
users of it.) As this unfolds, there can be a cascading se-
quence of nodes switching to A, such that a network-wide
equilibrium is reached in the limit: this equilibrium may
involve uniformity, with all nodes adopting A; or it may
involve coexistence, with the nodes partitioned into a set
adopting A and a set adopting B, and edges yielding zero
payoff connecting the two sets. Morris [13] provides a set
of elegant graph-theoretic characterizations for when these
qualitatively different types of equilibria arise, in terms of
the underlying network topology and the quality of A rela-
tive to B (i.e. the relative sizes of 1− q and q).



Compatibility, Interoperability, and Bilinguality. In most
of the settings that form the motivation for diffusion models,
coexistence (however unbalanced) is the typical outcome:
for example, human languages and social conventions coex-
ist along geographic boundaries; it is a stable outcome for the
�nancial industry to use Windows while the entertainment
industry uses Mac OS. An important piece that is arguably
missing from the basic game-theoretic models of diffusion,
however, is a more detailed picture of what is happening at
the coexistence boundary, where the basic form of the model
posits nodes that adopt A linked to nodes that adopt B.

In these motivating settings for the models, of course,
one very often sees interface regions in which individuals es-
sentially become �bilingual.� In the case of human language
diffusion, this bilinguality is meant literally: geographic re-
gions where this is substantial interaction with speakers of
two different languages tend to have inhabitants who speak
both. But bilinguality is also an essential feature of techno-
logical interaction: in the end, many people have accounts
on multiple IM systems, for example, and more generally
many maintain the ability to work within multiple computer
systems so as to collaborate with people embedded in each.

Taking this view, it is natural to ask how diffusion mod-
els behave when extended so that certain nodes can be bilin-
gual in this very general sense, adopting both strategies at
some cost to themselves. What might we learn from such
an extension? To begin with, it has the potential to pro-
vide a valuable perspective on the question of compatibility
and incompatibility that underpins competition among tech-
nology companies. There is a large literature on how com-
patibility among technologies affects competition between
�rms, and in particular how incompatibility may be a ben-
e�cial strategic decision for certain participants in a market
[3, 4, 8, 9, 12]. Whinston [18] provides an interesting tax-
onomy of different kinds of strategic incompatibility; and
speci�c industry case studies (including theoretical perspec-
tives) have recently been carried out for commercial banks
[10], copying and imaging technology [11] and instant mes-
senger systems [6], the latter based on the author's studies
of AOL Instant Messenger as chief economist at the FCC
during the AOL/Time-Warner merger.

While these existing models of compatibility capture net-
work effects in the sense that the users in the market prefer to
use technology that is more widespread, they do not capture
the more �ne-grained network phenomenon represented by
diffusion � that each user is including its local view in the
decision, based on what its own social network neighbors are
doing. A diffusion model that incorporated such extensions
could provide insight into the structure of boundaries in the
network between technologies; it could potentially offer a
graph-theoretic basis for how incompatibility may bene�t an
existing technology, by strengthening these boundaries and
preventing the incursion of a new, better technology.

The present work: Diffusion with bilingual behavior. In
this paper, we develop a set of diffusion models that incor-

porate notions of compatibility and bilinguality, and we �nd
that some unexpected phenomena emerge even from very
simple versions of the models.

We begin with perhaps the simplest way of extending
Morris's model discussed above to incorporate bilingual be-
havior. Consider again the example of IM systems A and
B, with the payoff structure as before, but now suppose that
each node can adopt a third strategy, denoted AB, in which
it decides to use both A and B. An adopter of AB gets to
use, on an edge-by-edge basis, whichever of A or B yields
higher payoffs in each interaction, and the payoff structure is
de�ned according to this principle: if an adopter of AB in-
teracts with an adopter of B, both receive q; with an adopter
of A, both receive 1 − q; and with another adopter of AB,
both receive max(q, 1−q). Finally, an adopter of AB pays a
�xed-cost penalty of c (i.e. −c is added to its total payoff) to
represent the cost of having to maintain both technologies.

Thus, in this model, there are two parameters that can
be varied: the relative qualities of the two technologies (en-
coded by q), and the cost of being bilingual, which re�ects a
type of incompatibility (encoded by c).

Following [13] we assume the underlying graph G is in-
�nite; we further assume that for some natural number ∆,
each node has degree ∆.1 We are interested in the ques-
tion posed at the outset, of whether a new technology A can
spread through a network where almost everyone is initially
using B. Formally, we say that strategy A can become epi-
demic if, starting from a state in which all nodes in a �nite set
S adopt A, and all other nodes adopt B, a sequence of best-
response updates (potentially with tie-breaking) in G − S
causes every node to eventually adopt A. We also introduce
one additional bit of notation that will be useful in the sub-
sequent sections: we de�ne r = c/∆, the �xed penalty for
adopting AB, scaled so that it is a per-edge cost.

In the Morris model, where the only strategic options are
A and B, a central parameter is the contagion threshold of
G, denoted q∗(G): this is the supremum of q for which A can
become epidemic in G with parameter q in the payoff struc-
ture. A central result of [13] is that 1

2 is the maximum pos-
sible contagion threshold for any graph: supG q∗(G) = 1

2 .
Indeed, there exist graphs in which the contagion threshold is
as large as 1

2 (including the in�nite line � the unique in�nite
connected 2-regular graph); on the other hand, one can show
there is no graph with a contagion threshold greater than 1

2 .
In our model where the bilingual strategy AB is possi-

ble, we have a two-dimensional parameter space, so instead
of a contagion threshold q∗(G) we have an epidemic region
Ω(G), which is the subset of the (q, r) plane for which A
can become epidemic in G. And in place of the maximum
possible contagion threshold supG q∗(G), we must consider

1We can obtain strictly analogous results by taking a sequence of �-
nite graphs and expressing results asymptotically, but the use of an in�nite
bounded-degree graph G makes it conceptually much cleaner to express the
results (as it does in Morris's paper [13]): less intricate quanti�cation is
needed to express the diffusion properties, and the qualitative phenomena
remain the same.
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Figure 1: The region of the (q, r) plane for which technology
A can become epidemic on the in�nite line.

the general epidemic region Ω = ∪GΩ(G), where the union
is taken over all in�nite ∆-regular graphs; this is the set of
all (q, r) values for which A can become epidemic in some
∆-regular network.

Our Results. We �nd, �rst of all, that the epidemic region
Ω(G) can be unexpectedly complex, even for very simple
graphs G. Figure 1 shows the epidemic region for the in�-
nite line; one observes that neither the region Ω(G) nor its
complement is convex in the positive quadrant, due to the
triangular �cut-out� shape. (We �nd analogous shapes that
become even more complex for other simple in�nite graph
structures.) In particular, this means that for values of q close
to but less than 1

2 , strategy A can become epidemic on the
in�nite line if r is suf�ciently small or suf�ciently large, but
not if r takes values in some intermediate interval. In other
words, strategy B (which represents the worse technology,
since q < 1

2 ) will survive if and only if the cost of being
bilingual is calibrated to lie in this middle interval.

This is a re�ection of limited compatibility � that it may
be in the interest of an incumbent technology to make it dif-
�cult but not too dif�cult to use a new technology � and we
�nd it surprising that it should emerge from a basic model on
such a simple network structure. It is natural to ask whether
there is a qualitative interpretation of how this arises from
the model on the in�nite line, and in fact it is not hard to give
such an interpretation, as follows.

When r is very small, it is cheap for nodes to adopt
AB as a strategy, and so AB spreads through the whole
network. Once AB is everywhere, the best-response
updates cause all nodes to switch to A, since they get
the same interaction bene�ts without paying the penalty
of r.
When r is very large, nodes at the interface, with one A
neighbor and one B neighbor, will �nd it too expensive
to choose AB, so they will choose A (the better tech-
nology), and hence A will spread step-by-step through
the network.
When r takes an intermediate value, a node v at the
interface, with one A neighbor and one B neighbor,

will �nd it most bene�cial to adopt AB as a strategy.
Once this happens, the neighbor of v who is playing B
will not have suf�cient incentive to switch, and the best-
response updates make no further progress. Hence, this
intermediate value of r allows a �boundary� of AB to
form between the adopters of A and the adopters of B.

In short, the situation facing B is this: if it is too permissive,
it gets invaded by AB followed by A; if it is too in�exible,
forcing nodes to choose just one of A or B, it gets destroyed
by a cascade of direct conversions to A. But if it has the right
balance in the value of r, then the adoptions of A come to a
stop at a bilingual boundary where nodes adopt AB.

Moving beyond speci�c graphs G, we �nd that this non-
convexity holds in a much more general sense as well, by
considering the general epidemic region Ω = ∪GΩ(G). For
any given value of ∆, the region Ω is a complicated union
of bounded and unbounded polygons, and we do not have
a simple closed-form description for it. However, we can
show via a potential function argument that no point (q, r)
with q > 1

2 belongs to Ω. Moreover, we can show the exis-
tence of a point (q, r) 6∈ Ω for which q < 1

2 . On the other
hand, consideration of the epidemic region for the in�nite
line shows that (1

2 , r) ∈ Ω for r = 0 and for r suf�ciently
large. Hence, neither Ω nor its complement is convex in the
positive quadrant.

Finally, we also extend a characterization that Morris
gave for the contagion threshold [13], producing a some-
what more intricate characterization of the region Ω(G). In
Morris's setting, without an AB strategy, he showed that A
cannot become epidemic with parameter q if and only if ev-
ery co�nite set of nodes contains a subset S that functions
as a well-connected �community�: every node in S has at
least a (1− q) fraction of its neighbors in S. In other words,
tightly-knit communities are the natural obstacles to diffu-
sion in his setting. With the AB strategy as a further option,
a more complex structure becomes the obstacle: we show
that A cannot become epidemic with parameters (q, r) if and
only if every co�nite set contains a structure consisting of a
tightly-knit community with a particular kind of �interface�
of neighboring nodes. We show that such a structure allows
nodes to adopt AB at the interface and B inside the com-
munity itself, preventing the further spread of A; and con-
versely, this is the only way for the spread of A to be blocked.

The analysis underlying the characterization theorem yields
a number of other consequences; a basic one is, roughly
speaking, that the outcome of best-response updates is in-
dependent of the order in which the updates are sequenced
(provided only that each node attempts to update itself in-
�nitely many times).

Further Extensions. Another way to model compatibility
and interoperability in diffusion models is through the �off-
diagonal� terms representing the payoff for interactions be-
tween a node adopting A and a node adopting B. Rather
than setting these to 0, we can consider setting them to a



value x ≤ min(q, 1 − q). We �nd that for the case of two
technologies, the model does not become more general, in
that any such instance is equivalent, by a re-scaling of q and
r, to one where x = 0. Moreover, using our characterization
of the region Ω(G) in terms of communities and interfaces,
we show a monotonicty result: if A can become epidemic on
a graph G with parameters (q, r, x), and then x is increased,
then A can still become epidemic with the new parameters.

We also consider the effect of these off-diagonal terms in
an extension to k > 2 competing technologies; for technolo-
gies X and Y , let qX denote the payoff from an X-X inter-
action on an edge and qXY denote the payoff from an X-Y
interaction on an edge. We consider a setting in which two
technologies B and C, which initially coexist with qBC = 0,
face the introduction of a third, better technology A at a �nite
set of nodes. We show an example in which B and C both
survive in equilibrium if they set qBC in a particular range
of values, but not if they set qBC too low or too high to lie
in this range. Thus, in even in a basic diffusion model with
three technologies, one �nds cases in which two �rms have
an incentive to adopt a limited �strategic alliance,� partially
increasing their interoperability to defend against a new en-
trant in the market.

2 Model
We now develop some further notation and de�nitions that
will be useful for expressing the model. Recall that we have
an in�nite ∆-regular graph G, and strategies A, B, and AB
that are used in a coordination game on each edge. For edge
(v, w), the payoff is 0 if one of the two nodes chooses strat-
egy A and the other chooses strategy B; 1− q if one chooses
strategy A and the other chooses either A or AB; q if one
chooses strategy B and the other chooses either B or AB;
and max(q, 1 − q) if both choose strategy AB. The overall
payoff of an agent v is the sum of the above values over all
neighbors w of v, minus a cost which is 0 if v chooses A or
B and c = r∆ if she chooses AB. We refer to the overall
game, played by all nodes in G, as a contagion game, and
denote it using the tuple (G, q, r).

This game can have many Nash equilibria. In particular,
the two states where everybody uses technology A or every-
body uses technology B are both equilibria of this game. As
discussed in the previous section, we are interested in the
dynamics of reaching an equilibrium in this game; in partic-
ular, we would like to know whether it is possible to move
from an all-B equilibrium to an all-A equilibrium by chang-
ing the strategy of a �nite number of agents, and following a
sequence of best-response moves.

We provide a formal description of this question via the
following two de�nitions.
De�nition 2.1. Consider a contagion game (G, q, r). A state
in this game is a strategy pro�le s : V (G) 7→ {A,B, AB}.
For two states s and s′ and a vertex v ∈ V (G), if start-
ing from state s and letting v play her best-response move
(breaking ties in favor of A and then AB) we get to the state

s′, we write s
v→ s′. Similarly, for two states s and s′ and

a �nite sequence S = v1, v2, . . . , vk of vertices of G (where
vi's are not necessarily distinct), we say s

S→ s′ if there is a
sequence of states s1, . . . , sk−1 such that s

v1→ s1
v2→ s2

v3→
· · · sk−1

vk→ s′. For an in�nite sequence S = v1, v2, . . . of
vertices of G, we denote the subsequence v1, v2, . . . , vk by
Sk. We say s

S→ s′ for two states s and s′ if for every vertex
v ∈ V (G) there exists a k0(v) such that for every k > k0(v),
s
Sk→ sk for a state sk with sk(v) = s′(v).

De�nition 2.2. For T ⊆ V (G), we denote by sT the strat-
egy pro�le that assigns A to every agent in T and B to every
agent in V (G) \ T . We say that technology A can become
an epidemic in the game (G, q, r) if there is a �nite set T of
nodes in G (called the seed set) and a sequence S of vertices
in V (G) \T (where each vertex can appear more than once)
such that sT

S→ sV (G), i.e., endowing agents in T with tech-
nology A and letting other agents play their best response
according to schedule S would lead every agent to eventu-
ally adopt strategy A.2

The above de�nition requires that the all-A equilibrium
be reachable from the initial state by at least one schedule S
of best-response moves. In fact, we will show in Section 4
that if A can become an epidemic in a game, then for every
schedule of best-response moves of the nodes in V (G) \ T
in which each node is scheduled an in�nite number of times,
eventually all nodes adopt strategy A.3

3 Examples
We begin by considering some basic examples that yield epi-
demic regions with the kinds of non-convexity properties dis-
cussed in Section 1. We �rst discuss a natural ∆-regular gen-
eralization of the in�nite line graph, and for this one we work
out the complete analysis that describes the region Ω(G), the
set of all pairs (q, r) for which the technology A can become
an epidemic. We then describe, without the accompanying
detailed analysis, the epidemic regions for the in�nite ∆-
regular tree and for the two-dimensional grid.

The in�nite line and the thick line graph. For a given
even integer ∆, we de�ne the thick line graph L∆ as follows:
the vertex set of this graph is Z× {1, 2, . . . , ∆/2}, where Z
is the set of all integers. There is an edge between vertices
(x, i) and (x′, i′) if and only if |x−x′| = 1. For each x ∈ Z,
we call the set of vertices {(x, i) : i ∈ {1, . . . , ∆/2} the
x'th group of vertices. Figure 2 shows a picture of L6

Now, assume that starting from a position where every
node uses the strategy B, we endow all agents in a group

2Note that in our de�nition we assume that agents in T are endowed with
the strategy A at the beginning. Alternatively, one can de�ne the notion of
epidemic by allowing agents in T to be endowed with any combination
of AB and A, or with just AB. However, the difference between these
de�nitions is rather minor and our results carry over with little or no change
to these alternative models.

3Note that we assume agents in the seed set T cannot change their strat-
egy.
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Figure 2: The thick line graph

(say, group 0) with the strategy A. Consider the decision
faced by the agents in group 1, who have their right-hand
neighbors using B and their left-hand neighbors using A.
For these agents, the payoffs of strategies A, B, and AB are
(1− q)∆/2, q∆/2, and ∆/2− r∆, respectively. Therefore,
if

q ≤ 1
2

and q ≤ 2r,

the best response of such an agent is A. Hence, if the above
inequality holds and we let agents in groups 1,−1, 2,−2, . . .
play their best response in this order, then A will become an
epidemic.

Also, if we have q > 2r and q ≤ 1−2r, the best response
of an agent with her neighbors on one side playing A and
neighbors on the other side playing B is the strategy AB.
Therefore, if we let agents in groups 1 and −1 change to
their best response, they would switch their strategy to AB.
After this, agents in group 2 will see AB on their left and B
on their right. For these agents (and similarly for the agents
in group−2), the payoff of strategies A, B, and AB are (1−
q)∆/2, q∆, and (q+max(q, 1−q))∆/2−r∆, respectively.
Therefore, if max(1, 2q)−2r ≥ 1−q and max(1, 2q)−2r ≥
2q, or equivalently, if

2r ≤ q and q + r ≤ 1
2
,

the best response of such an agent is AB. Hence, if the above
inequality holds and we let agents in groups 2,−2, 3,−3 . . .
play their best response in this order, then every agent (ex-
cept for agents in group 0) switches to AB. Next, if we
let agents in groups 1,−1, 2,−2, . . . change their strategy
again, for q ≤ 1/2, every agent will switch to strategy A,
and hence A becomes an epidemic.4

The above argument shows that for any combination of
(q, r) parameters in the marked region in Figure 1, technol-
ogy A can become an epidemic. It is not hard to see that for
points outside this region, A cannot become epidemic.

Further examples: trees and grids. Figures 3 and 4 show
the epidemic regions for the in�nite grid and the in�nite ∆-
regular tree. Note they also exhibit non-convexities.

4Strictly speaking, since we de�ned a schedule of moves as
a single in�nite sequence of vertices in V (G) \ T , the order
1,−1, 2,−2, . . . , 1,−1, 2,−2, . . . is not a valid schedule. However, since
vertices of G have �nite degree, it is not hard to see that any ordering of a
multiset containing any (possibly in�nite) number of copies of each vertex
of V (G) \ T can be turned into an equivalent schedule of moves. For ex-
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Figure 3: Epidemic regions for the in�nite grid
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Figure 4: Epidemic regions for the in�nite ∆-regular tree

4 Characterization
In this section, we characterize equilibrium properties of con-
tagion games. To this end, we must �rst argue that contagion
games in fact have well-de�ned and stable equilibria. We
then discuss some respects in which the equilibrium reached
from an initial state is essentially independent of the order in
which best-response updates are performed.

We begin with the following lemma, which proves that
agents eventually converge to a �xed strategy, and so the �-
nal state of a game is well-de�ned by its initial state and an
in�nite sequence of moves. Speci�cally, we prove that once
an agent decides to adopt technology A, she never discards
it, and once she decides to discard technology B, she never
re-adopts it. Thus, after an in�nite number of best-response
moves, each agent converges to a single strategy.
Lemma 4.1. Consider a contagion game (G, q, r) and a
(possibly in�nite) subset T ⊆ V (G) of agents. Let sT be
the strategy pro�le assigning A to every agent in T and B
to every agent in V (G) \ T . Let S = v1, v2, . . . be a (pos-
sibly in�nite) sequence of agents in V (G) \ T and consider
the sequence of states s1, s2, . . . obtained by allowing agents
to play their best-response in the order de�ned by S (i.e.,
s

v1→ s1
v2→ s2

v3→ · · ·). Then for every i, one of the following
holds:

• si(vi+1) = B and si+1(vi+1) = A,

ample, the sequence 1,−1, 2,−2, 1,−1, 3,−3, 2,−2, . . . gives the same
outcome as 1,−1, 2,−2, . . . , 1,−1, 2,−2, . . . in the thick line example.



• si(vi+1) = B and si+1(vi+1) = AB,

• si(vi+1) = AB and si+1(vi+1) = A,

• si(vi+1) = si+1(vi+1).

Proof. Let X >k
v Y indicate that agent v (weakly) prefers

strategy X to strategy Y in state sk. For any k let zk
A, zk

B ,
and zk

AB be the number of neighbors of v with strategies A,
B, and AB in state sk, respectively. Thus, for agent v in
state sk,

1. A >k
v B if (1 − q)(zk

A + zk
AB) is greater than q(zk

B +
zk
AB),

2. A >k
v AB if (1 − q)(zk

A + zk
AB) is greater than (1 −

q)zk
A + qzk

B + max(q, 1− q)zk
AB −∆r,

3. and AB >k
v B if (1−q)zk

A+qzk
B +max(q, 1−q)zk

AB−
∆r is greater than q(zk

B + zk
AB).

Suppose the lemma is false and consider the smallest i such
that the lemma is violated. Let v = vi+1 be the agent who
played her best response at time i. Thus, either 1. si(v) = A
and si+1(v) = B, or 2. si(v) = A and si+1(v) = AB, or
3. si(v) = AB and si+1(v) = B. We show that in the third
case, agent v could not have been playing a best response.
The other cases are similar.

In the third case, we have si(v) = AB and si+1(v) = B.
As si(v) = AB, there must be a time j < i where sj

v→
sj+1 and sj+1(v) = AB. Since this was a best-response
move for v, inequality 3 implies that (1−q)zj

A +max(0, 1−
2q)zj

AB ≥ ∆r. Furthermore, as i is the earliest time at which
the lemma is violated, zi

A ≥ zj
A and zj

AB − zi
AB ≤ zi

A− zj
A.

Thus, the change Q in payoff between AB and B (plus ∆r)
is

Q ≡ (1− q)zi
A + max(0, 1− 2q)zi

AB

≥ (1− q)(zi
A − zj

A + zj
A)

+max(0, 1− 2q)(zj
AB − zi

A + zj
A)

= (1− q)zj
A + max(0, 1− 2q)zj

AB

+max(q, 1− q)(zi
A − zj

A)
≥ (1− q)zj

A + max(0, 1− 2q)zj
AB

≥ ∆r,

and so, by inequality 3, B can not be a better response than
AB for v in state si.

Corollary 4.2. For every in�nite sequence S of vertices in
V (G) \ T , there is a unique state s such that s0

S→ s, where
s0 denotes the initial state where every vertex in T plays A
and every vertex in V (G) \ T plays B.

Such a state s is called the outcome of the game (G, q, r)
starting from T and using the schedule S .

Equivalence of best-response schedules. Lemma 4.1 shows
that the outcome of a game is well-de�ned and unique. The
following theorems show that the outcome is also invariant
to the dynamics, or sequence of best-response moves, under
certain mild conditions. The �rst theorem states that if the
all-A equilibrium is the outcome of a game for some (uncon-
strained) schedule, then it is the outcome for any schedule in
which each vertex is allowed to move in�nitely many times.
The second theorem states that the outcome of a game is the
same for any schedule of moves in which every vertex moves
in�nitely many times.

Theorem 4.3. Consider a contagion game (G, q, r), a subset
T ⊆ V (G), and a schedule S of vertices in V (G) \ T such
that the outcome of the game is the all-A equilibrium. Then
for any schedule S ′ of vertices in V (G) \ T such that every
vertex in this set occurs in�nitely many times, the outcome of
the game using the schedule S ′ is also the all-A equilibrium.

Proof. Note that S is a subsequence of S ′. Let π : S → S ′
be the injection mapping S to its subsequence in S ′. We
show for any vi ∈ S , if vi switches to AB, then π(vi)
switches to AB or A, and if vi switches to A, then π(vi)
switches to A (here �v switches to X� means that after the
best-response move, the strategy of v is X). Suppose not and
let i be the smallest integer such that the statement doesn't
hold. Let zA, zB , and zAB be the number of neighbors of
vi with strategies A, B, and AB in the current state de-
�ned by S . De�ne z′A,z′B , and z′AB similarly for S ′. Then,
by Lemma 4.1 and the choice of i, z′A ≥ zA, z′B ≤ zB ,
z′AB − zAB ≤ zB − z′B , and zAB − z′AB ≤ z′A − zA. Now
suppose vi switches to AB. Then the same sequence of in-
equalities as in Lemma 4.1 show that AB is a better response
than B for π(vi) (although A might be the best response)
and so π(vi) switches to either AB or A. The other case (vi

switches to A) is similar.

Theorem 4.4. Consider a contagion game (G, q, r) and a
subset T ⊆ V (G). Then for every two schedules S and S ′
of vertices in V (G) \ T such that every vertex in this set
occurs in�nitely many times in each of these schedules, the
outcomes of the game using these schedules are the same.

Proof. The proof of this theorem is similar to that of theo-
rem 4.3 and is deferred to the full version of the paper.

Blocking structures. Finally, we prove the characteriza-
tion mentioned in the introduction: A cannot become epi-
demic if and only if (G, q, r) possesses a certain kind of
blocking structure. This result generalizes Morris's theorem
on the contagion threshold for his model; in his case with-
out AB as a possible strategy, a simpler kind of �community
structure� was the obstacle to A becoming epidemic.

We begin by de�ning the blocking structures.

De�nition 4.5. Consider a contagion game (G, q, r). A pair
(SAB , SB) of disjoint subsets of V (G) is called a blocking



structure for this game if for every vertex v ∈ SAB ,

degSB
(v) >

r

q
∆,

and for every vertex v ∈ SB ,

(1−q) degSB
(v)+min(q, 1−q) degSAB

(v) > (1−q−r)∆,

and
degSB

(v) + q degSAB
(v) > (1− q)∆,

where degS(v) denotes the number of neighbors of v in the
set S.

Theorem 4.6. For every contagion game (G, q, r), technol-
ogy A cannot become epidemic in this game if and only if
every co-�nite set of vertices of G contains a blocking struc-
ture.

Proof. We �rst show that if every co-�nite set of vertices of
G contains a blocking structure, then technology A cannot
become epidemic. Let T be any �nite set of vertices en-
dowed with technology A, and let (SAB , SB) be the block-
ing structure contained in V (G) \ T . We claim that in the
outcome of the game for any sequence S of moves, the ver-
tices in SAB have strategy B or AB and the vertices in SB

have strategy B. Suppose not and let v be the �rst vertex
in sequence S to violate this (i.e., v ∈ SAB switches to A
or v ∈ SB switches to A or AB). Suppose v ∈ SAB (the
other cases are similar). Let zA, zB , and zAB denote the
number of neighbors of v with strategies A, B, and AB
respectively. As v is the �rst vertex violating the claim,
zA ≤ ∆ − degSB

(v) − degSAB
(v) and zB ≥ degSB

(v).
We show AB is a better strategy than A for v. To show
this, we must prove that (1 − q)zA + qzB + max(q, 1 −
q)zAB − ∆r > (1 − q)(zA + zAB) or, equivalently, the
quantity Q ≡ qzB + max(2q − 1, 0)zAB −∆r > 0:

Q = (max(2q − 1, 0)− r)∆−max(2q − 1, 0)zA

+(q −max(2q − 1, 0))zB

≥ (max(2q − 1, 0)− r)∆ + min(q, 1− q) degSB
(v)

−max(2q − 1, 0)(∆− degSB
(v)− degSAB

(v))
≥ [min(q, 1− q) + max(2q − 1, 0)] degSB

(v)− r∆
= q degSB

(v)− r∆
> 0,

where the last inequality holds by the de�nition of the block-
ing structure.

We next show that A cannot become epidemic if and only
if every co-�nite set of vertices contains a blocking struc-
ture. To construct a blocking structure for the complement
of a �nite set T of vertices, endow T with strategy A and
consider the outcome of the game for any sequence S which
schedules each vertex an in�nite number of times. Let SAB

be the set of vertices with strategy AB and SB be the set
of vertices with strategy B in this outcome. Note for any
v ∈ SAB , AB is a best-response and so is strictly better than
strategy A, i.e. q degSB

(v) + max(q, 1− q) degSAB
−∆r >

(1 − q) degSAB
(v), from where it follows that degSB

(v) >
(r∆)/q. The inequalities for the vertices v ∈ SB can be
derived in a similar manner.

A corollary to the above theorem is that for every in�nite
graph G, the epidemic regions in the q-r plane for this graph
is a �nite union of bounded and unbounded polygons. This
is because the inequalities de�ning blocking structures are
linear inequalities in q and r, and the coef�cients of these
inequalities can take only �nitely many values.

5 Non-epidemic regions in general graphs
The characterization theorem in the previous section pro-
vides one way of thinking about the region Ω(G), the set
of all (q, r) pairs for which A can become epidemic in the
game (G, q, r). We now consider the region Ω = ∪GΩ(G),
where the union is taken over all in�nite ∆-regular graphs;
this is the set of all (q, r) values for which A can become
epidemic in some ∆-regular network. The analysis here uses
Lemma 4.1 and an argument based on an appropriately de-
�ned potential function.

The �rst theorem shows that no point (q, r) with q > 1
2

belongs to Ω. Since q > 1
2 implies that the incumbent tech-

nology B is superior, it implies that in any network, a supe-
rior incumbent will survive for any level of compatibility.

Theorem 5.1. For every ∆-regular graph G and parameters
q and r, the technology A cannot become an epidemic in the
game (G, q, r) if q > 1/2.

Proof. Assume, for contradiction, that there is a ∆-regular
graph G and values q > 1/2 and r, a set T of vertices of G
that are initially endowed with the strategy A, and a sched-
ule S of moves for vertices in V (G) \ T such that this se-
quence leads to an all-A equilibrium. We derive a contradic-
tion by de�ning a non-negative potential function that starts
with a �nite value and showing that after each best response
by some vertex the value of this function decreases by some
positive amount bounded away from zero. At any state in
the game, let XA,B denote the number of edges in G that
have one endpoint using strategy A and the other endpoint
using strategy B. Furthermore, let nAB denote the number
of agents using the strategy AB. The potential function is
the following:

qXA,B + cnAB

(recall c = ∆r is the cost of adopting two technologies).
Since G has bounded degree and the initial set T is �nite,
the initial value of this potential function is �nite. We now
show that every best response move decreases the value of
this function by some positive amount bounded away from
zero. By Lemma 4.1, we only need to analyze the effect on
the potential function for moves of the sort described by the
lemma. Therefore we have three cases: a node u switches
from strategy B to AB, a node u switches from strategy AB
to A, or a node u switches from strategy B to A. We consider
the �rst case here; the proofs for the other cases are similar.



Suppose a node u with strategy B switches to strategy
AB. Let zAB , zA, and zB denote the number of neighbors
of u in partition piece AB, A, and B respectively. Thus,
recalling that q > 1/2, we see u's payoff with strategy B is
q(zAB+zB) whereas his payoff with strategy AB is q(zAB+
zB) + (1 − q)zA − c. In order for this strategic change to
improve u's payoff, it must be the case that

(1− q)zA ≥ c. (1)

Now, notice that such a strategic change on the part of u
induces a change in the potential function of−qzA + c as zA

edges are removed from the XA,B edges between A and B
and the size of partition piece AB is increased by one. This
change will be negative so long as zA > c/q which holds by
inequality 1 as q > (1 − q) for q > 1/2. Furthermore, as
zA can take only �nitely many values (zA ∈ {0, 1, . . . , ∆}),
this change is bounded away from zero.

This next theorem shows that for any ∆, there is a point
(q, r) 6∈ Ω for which q < 1

2 . This means that there is a
setting of the parameters q and r for which the new technol-
ogy A is superior, but for which the incumbent technology is
guaranteed to survive regardless of the underlying network.

Theorem 5.2. There exist q < 1/2 and r such that for every
contagion game (G, q, r), A cannot become epidemic.

Proof. The proof is based on the potential function from
Theorem 5.1:

qXA,B + cnAB .

We �rst show that if q is close enough to 1/2 and r is cho-
sen appropriately, this potential function is non-increasing.
Speci�cally, let

q =
1
2
− 1

64∆
and c = r∆ = α,

where α is any irrational number strictly between 3/64 and
q. Again, there are three cases corresponding to the three
possible strategy changes for a node u. Let zAB , zA, and zB

denote the number of neighbors of node u in partition piece
AB, A, and B respectively.

Case 1: B → AB. Recalling that q < 1/2, we see u's
payoff with strategy B is q(zAB + zB) whereas his payoff
with strategy AB is (1− q)(zAB + zA) + qzB − c. In order
for this strategic change to improve u's payoff, it must be the
case that

(1− 2q)zAB + (1− q)zA ≥ c. (2)
Now, notice that such a strategic change on the part of u
induces a change in the potential function of −qzA + c as
zA edges are removed from the XA,B edges between A and
B and the size of partition piece AB is increased by one.
This change will be non-positive so long as zA ≥ c/q. By
inequality 2 and the fact that zA is an integer,

zA ≥
⌈

c

1− q
− (1− 2q)zAB

1− q

⌉
.

Substituting our choice of parameters, (and noting that q ∈
[1/4, 1/2] and zAB ≤ ∆), we see that the term inside the
ceiling is less than 1 and at least 3/64

3/4 − 1/32
1/2 > 0. Thus, the

ceiling is one, which is larger than c/q.
Case 2: AB → A. Recalling that q < 1/2, we see u's

payoff with strategy AB is (1 − q)(zAB + zA) + qzB − c
whereas her payoff with strategy A is (1− q)(zAB + zA). In
order for this strategic change to improve u's payoff, it must
be the case that

qzB ≤ c. (3)
Such a strategic change on the part of u induces a change in
the potential function of qzB−c as zB edges are added to the
XA,B edges between A and B and the size of partition piece
AB is decreased by one. This change will be non-positive so
long as zB ≤ c/q, which holds by inequality 3.

Case 3: B → A. Note u's payoff with strategy B is
q(zAB + zB) whereas his payoff with strategy A is (1 −
q)(zAB + zA). In order for this strategic change to improve
u's payoff, it must be the case that

(1− 2q)zAB ≥ qzB − (1− q)zA. (4)

Such a strategic change on the part of u induces a change in
the potential function of q(zB−zA) as zA edges are removed
and zB edges are added to the XA,B edges between A and
B. This change will be negative so long as zB < zA. By
inequality 4 and the fact that zA is an integer,

zA ≥
⌊

qzB

1− q
+

(1− 2q)zAB

1− q

⌋
.

Substituting our choice of parameters, it is easy to see that
the term inside the �oor is at most zB + 1/4, and so the
�oor is at most zB as zB is an integer. We have shown the
potential function is non-increasing for our choice of q and
c. This implies the potential function is eventually constant.
As c is irrational and the remaining terms are always rational,
both nAB and XA,B must remain constant for the potential
function as a whole to remain constant.

Suppose A is epidemic in this region. As nAB is constant
and A is epidemic, it must be that nAB = 0. Thus, the only
moves involve a node u switching from strategy B to strategy
A. In order for XA,B to be constant for such moves, it must
be that zA (the number of neighbors of u in A) equals zB (the
number of neighbors of u in B) and, as nAB = 0, we have
that zA = zB = ∆/2. Thus, the payoff of u for strategy A
is (1 − q)zA < ∆/4 whereas her payoff for strategy AB is
(1−q)zA +qzB−c > ∆/2−q ≥ ∆/4. This contradicts the
assumption that u is playing her best response by switching
to A.

6 Limited compatibility
We now consider some further ways of modeling compatibil-
ity and interoperability. We �rst consider two technologies,



as in the previous sections, and introduce �off-diagonal� pay-
offs to capture a positive bene�t in direct A-B interactions.
We �nd that this is in fact no more general than the model
with zero payoffs for A-B interactions.

We then consider extensions to three technologies, iden-
tifying situations in which two coexisting incumbent tech-
nologies may or may not want to increases their mutual com-
patibility in the face of a new, third technology.

Two technologies. A natural relaxation of the two-technology
model is to introduce (small) positive payoffs for A-B inter-
action; that is, cross-technology communication yields some
lesser value to both agents. We can model this using a vari-
able xAB representing the payoff gathered by an agent with
technology A when her neighbor has technology B, and sim-
ilarly, a variable xBA representing the payoff gathered by
an agent with B when her neighbor has A. Here we con-
sider the special case in which these �off-diagonal� entries
are symmetric, i.e., xAB = xBA = x. We also assume that
x < q ≤ 1− q.

We �rst show that the game with off-diagonal entries is
equivalent to a game without these entries, under a simple
re-scaling of q and r. Note that if we re-scale all payoffs by
either an additive or a multiplicative constant, the behavior
of the game is unaffected. Given a game with off-diagonal
entries parameterized by q, r and x, consider subtracting x
from all payoffs, and scaling up by a factor of 1/(1 − 2x).
As can be seen by examining Table 1, the resulting payoffs
are exactly those of a game without off-diagonal entries, pa-
rameterized by q′ = (q− x)/(1− 2x) and r′ = r/(1− 2x).
Thus the addition of symmetric off-diagonal entries does not
expand the class of games being considered.

Table 1 represents the payoffs in the coordination game
in terms of these parameters.

Nevertheless, we can still ask how the addition of an off-
diagonal entry might affect the outcome of any particular
game. As the following example shows, increasing compat-
ibility between two technologies can allow one technology
that was not initially epidemic to become so.

Example 6.1. Consider the contagion game played on a
thick line graph (see Section 3) with r = 5/32 and q = 3/8.
In this case, A is not epidemic, as can be seen by examining
Figure 1, since 2r < q and q + r > 1/2. However, if we in-
sert symmetric off-diagonal payoffs x = 1/4, we have a new
game, equivalent to a game parameterized by r′ = 5/16 and
q′ = 1/4. Since q′ < 1/2 and q′ < 2r′, A is epidemic in this
game, and thus also in the game with limited compatibility.

We now show that generally, if A is the superior technol-
ogy (i.e., q < 1/2), adding a compatibility term x can only
help A spread.

Theorem 6.2. Let G be a game without compatibility, pa-
rameterized by r and q on a particular network. Let G′ be
that same game, but with an added symmetric compatibility
term x. If A is epidemic for G, then A is epidemic for G′.

Proof. We will show that any blocking structure in G′ is also
a blocking structure in G. By our characterization theorem,
Theorem 4.6, this implies the desired result. We have that G′

is equivalent to a game without compatibility parameterized
by q′ = (q − x)/(1− 2x) and r′ = r/(1− 2x). Consider a
blocking structure (SB , SAB) for G′. We know that for any
v ∈ SAB , q′dSB

(v) > r′∆. Thus
qdSB

(v) > (q − x)dSB
(v)

= q′(1− 2x)dSB
(v)

> r′(1− 2x)∆
= r∆,

as required for a blocking structure in G. Similarly, the two
blocking structure constraints for v ∈ SB are only strength-
ened when we move from G′ to G.

More than two technologies. Given the complex structure
inherent in contagion games with two technologies, the un-
derstanding of contagion games with three or more technolo-
gies is largely open. Here we indicate some of the technical
issues that come up with multiple technologies, through a
series of initial results. The basic set-up we study is one
in which two incumbent technologies B and C are initially
coexisting, and a third technology A, superior to both, is in-
troduced initially at a �nite set of nodes.

We �rst present a theorem stating that for any even ∆,
there is a contagion game on a ∆−regular graph in which
the two incumbent technologies B and C may �nd it bene-
�cial to increase their compatibility so as to prevent getting
wiped out by the new superior technology A. In particular,
we consider a situation in which initially, two technologies
B and C with zero compatibility are at a stable state. By a
stable state, we mean that no �nite perturbation of the cur-
rent states can lead to an epidemic for either B or C. We
also have a technology A that is superior to both B and C,
and can become epidemic by forcing a single node to choose
A. However, by increasing their compatibility, B and C can
maintain their stability and resist an epidemic from A.

Let qA denote the payoffs to two adjacent nodes that both
choose technology A, and de�ne qB and qC analogously. We
will assume qA > qB > qC . We also assume that r, the cost
of selecting additional technologies, is suf�ciently large so as
to ensure that nodes never adopt more than one technology.
Finally, we consider a compatibility parameter qBC that rep-
resents the payoffs to two adjacent nodes when one selects
B and the other selects C. Thus our contagion game is now
described by �ve parameters (G, qA, qB , qC , qBC).
Theorem 6.3. For any even ∆ ≥ 12, there is a ∆-regular
graph G, an initial state s, and values qA, qB , qC , and qBC ,
such that
• s is an equilibrium in both (G, qA, qB , qC , 0) and

(G, qA, qB , qC , qBC),

• neither B nor C can become epidemic in either
(G, qA, qB , qC , 0) or (G, qA, qB , qC , qBC) starting from
state s,



A B AB
A (1− q; 1− q) (x; x) (1− q; 1− q − r)
B (x; x) (q; q) (q; q − r)

AB (1− q − r; 1− q) (q − r; q) (max(q, 1− q)− r; max(q, 1− q)− r)

Table 1: The payoffs in the coordination game. Entry (x, y) in row i, column j indicates that the row player gets a payoff of x
and the column player gets a payoff of y when the row player plays strategy i and the column player plays strategy j.

• A can become epidemic (G, qA, qB , qC , 0) starting from
state s, and

• A can not become epidemic in (G, qA, qB , qC , qBC)
starting from state s.

Proof sketch. Given ∆, de�ne G by starting with an in�nite
grid and connecting each node to its nearest ∆ − 2 neigh-
bors that are in the same row. The initial state s assigns
strategy B to even rows and strategy C to odd rows. Let
qA = 4k2 + 4k + 1/2, qB = 2k + 2, qC = 2k + 1, and
qBC = 2k + 3/4. The �rst, third, and fourth claims in the
theorem can be veri�ed by checking the corresponding in-
equalities. The second claim follows from the �rst and the
observation that the alternating rows contain any plausible
epidemic from growing vertically.

The above theorem shows that two technologies may both
be able to survive the introduction of a new technology by
increasing their level of compatibility with each other. As
one might expect, there are cases when increased compati-
bility between two technologies helps one technology at the
expense of the other. Surprisingly, however, there are also in-
stances in which compatibility is in fact harmful to both par-
ties; the next example considers a �xed initial con�guration
with technologies A, B and C that is at equilibrium when
qBC = 0. However, if this compatibility term is increased
suf�ciently, equilibrium is lost, and A becomes epidemic.

Example 6.4. Consider the union of an in�nite two-dimensional
grid graph with nodes u(x, y) and an in�nite line graph with
nodes v(y). Add an edge between u(1, y) and v(y) for all
y. For this network, we consider the initial con�guration in
which all v(y) nodes select A, and node u(x, y) selects B if
x < 0 and selects C otherwise.

We now de�ne the parameters of this game as follows.
Let qA = 3.95, qB = 1.25, qC = 1, and qBC = 0. It is easily
veri�ed that for these values, the initial con�guration given
above is an equilibrium. However, now suppose we increase
the coordination term, setting qBC = 0.9. This is not an
equilibrium, since each node of the form u(0, y) now has an
incentive to switch from C (generating a payoff of 3.9) to B
(thereby generating a payoff of 3.95). However, once these
nodes have adopted B, the best-response for each node of
the form u(1, y) is A (A generates a payoff of 4 where as B
only generates a payoff of 3.95). From here, it is not hard to
show that A spreads directly throughout the entire network.
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