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Abstract

We study the problem of designing seller optimal auctions. Prior to this work, the only
previously known auctions that are approximately optimal in worst case employ randomization.
Our main result is the existence of deterministic auctions that approximately match the per-
formance guarantees of these randomized auctions. We give a fairly general derandomization
technique for turning any randomized mechanism into an asymmetric deterministic one with
approximately the same revenue. In doing so, we bypass the impossibility result for symmet-
ric deterministic auctions and show that asymmetry is nearly as powerful as randomization in
optimal mechanism design problems. Our general construction involves solving an exponential-
sized flow problem and thus is not polynomial-time computable. For a specific auction with
good worst-case revenue, we give a polynomial-time construction. To obtain our results, we
study coloring problems that are interesting on their own.

1 Introduction

In [9] Goldberg et al. proposed the study of profit maximization in auctions using a worst-case
competitive analysis. They focus on the unlimited supply, unit demand, single-item auction problem
where an effectively infinite quantity of identical items are for sale to consumers that each desire
at most one item. In their worst-case competitive framework, they gave a randomized auction
that achieves a constant fraction of the optimal single-price revenue. Further, they prove that such
randomization is necessary for symmetric auctions, ones whose outcome is not a function of the
order of the input bids. Our main result is to show that this result does not hold for asymmetric
auctions: there exists an asymmetric deterministic auction that approximates the revenue of the
optimal single-price sale in the worst case.

In general, design and analysis of auctions and other mechanisms requires a game-theoretic
treatment; in order to understand the performance of an auction, the behavior of the bidders in
the auction must be understood. To handle this problem, we adopt the solution concept of truthful
mechanism design; we only consider mechanisms where each bidder has a dominant strategy of
bidding their true value for the good regardless of the actions of any of the other bidders. It is well
known that truthful auctions are precisely those auctions that compute an offer price for a bidder
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that is not a function of their bid value, but may be a function other bidders’ bids. This bidder is
then allocated the good if their bid is above the offer price, otherwise the bidder is rejected. The
simplest truthful auction that is approximately optimal in worst-case is the randomized sampling
auction in [9] which randomly partitions the bidders into two sets and uses the optimal sale price
for each set as the offer price for all bidders in the opposite set.

Our main result is to show that on any input bid vector, b, with bids bi ∈ [1, h], any random-
ized truthful auction A that obtains an expected profit of E[A] can be converted into a truthful
deterministic asymmetric auction with profit E[A] /4− 2h. Given any auction that always obtains
an expected profit that is within a constant fraction of optimal, such as the randomized sampling
auction, this gives a deterministic auction that gets within a constant fraction of the optimal profit
less a small additive loss.

Our general derandomization technique involves solving an exponentially large flow problem.
We introduce a different technique to derandomize a specific auction of [7] and obtain a polynomial-
time deterministic auction with good worst-case revenue guarantees.

We explore the possibility of a general polynomial time derandomization technique through the
following toy problem. Given an array of red and blue hats, devise a strategy for guessing the color
of each hat while only observing the colors of the other hats. The goal is to design a color-guessing
algorithm that simultaneously guesses correctly for about half of the red hats and about half of the
blue hats. A simple randomized strategy that solves this problem is to independently flip a coin
for each hat and color it red with probability a half and blue with probability a half. Our flow-
based derandomization technique applied to this simple coloring algorithm gives an asymmetric
deterministic (exponential-time) algorithm for hat-coloring that guesses red for exactly half of the
reds and guesses blue for exactly half of the blues (rounded down if the numbers are odd). For this
particular toy problem, we also show a rather simple polynomial-time solution for guessing colors
that matches the bound of the flow-based derandomization. The flow-based construction generalizes
to the case where there are k different colors and we would like to guess correctly for about 1/k
hats of each color; however, we do not know of any polynomial-time deterministic algorithm that
is able to match this bound for any k ≥ 3.

This coloring problem is related to the auction problem as follows. Consider the case where
there are only two types of bidders, those with a high valuation for the item, h; and those with a
low valuation for the item, 1. Mapping h to the color red and 1 to the color blue, a solution to the
color-guessing problem would offer half the h bids a price of h and half the 1 bids a price of 1 and
thus, the profit of such an auction would be at least half of optimal revenue (because either a price
of h or a price of 1 was optimal).

The coloring problem is also related to problems in computational learning and coding theory.
Relationship to learning is immediate: we cover a hat and try to learn its color from those of
other hats. This relationship has been observed before in the context of on-line auctions [3]. In
the current paper, we strengthen this relationship by defining guessing auctions, which are very
closely related to expert learning. As for coding theory, the coloring problem is similar to the hats
problem [4], in particular the hats coloring problem studied in [5, 14]. This relationship motivated
our flow-based auction. Fiege [5] independently developed a similar flow-based solution to the hats
coloring problem. However, we are unaware of previous applications of the hat problem to truthful
mechanism design.

This paper is organized as follows. In Section 3 we formally define the coloring problem and
give the flow-based solution. In Section 4 we show how the flow-based technique can be generalized
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to convert any randomized auction into an asymmetric deterministic auction with approximately
the same performance bound. Finally, in Section 5 we give a polynomial-time deterministic auction
with good worst-case revenue bounds.

2 Preliminaries

We consider single-round, sealed-bid auctions to sell an unlimited number of copies of a good to
any subset of n bidders. As mentioned in the introduction, we adopt the game-theoretic solution
concept of truthful mechanism design. A useful simplification of the problem of designing truthful
auctions is obtained through the following algorithmic characterization. Related formulations to
the one given here have appeared in numerous places in recent literature (e.g., [1, 13, 6, 10]). To
the best of our knowledge, the earliest dates back to the 1970s [11].

Definition 2.1 Given a bid vector of n bids, b = (b1, . . . , bn), let b−i denote the vector of bids
with bi replaced with a ‘?’, i.e.,

b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn).

Definition 2.2 (Bid-independent Auction, BIf) Let f be a function from masked bid vectors
(with a ‘?’) to prices (non-negative real numbers). The deterministic bid-independent auction
defined by f , BIf , works as follows. For each bidder i:

1. Set ti = f(b−i).

2. If ti < bi, bidder i wins at price ti

3. If ti > bi, bidder i loses.

4. Otherwise, (ti = bi) the auction can either accept the bid at price ti or reject it.

A randomized bid-independent auction is a distribution over deterministic bid-independent auctions.

The proof of the following theorem can be found, for example, in [6].

Theorem 2.1 An auction is truthful if and only if it is equivalent to a bid-independent auction.

Given this equivalence, we will use the terminology bid-independent and truthful interchangeably.
We denote the profit of a truthful auction A on input b as A(b). This profit is given by the sum of
the prices charged to bidders that are accepted. For a randomized bid-independent auction, f(b−i)
and A(b) are random variables.

It is natural to consider a worst-case competitive analysis of truthful auctions. In the compet-
itive framework of [6] and subsequent papers, the performance of a truthful auction is gaged in
comparison to the profit of the optimal single price sale of at least two units. There are a number
of reasons to choose this metric for comparison; interested readers should see [6] or [8] for a more
detailed discussion.

Unfortunately, as we show in Section 4.3, it is not possible for a deterministic auction to always
perform well against such an optimal sale. Instead, we assume that all bids are between 1 and h
and define OPT as the profit of the optimal single price sale. Following [9, 2] we look for auctions
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that obtain a profit of at least OPT /β − γh for small constants β and γ. We refer to β as the
approximation ratio and γh as the additive loss. Such an approximation framework is tantamount
to considering a promise problem. If we are promised that OPT À γh then our auction is constant
fraction of optimal. This motivates the following formal definition.

Definition 2.3 We say an auction is approximately optimal if its expected profit on any input is
at least OPT /β − γh for fixed constants β and γ.

3 The Color Guessing Problem

Given n hats each having one of k colors, arranged in a linear order, we would like a scheme for
guessing their colors such that when guessing the i’th hat’s color we can only look at the colors of
the remaining n−1 hats. In this “bid-independent” hat-guessing game, we would like our technique,
after considering all n of the hats in turn, to have correctly guessed the color of about a 1/k fraction
from each color class. The following randomized coloring scheme achieves this desired bound in
expectation: for each i, guess each of the colors with probability 1/k. We now give a technique that
uses the ordering information in place of randomness to achieve the same bound deterministically.
It is instructive to view this technique as a derandomization of the simple randomized algorithm
proposed above.

Let c = (c1, . . . , cn) represent the array of colors. Let c−i represent the array of colors with the
i’th color hidden, i.e., c−i = (c1, . . . , ci−1, ?, ci+1, . . . , cn).

Consider a flow problem on the following graph. We have a source s and a sink t. For each of
the nkn−1 possible values of c−i we have a vertex, vc−i . We place an arc from s to each of these
vertices. For each of the kn+1 possible values of (χ, c) (where χ is one of the k colors), we have
a vertex vχ,c. We place an arc between each of these vertices and t. We also add an arc between
vc−i and vci,c signifying that we get c when we reveal that at position i in c−i is a hat with color
ci. Notice that the in-degree due to such arcs of a vertex vχ,c is precisely the number of hats of
color χ in c. The out-degree of a vertex vc−i is exactly k, one for each possible color of the hat at
position i.

Now, imagine the following flow on this graph that represents the randomized color-guessing
algorithm above. Between s and each vc−i place a flow of 1. This corresponds to the randomized
algorithm, upon seeing c−i, having a total probability of 1 to spend on guessing colors for the i’th
hat. On each of the outgoing arcs from vc−i we place a flow of 1/k corresponding to the probability
with which the randomized algorithm picks each color. Now notice that the incoming flow to vχ,c

is precisely 1/k times the number of hats in c from color class χ. Send all of this flow on the arc
from vχ,c to t.

Now we set capacities on the arcs. For each χ and c, set the capacity of the arc (vχ,c, t) to
bnχ(c)/kc where nχ(c) represents the number of hats in c that are colored χ. On all other arcs
place a capacity of 1. The fractional flow set up in the previous paragraph respects these capacities
except on the arcs into t. Thus, the minimum cut in this graph separates t from all other vertices,
and a maximum flow saturates the capacities of all arcs into t. Furthermore, since all capacities
are integral, there is a maximum flow that is integral. Revisiting the analogy between flow and
probability, since each of the vc−i has at most 1 unit of incoming flow, an integral flow places the
entirety of this flow on a single outgoing arc corresponding to deterministically guessing a color for
the i’th hat in c−i. Thus, such a flow specifies a deterministic “bid-independent” color-guessing
algorithm.
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Consider the performance of this deterministic color-guessing algorithm on c. Given nχ(c) hats
with color χ in c, the capacity of the outgoing arc from vχ,c to t is bnχ(c)/kc. Since this arc is
saturated in an integral maximum flow, it must be that bnχ(c)/kc of the nχ(c) incoming arcs have
one unit of flow on them. This corresponds to the deterministic algorithm correctly guessing χ
when considering c−i for bnχ(c)/kc positions i in c colored χ. This holds true for all colors χ; thus,
this deterministic color-guessing algorithm correctly guesses about a 1/k fraction from each color
class.

3.1 The k = 2 case

We now consider the case where there are k = 2 colors, red and blue. The following is an efficient
solution for correctly guessing half the reds and half the blues.

Definition 3.1 (2-Color Guessing Algorithm) On input c, let Mr(i) = i+
∑

indices of reds in c−i+
number of reds before position i in c−i. For each hat i, guess i is red if Mr(i) is even and guess
blue otherwise.

Lemma 3.1 On c with nr reds and nb blues, the above scheme correctly guesses bnr/2c of the reds
and bnb/2c of the blues.

Proof: It is easy to see that it correctly guesses about half of the reds. For any hat i that is red,
i+

∑
indices of reds in c−i is constant. As the “number of reds before position i in c−i” alternates

parity, this algorithm correctly guesses the color of every other red.
Now we show that half the blues are correctly guessed. Define Mb(i) analogously to Mr(i), but

with respect to blues. We show that the sum Mr(i)+Mb(i) is constant modulo two (over the choice
of i). Thus, our algorithm is equivalent to an algorithm that colors based on the parity of Mb(i),
and thus guesses half of the blues correctly. Suppose i is red (a similar argument holds if i is blue),
then the sum Mr(i) + Mb(i) is 2i plus the sum of the indices of all the reds except for i plus the
sum of the indices of the blues plus the rank of number of reds plus the number of blues before
position i. The latter part of this sum is simply i−1 and the former is i plus

∑
j j. Thus, the total

is 2i− 1 +
∑

j j which is constant modulo two as desired. 2

An obvious question would be to try to extend this algorithm to k ≥ 3 colors. This problem
seems much more difficult even for k = 3, and we leave it as an open question.

4 Auction Derandomization

The main goal of our paper is to design deterministic auctions that are approximately optimal. We
show that in fact any randomized auction has a deterministic counterpart that achieves approx-
imately the same profit. As a corollary of this result, known approximately optimal randomized
auctions imply the existence of approximately optimal deterministic auctions. Our proof first re-
duces any auction to a special type of auction that we define, called a guessing auction, and then
uses a flow-based construction similar to that in Section 3 to derandomize the guessing auction.

4.1 Guessing Auctions

The flow-based construction for the color-guessing problem in Section 3 works for the case where
our goal is to consider c−i and guess what c is. For auctions, our performance is not based on
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guessing a bid value correctly, it is based on correctly guessing below a bid value. The easiest way
to resolve this discrepancy is to round the bids to powers of two and consider auctions that only
get credit for bidders when they exactly guess at which power of two the bidder’s bid value is. We
call such an auction a guessing auction. Not only are guessing auctions approximately as powerful
as standard auctions (in terms of approximating the optimal profit), but it is possible to convert
any auction into a guessing auction while only losing a factor of four from the profit.

Definition 4.1 (GA) The guessing auction, GA, for an auction A simulates A on b. Suppose A
offers bidder i price pi and let 2k be the largest power of two less than pi. Then GA offers bidder i
price 2k+j for integer j ≥ 0 with probability 2−j−1.

Lemma 4.1 For any auction A with expected profit E[A(b)] on input bid vector b, there is a
corresponding guessing auction GA whose expected profit on any input bid vector b is at least
E[A] /4.

Proof: To see that the guessing auction achieves a profit of E[A] /4, we show that the expected
profit of GA from bidder i, given that bidder i bids above pi, is at least 2k−1 ≥ pi/4. Suppose
bi ∈ [2k+j , 2k+j+1), then the probability that GA guesses bid i is 2−j−1. The payoff on correctly
guessing is 2k+j . Thus, the expected payment of bidder i is 2k−1. Since each bidder’s expected
payment in GA is a fourth of their payment in A, we have the desired bound. 2.

We note that if we are constructing a guessing auction from an auction that only uses prices
that are powers of two, then we only lose a factor of two of the profit instead a factor of four.

4.2 The Flow Construction

We now show how to derandomize any guessing auction GA.

Lemma 4.2 Corresponding to any guessing auction GA with expected profit E[GA(b)] on bid vector
b, there is a deterministic auction whose profit on any input bid vector b is at least E[GA(b)]− 2h
where h is the highest bid value in b.

Proof: First, round all bid values down to the nearest power of two. We make the analogy
between the k colors in the color-guessing problem and the log h powers of two that are possible
bid values and proceed by setting up a flow construction identical to that for the k-color guessing
problem except that the fractional flow on an arc from vb−i to v2j ,b is the probability that GA on
seeing b−i guesses 2j . Furthermore the flow from v2j ,b to t is the expected number of times GA
guesses one of the bids at value 2j correctly. We represent this quantity by Ej(b). We then set
the capacities as before such that the capacity on the arc between v2j ,b and t is bEj(b)c; all other
capacities are set to one.

Once again, the above fractional flow implies the existence of an integer-valued flow, and this
integer-valued flow corresponds to an auction making a deterministic bid-independent offer upon
seeing b−i. The flow out of v2j ,b is precisely the number of indices i such that the auction upon
seeing b−i correctly guesses 2j ; since this arc is in a minimum cut, it is saturated and the flow
out of it is precisely bEj(b)c. Thus, considering a bid vector b where the expected profit of GA
is E[GA] =

∑
j 2jEj(b), the deterministic auction obtains

∑
j 2j bEj(b)c ≥ ∑

j

[
2jEj(b)− 2j

] ≥
E[GA]− 2h. 2

The following theorem follows directly from Lemmas 4.1 and 4.2.
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Theorem 4.3 Corresponding to any single-round sealed-bid auction A with expected profit E[A(b)]
on input bid vector b, there is a deterministic auction A′ whose expected profit on any input bid
vector b is at least E[A(b)] /4− 2h.

As a corollary, using this derandomization result with the approximately optimal auctions
in [9, 6, 7] we obtain deterministic auctions that are approximately optimal. In this construction
we assumed that the range of bid values [1, h] is known. This assumption is not necessary. When
considering b−i we can compute 1 and h correctly for all but the minimum and maximum bid
value. Assuming the worst, i.e. the auction fails to get any profit from the highest and lowest bid,
we only lose an additional additive h + 1.

4.3 Additive Loss Term

One discrepancy between the bounds given in this paper and the bounds given in [6, 7] is that
our bounds are only interesting if the profit from optimal single price is larger than 2h. This
might not be true for all bid vectors, especially those where h is larger than the profit from the
optimal single-price sale that sells at least two items (this quantity is denoted F (2) in [6]). For this
case, the bounds obtained in [6] are better because they prove the auctions performance to be a
constant fraction of F (2) without any additive term. We can view these two types of analyzes as the
difference between solving a worst-case problem and a promise problem. Given the promise that
the optimal single price sale achieves a large profit in comparison to h our auction gets a constant
fraction of optimal; otherwise, it may not.

In this section we show that such a promise is necessary for the obtaining a deterministic auction
that performs well in the worst case. In particular, we show that there is no deterministic auction
that obtains a profit that is a constant fraction of F (2) on all inputs.

Lemma 4.4 No deterministic truthful auction obtains a constant fraction of F (2) on all bid vectors.

Proof: Assume for contradiction that we are given a deterministic auction BIf , specified by
bid-independent function f , that obtains a profit of F (2)/β on all inputs.

Let b = (1, . . . , 1) be the all-ones bid vector. Assume without loss of generality that f(b−1), the
price offered the first bidder, is 1. Now, for any α > β and i ∈ I = {1, 2, . . . ,

⌈
n+1

n/α−1

⌉
}, consider b(i)

as the all-ones bid vector except for b1 = nαi. Let Si be the set of other bidders (not including bidder
1) that are offered price 1 when the input to the auction is b(i), i.e., Si = {j > 1 : f(b(i)

−j) = 1}.
Fact 1: |Si| ≥ n/α− 1.
This follows directly from the fact that otherwise BIf ’s profit would be at most F (2)/α which

would contradict our assumption.
Fact 2:

⋂
i∈I Si 6= ∅.

Clearly |⋃i Si| ≤ n. But for a contradiction, if the intersection of the Sis is empty then the
union of the Sis is of size

∑
i
|Si| ≥ |I| (n/α− 1)

≥ n + 1 > n.

From Fact 2, there exists i, j, and k with i < j and k ∈ Si ∩ Sj . Pick some h À nn (a number
bigger than any of the nαis) and let p1 = f(b′−1) where b′ is the all-ones input except for b′k = h.
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Case 1: p1 ≤ nαi. Then on the input that is all ones except for b1 = nαj and bk = h,
F (2) = 2nαj , but auction profit is at most nαi + n < 2nαj/β.

Case 2: p1 > nαi. Then on the input that is all ones except for b1 = nαi and bk = h,
F (2) = 2nαi, but the auction profit is at most n and is therefore not F (2)/β. 2

4.4 Limited Supply

While we presented these results in terms of the unlimited supply auction problem, they also apply
to the limited supply auction. Note that the number of items sold by the derandomized auction is no
more than the expected number of items sold by the randomized auction. Thus, if the randomized
auction never oversells, neither does its derandomized equivalent.

5 Efficient Deterministic Auction

In this section we describe an efficient competitive deterministic asymmetric auction. This auction
uses another coloring problem to derandomize an auction of [7]. We describe the coloring problem
first, and the deterministic auction next.

5.1 The Alternating Coloring Problem

In this section we study the following coloring problem. The input to the problem is a bid vector
b. We assume that there is a total ordering on the set of bids. In case of ties, we assume that each
bidder has a unique, publicly known ID that can be used to break ties. (Alternatively, we can use
input positions to break ties.) We say that a function mapping b−i into {−1, 1} (a color of bid i)
is an alternating coloring of b if after the components are sorted by their values, the adjacent ones
have different colors.

Note that we can reduce the 2-color guessing problem to the alternating coloring problem
problem as follows. Interpret color red as −1 and color blue as 1, and break ties using the input
positions. Compute an alternating coloring and for each hat interpret the result as the guess for
the hat color. Like the coloring algorithm of Section 3.1, the resulting algorithm guesses, modulo
rounding, half of the red and half of the blue hat colors correctly.

To describe an efficient deterministic alternating coloring function, we use the notion of a
sign of a permutation. This is standard notion that is used, for example, in the definition of the
determinant of a matrix. A transposition is a permutation that swaps two adjacent elements only.
Every permutation can be represented as a composition of transpositions. This representation
is not unique. However, for a fixed permutation the parity of the number of transpositions in a
representation of the permutation is the same for all representations. The sign of the permutation
is defined to be 1 if this parity is even, and −1 if it is odd.

Now we are ready to describe the alternating coloring function φ. Let ∞ be a number that is
greater than any bid and let b′−i be b−i with the i-th component of b replaced by ∞. Given b−i,
φ computes b′−i, sorts its components, and outputs the sign of the sorting permutation. Clearly, φ
can be computed in O(n log n) time.

Lemma 5.1 φ is an alternating coloring function.

Proof: Consider two adjacent components of b, i and j, which are adjacent in the sorted order.
Any permutation π that sorts b′−i can be converted into a permutation that sorts b′−j by first
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transposing components i and j and then applying π. Thus the values of φ(b−i) and φ(b−j) are
different and φ is a coloring. 2

Note that each bidder can compute its own color independently of the bid value, but cannot
compute colors of other bidders.

5.2 An Efficient Auction

In this section we describe an auction, DCORE, that is a derandomization of a variant of the
consensus revenue estimate (CORE) auction of [7]. These auctions use the cost-sharing auction of
Moulin and Shenker [12] as a building block. Given a target revenue C and a set of bids B, the
cost-sharing auction either returns the biggest subset of bidders who can share C equally along
with the corresponding price, or an empty set of winners if no set of bidders can share the price.
The cost-sharing auction is truthful. Let fC be the bid-independent function for the cost-sharing
auction: bidder i wins at price fC(b−i) if fC(b−i) ≤ bi and loses otherwise. Given b−i, let Ci be
the optimal single price revenue from b−i. Let C−1

i and C1
i be Ci rounded down to the nearest

even and odd integer power of two, respectively. DCORE works as follows:

1. Compute an alternating coloring of b; let ci be the color of bidder i.

2. Set the offer price for bidder i to fC
ci
i

(b−i).

DCORE is bid-independent and therefore truthful. To see intuitively that DCORE should be
competitive, recall that the original (randomized) CORE auction chooses to round down to the
nearest odd or even integer power of two at random, once for all bidders. It is not hard to see
that the expected revenue is the same if we make this decision independently and at random for
each bidder, and that DCORE is a derandomization of this variant of CORE. In the following
theorem, we use techniques similar to the proof of competitiveness of CORE to prove that DCORE
is competitive as well.

Theorem 5.2 The revenue of DCORE is at least OPT /8− h.

Proof: If the optimal single price solution has exactly one winner, then the optimal revenue is h
and approximating it within an additive h is trivial. Otherwise, for every i we have OPT /2 ≤ Ci ≤
OPT, where OPT is the revenue of the optimal single price solution. Since C−1

i and C1
i differ by

a factor of two, this implies that either all C−1
i values are the same or all C1

i values are the same
(or both). Let T be equal to C−1

i if this value is constant with respect to i, and C1
i otherwise. By

definition, OPT /4 ≤ T ≤ OPT. Consider the cost-sharing auction on b with the target value T
and note that since T ≤ OPT, this auction has revenue T . Suppose this auction has k winners
at price p. Note that the winners are the top k bids of the sorted order, and so for bk

2c of these,
Cci

i = T . Thus, bk
2c bidders compute and pay price p, and so the revenue of DCORE is at least

pbk
2c ≥ pk

2 − p. As p is at most the highest bid, h, and pk = T ≥ OPT /4, the result follows. 2

6 Conclusions

We have shown the existence of deterministic auctions that are approximately optimal in the worst
case. By necessity, these auctions are asymmetric. This gives an affirmative answer to the question
left open in [9]. The construction we developed uses a guessing auction as an intermediate and
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suffers a performance loss because of it. It would be nice to show a more direct derandomization;
this is made difficult due to the fact that the natural analogy to the flow problem that takes into
account the fact that the auction obtains profit from all bidders above the offered price, is not a
totally unimodular linear program and thus is not guaranteed to have an integral optimal solution.

For the color-guessing problem we propose, the k = 2 case is really much simpler than k ≥ 3
since the flow derandomization is related to finding Euler tours between the levels of a hypercube.
For the k = 3 case where the we are coloring hyperarcs, this formulation is much more complicated.

The flow-based technique allows derandomization of any auction. However, it takes exponential
time. We use a different polynomial time technique to derandomize the CORE auction. The
existence of a general derandomization technique with a polynomial overhead remains open.
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