
Cycle cover with short cycles

Nicole Immorlica� Mohammad Mahdian� Vahab S. Mirrokni�
Abstract

Cycle covering is a well-studied problem in computer science. In this paper, we develop approximation
algorithms for variants of cycle covering problems which bound the size and/or length of the covering cycles.
In particular, we give a(1 + ln 2)-approximation for the lane covering problem [4, 5] in weighted graphs
with metric lengths on the edges and anO(ln k) approximation for the bounded cycle cover problem [11]
with cycle-size boundk in uniform graphs. Our techniques are based on interpretinga greedy algorithm
(proposed and empirically evaluated by Ergun et al. [4, 5]) as a dual-fitting algorithm. We then find the
approximation factor by bounding the solution of a factor-revealing non-linear program. These are the first
non-trivial approximation algorithms for these problems.We show that our analysis is tight for the greedy
algorithm, and change the process of the dual-fitting algorithm to improve the factor for small cycle bounds.
Finally, we prove that variants of the cycle cover problem which bound cycle size or length are APX-hard.

1 Introduction
Given a graph and a subset of marked elements (nodes, edges, or some combination thereof), a cycle cover
problem seeks to find a minimum length set of cycles whose union contains all marked elements. Many
practically important problems in routing and navigation can be formulated as cycle cover problems with
additional constraints on the set of cycles in the solution.

One commonly studied cycle cover problem is theChinese postman problem, first introduced in 1962 by
Guan [9], in which the objective is to cover every edge at least once by a (not necessarily simple) cycle of
minimum length. Besides its obvious application to mail delivery in China, this problem finds application in a
variety of routing problems such as robot navigation and city snow plowing planning.

In many applications of the Chinese postman problem, an additional constraint naturally arises on the size
or length of the cycles. For example, a group of companies might want to design a set of trucking routes
(cycles) of minimum cost that satisfy all their shipping requirements (i.e., traverses a set of given edges) and
obey union regulations which limit the driving time and number of stops each trucker can make [4, 5]. In
graph theoretic terms, this translates to covering all or some of the edges of a given graph with cycles, with an
upper bound on the size (i.e., number of edges) or length (i.e., total distance) of each covering cycle. Another
application arises in the design of fault-tolerant opticalnetworks. In this application, studied by Hochbaum
and Olinick [11], the objective is to find a backup path for every edge of the network, so that when a link of
the optical network fails, the network can route traffic around the fault without increasing the size (and hence
the errors) of the transmission by more than a bounded amount. This reduces to covering the graph with short
cycles with an additional constraint that the cycles shouldbe simple.

Although the Chinese postman problem is polynomially solvable in directed and undirected graphs, any
variant which places a constant upper bound on the size or length of the covering cycles is NP-hard [5]. In
fact, we will show that these variants are APX-hard.

In this paper, we study approximation algorithms for the problem of finding cycles of bounded size that
cover a subset of the edges of a graph. We usually assume the edge lengths of the graph form a metric.
This problem is also known as thelane covering problem[4, 5]. To the best of our knowledge, the only
approximation algorithm known for this problem is a trivial2-approximation algorithm that covers each
edge with a cycle of size 2. We show that a greedy heuristic proposed and empirically evaluated by Ergun�Computer Science and Artificial Intelligence Lab, MIT, Cambridge, MA 02139. Email:fnickle,mahdian,mirroknig@theory.lcs.mit.edu.

et al. [4, 5] can be interpreted as a dual-fitting algorithm inwhich edges grow their dual variables at rate
proportional to their length (see [14] for a discussion of the technique of dual-fitting). We use this fact, and a
factor-revealing non-linear program (see [14]) to show that this algorithm achieves an approximation factor of1+(k�1)(1+2�1=(k�1)) for constantk, and1+ln(2) � 1:69 if k is given as part of the input. This is the first
approximation algorithm that provably beats the trivial2-approximation algorithm. Using the factor-revealing
program, we show that our analysis is tight for this greedy algorithm. For small values ofk, we show how the
approximation factor of the algorithm can be improved by increasing dual variables at a rate thatnon-linearly
depends on the length of the edges. In particular, fork = 3 we show that the approximation factor can be
improved to1:54 from 3�p2 � 1:59.

We also explore several variants of the problem and show how our algorithm extends to these variants.
One problem that we will consider is the lane covering problem with a constraint on the length, as well as the
size of the cycles. We show that for this problem our algorithm gives the same approximation factor (1+ln 2).
Another problem, called thebounded cycle cover problem, has the additional restriction that cycles should be
simple as well as of bounded size [11]. For this problem, our approach gives the firstO(ln k)-approximation
algorithm.

We also prove that cycle cover problems which place a bound onthe size or length of the cycles is APX-
hard. Our proof uses a construction of Holyer [12]. We also prove integrality gaps in the set cover linear
programming formulation of the lane covering problem.

Related Works. Cycle cover problems in graphs have been studied extensively from a combinatorial
standpoint. The book of Zhang [22] reviews much of this literature. The Chinese postman problem was first
introduced by Guan [9]. Edmonds and Johnson [3] gave the firstpolynomial time algorithms for the problem
in undirected graphs. Papadimitriou [17] proved that the problem is NP-hard in mixed graphs. Raghavachari
and Veerasamy [18] gave a3=2-approximation for this instance of the problem. A variant of the Chinese
postman problem, theminimum weight cycle cover problem, adds the restriction that covering cycles must be
simple. This problem was shown to be NP-hard by Thomassen [20]. Itai et al. [13] proved an upper bound on
the length of such a cycle cover in2-connected graphs and gave an algorithm to find it. The bounded cycle
cover problem, which constrains cycles to be of bounded sizeas well as simple, was introduced by Hochbaum
and Olinick [11] to solve an optical network design problem.They presented a heuristic for the problem along
with an empirical analysis.Ring covering, a related optical network design problem with a slightly different
objective was proposed by Slevinsky et al. [19]. Kenningtonet al. [15] present a heuristic to solve the problem.
The lane covering problem was introduced by Ergun et al. [4, 5], who gave a heuristic for the problem along
with an empirical analysis. A variant on the cycle covering problem which imposes a lower bound on the size
of each cycle has been studied as well [1]. Other covering problems include covering a graph by cliques [8].

Structure of the Paper. In Section 2, we give a formal statement of the lane covering problem. In
Section 3 we present the natural greedy algorithm and analyze it in Section 4. In Section 5, we present a
method that improves the approximation factor of our algorithm for3 � k � 5. In Section 6, we discuss two
related cycle covering problems to which we can apply our techniques. Finally, in Section 7, we present our
APX-hardness result.

2 Problem statement
Let G = (V;E) be a complete bidirected graph. A nonnegative length`e is assigned to each edgee 2 E.
These lengths are symmetric (i.e.,`uv = `vu for everyu; v 2 V) and satisfy the triangle inequality (i.e.,`uv � `uw + `wv for everyu; v; w 2 V). In the lane covering problem[4, 5], we are given a subsetL of
directed edges ofG calledlanesand an integerk � 3. The objective is to find a collection of (not necessarily
disjoint) cycles that cover all edges ofL, each containing at mostk edges, with minimum total length.

In another variant of the lane covering problem, thelength-constrained lane covering problem[4, 5], we
are also given a boundB on the length of each covering cycle. The goal is to find a minimum length cycle
cover ofL of cycles of length at mostB and size at mostk.

Except where noted, in this paper, we will focus on the lane covering problem. However, as we will see
in Section 6, our algorithmic techniques and lower bounds apply to the more general length-constrained lane
covering problem as well.

2

3 The greedy algorithm
In this section we present a natural greedy algorithm for thelane covering problem that was first proposed
and analyzed empirically by Ergun et al. [5]. This algorithmrelies on a notion ofcost effectivenessof a cycleC, similar to the one used in the greedy set cover algorithm. Wedefine thecost effectivenessof a cycleC as
the ratio of the total length of edges inC \ L to the total length of the edges inC. Using this notation, the
algorithm can be stated as follows.

ALGORITHM 3.1.� While there is an edge inL, do the following

– Find the most cost-effective cycleC in the graph consisting of at mostk edges. If there is more
than one such cycle, pick one arbitrarily.

– PickC and remove its edges fromL.

Whenk is a constant, the number of cycles of sizek is at most a polynomial in the size of the graph, and
therefore Algorithm 3.1 can clearly be implemented in polynomial time. However, whenk is part of the input,
it is not clear how to implement this algorithm efficiently. More precisely, in order to establish a polynomial
running time for Algorithm 3.1, we need to show that it is possible to find the most cost-effective cycle in
polynomial time. This is done in the following lemma.

LEMMA 3.1. There is a polynomial time algorithm that given a graphG, a nonnegative length̀e for everye 2 E(G), a setL � E of lanes, and a parameterk computes the most cost-effective cycle inG of size at
mostk.

Proof. We denote the cost effectiveness of a cycleC by
(C), and the cost effectiveness of the most cost-
effective cycle inG of size at mostk by
(G). We first show how to check in polynomial time whether
(G) > R for a given valueR, and then use binary search to compute
(G). In order to check if
(G) > R,
we construct a weighted graphH that is the same asG, except the weight of the edges are defined differently.
Fore 2 E nL, we set the weight ofe in H toR`e. Fore 2 L, we set this weight to(R� 1)`e. It is easy to see
that any cycleC in G with
(C) > R corresponds to a cycle of negative weight inH . Therefore, checking
whether
(G) > R reduces to checking whether there exists a negative weight cycle inG of size at mostk,
which can be done in polynomial time (see [2], for example). Using this, we can do binary search to compute
(G) to any arbitrary precision. Assume, without loss of generality, that`e’s are integers, and letU denote the
sum of all`e’s in the graph. Since for everyC,
(C) is the sum of lengths of the edges inC\L divided by the
sum of lengths of the edges inC, the cost effectiveness of every cycle is a rational number with denominator
at mostU . Thus, for every two cyclesC andC 0, either
(C) =
(C 0), or
(C) and
(C 0) differ by more than1=U2. We know that12 �
(G) � 1. If we perform2 log(U) iterations of binary search, we can compute an
interval[a; b℄ of length at most1=U2 such that
(G) 2 [a; b℄. Thus, if we construct the graphH as described
above withR = b, then every cycle of negative weight inH will correspond to a most cost-effective cycle inG. We can find such a cycle in polynomial time.

3.1 Dual-fitting formulation of the algorithm. Here we present a different formulation of Algo-
rithm 3.1, that allows us to analyze it using the method of dual fitting. Before stating the algorithm, we present
an LP relaxation of the problem. In the following LP relaxation of the problem,C denotes the collection of all
cycles with at mostk edges inG, and for a cycleC, `C denotes

Pe2C `e.
minimize

XC2C `CxC (3.1)

subject to 8e 2 L : XC: e2C xC � 18C 2 C : xC � 0
The dual of this LP is the following:

3

maximize
Xe2L ye

subject to 8C 2 C : Xe2L\C ye � `C8e 2 L : ye � 0
Letting�e := ye=`e, we can write the above dual program as follows:

maximize
Xe2L `e�e (3.2)

subject to 8C 2 C : Xe2L\C `e�e � `C8e 2 L : �e � 0
We are now ready to describe the restatement of Algorithm 3.1in terms of the dual variables�e:

ALGORITHM 3.2.� Initialize�e’s to zero for alle 2 L.� Increase all�e’s at the same rate until one of the following events occur. Iftwo events happen at the
same time, break the tie arbitrarily.

– For a cycleC 2 C, sum of`e�e for all e 2 L \ C becomes equal tòC (In other words, the edges
in L \ C can pay for the cycleC with their dual variables). In this case, pickC, freeze the value
of �e for e 2 L \ C, and remove these edges fromL (i.e., these edges will not contribute to other
cycles any more).

As shown in the next section, the above formulation of the greedy algorithm enables us to use the technique
of dual-fitting in combination with a factor-revealing program to analyze the algorithm.

4 Analysis
The idea behind primal-dual algorithms is that the algorithm computes a solution for the problem (the primal
solution), together with afeasiblesolution for the dual linear program, so that the ratio of thecost of the two
solutions can be bounded by a factor�. Since by LP duality every feasible solution of the dual LP isa lower
bound on the cost of the optimal primal solution, this would imply that the algorithm has an approximation
factor of�.

Algorithm 3.2 computes a solution for the problem, and a solution �e for the dual LP such that the cost
of the primal solution is equal to the cost of the dual solution (

Pe2L `e�e). However,�e’s do not necessarily
constitute a feasible solution for the dual. The idea of dual-fitting [21] is to find a value� such that when we
divide all�e’s by �, we obtain a feasible dual solution. Since this feasible dual solution has cost equal to the
cost of the primal solution divided by� and is also a lower bound on the optimal value, this proves that the
algorithm is a�-approximation.

In order to find the best� for which the above analysis works, we use the technique of factor-revealing
programs [14]. This technique consists on proving several inequalities between various parameters in the
instance of the problem, and writing them as a maximization program, whose solution bounds the worst
value for�. We call this maximization program afactor-revealing program. Unlike [14], the factor-revealing
program that we get is non-linear. The final step of the analysis is to bound the solution of this program. This
is done in Section 4.2.

4

4.1 Deriving a factor-revealing program We give a bound on such� in terms of the solution of a
factor-revealing (nonlinear) program. Consider a cycleC 2 C, denote the edges ofL \ C by e1; e2; : : : ; ep
and their corresponding�e’s and`e’s by�1; : : : ; �p and`1; : : : ; `p, and let̀ C denote the total length of edges
in C (i.e., sum of̀ i’s plus the length of the edges inC n L). We would like to find a constant� such that
for all such cycles, we have1�Ppi=1 `i�i � `C . The best such constant is equal to the maximum of the ratio(Ppi=1 `i�i) =`C , where the maximum is taken over all such cyclesC in all instances of the lane covering
problem.

The idea is to prove several inequalities between�i’s, `i’s, and`C , and write them as the constraints
of a factor-revealing program (treating�i’s, `i’s and`C as variables) with(Ppi=1 `i�i) =`C as the objective
function. The solution of this maximization program gives us an upper bound on the best value of�.

We start by assuming, without loss of generality, that�1 � �2 � � � � � �p (4.3)

This means that Algorithm 3.2 first coverse1 at time�1, then coverse2 at time�2, and so on. Consider the
time t = �i, just before the algorithm coversei. At this moment, all of the edgesei; ei+1; : : : ; ep are not
covered yet, and therefore they are contributing toward thecycleC. The total value of this contribution istPj�i `j . This value cannot be greater than the length ofC, since otherwise we would have pickedC earlier
in the algorithm. Thus, for everyi we have the following inequality:�iXj�i `j � `C : (4.4)

Furthermore, each edgee is contained in a cycle of size two of length2`e, and it can pay for this cycle at most
at time2. Thus, Algorithm 3.2 never increases an�e beyond 2. So, for everyi,�i � 2: (4.5)

The last inequality is the metric inequality: for every edgeei in the cycle, the length of this edge is at most the
cost of the path between the endpoints ofei that uses the other edges of the cycle. Therefore, for everyi,`i � `C � `i (4.6)

Summarizing all the above inequalities, we get the following lemma.

LEMMA 4.1. Let zp denote the solution of the following maximization program,and let �k :=max1�p�kfzpg. maximize Ppj=1 `j�j`C (4.7)s:t: �1 � �2 � � � � � �p8i : �i � `CPj�i `j8i : �i � 28i : 2`i � `CpXj=1 `j � `C8i : `i � 0
Then Algorithm 3.2 is a�k-approximation algorithm.

Proof. By the above argument, for every cycleC with p edges inL, the values of̀ i’s, �i’s, and`C constitute
a feasible solution of the maximization program (4.7). Thus, (Ppj=1 `j�j)=`C � zp � �k . Therefore, if we
scale down all�e’s by a factor of�k, they will satisfy the constraints of the dual program (3.2). This means
that 1�k Pe `e�e is a lower bound on the value of the optimal solution. On the other hand, it is clear from the
description of Algorithm 3.2 that the cost of the solution isprecisely

Pe `e�e. Thus, Algorithm 3.2 always
outputs a solution whose cost is at most�k times the cost of the optimal solution.

5

4.2 Analyzing the factor-revealing program In this section we prove the following lemma.

LEMMA 4.2. For everyk, the value�k defined by the factor-revealing program (4.7) in Lemma 4.1 isat most1 + (k � 1) �1� 2�1=(k�1)�.
Proof. Without loss of generality we can scale all`e’s so that`C = 1. Therefore, the factor-revealing
program (4.7) can be written as follows.

maximize
pXj=1 `j�j

subject to �1 � �2 � � � � � �p (4.8)8i : �i � 1Pj�i `j (4.9)8i : �i � 2 (4.10)8i : `i � 12 (4.11)pXj=1 `j � 1 (4.12)8i : `i � 0 (4.13)

Let �i := 1Pj�i `j . Since`i’s are nonnegative,�i’s are nondecreasing. Thus, there exists an indexr,0 � r � p, such that�i < 2 for all i = 1; : : : ; r, and�i � 2 for i = r+1; : : : ; p. On the other hand, for everyi, we havè i = 1�i � 1�i+1 . Using this and inequalities (4.9) and (4.10), the objective function of the above
program can be bounded in terms of�i’s as follows:pXj=1 `j�j � rXj=1 `j�j + pXj=r+1 2`j= rXj=1(1�j � 1�j+1)�j + 2�r+1= r ���1�2 + �2�3 + � � �+ �r�r+1�+ 2�r+1

By definition ofr, �r � 2. Therefore, the above expression is a decreasing function of �r+1. On the other
hand, by the definition ofr, �r+1 � 2. Thus, the above expression can be bounded by:pXj=1 `j�j � r ���1�2 + �2�3 + � � �+ �r2 �+ 1� r � r��12 �1=r + 1;
where the last inequality follows from the inequality between geometric and arithmetic means. By inequality
(4.12),�1 � 1, and hence the above expression is at most1 + r �1� 2�1=r�. It is straightforward to see that
this is an increasing function ofr. By inequality (4.11),�p � 2 and thereforer � k � 1. Thus, the objective
function of the maximization program can be bounded by1 + (k � 1)�1� 2�1=(k�1)� :

6

The results of this section and the previous section be summarized in the following theorem.

THEOREM 4.1. For every fixedk, Algorithm 3.1 is a polynomial-time approximation algorithm for the lane
covering problem with an approximation ratio at most1 + (k � 1) �1� 2�1=(k�1)�. If k is part of the input,
the approximation ratio of this algorithm is at most1 + ln(2).
Proof. The theorem follows from Lemmas 4.1, 4.2, and 3.1, and the fact that for everyk, the value1 + (k � 1) �1� 2�1=(k�1)� is less than1 + ln(2) < 1:69, and tends to1 + ln(2) ask tends to infinity.

REMARK 1. It is worth noting that the only place inequality (4.11) of the factor-revealing program was used
was to show thatr � k � 1. This means that even if the lengths of the edges do not satisfy the triangle
inequality (but they are symmetric), our algorithm achieves an approximation ratio of1 + k(1 � 2�1=k) for
fixedk, and1 + ln 2 for generalk.

4.3 A Tight Example The factor-revealing program (4.7) suggests how one can finda tight example
for the algorithm. In this section, we use this approach to show that the approximation guarantee given by
Theorem 4.1 is asymptotically tight. We construct an example in which the cycles of the optimal solution
consist entirely of edges inL, but the algorithm still returns a sub-optimal solution. The idea is to place the
cycles of the optimal solution close together so that non-optimal cycles go tight as well, confusing the greedy
algorithm.

THEOREM 4.2. For every� > 0 there is an instance of the lane covering problem such that the ratio of the
cost of the solution found by Algorithm 3.2 to the optimal solution is at least1 + ln 2� �.
Proof. Let k be even and consider a(k=2)-regular bipartite graphH with girth at least2k (for existence of
such graphs, see for example [16]). By Konig’s theorem (see,for example, the graph theory textbook by
West [?]), H is (k=2)-edge-colorable. Below, we construct a new graphG by replacing each vertex ofH with
a cycle and adding edges between cycles corresponding to adjacent vertices inH . Cycles corresponding to the
vertices ofH will give an optimal cycle cover forG, while Algorithm 3.2 will only pick cycles corresponding
to the edges ofH .

Each vertex ofH is replaced by a directed cycle consisting ofk arcs of length1=k. LetB denote the set
of such cycles. The arcs of cycles inB form the setL. Fix a (k=2)-edge-coloring ofH with colors from� := f1; : : : ; k=2g. For each vertexv in H , color the arcs of the cycle corresponding tov with colors in�[f0g such that every other arc in the cycle is colored with 0 and every color in� is used exactly once in this
cycle. We would like to add non-lane edges between these cycles so that Algorithm 3.2 covers every color-i
arce 2 L at time �i = � k=(k � i+ 1) if i � 12 if i = 0:

To achieve this, for every edgeuv of color i in H , we add two parallel non-lane edges between the
endpoints of the color-i arcs in the cycles corresponding tou andv. More precisely, if the color-i arcs in
these two cycles areaubu andavbv we add two non-lane edges, one betweenbu andav , and one betweenbv andau, each of length i�1k(k�i+1) . This creates a cycleaubuavbv. Let Ai denote the set of such cycles.

The length of a cycleaubuavbv in Ai is 2k + 2(i�1)k(k�i+1) = 2k�i+1 , so Algorithm 3.2 picks this cycle at timek=(k� i+1), assuming neither arcaubu noravbv is covered at an earlier time. Thus, color-i arcs are covered
by time k=(k � i + 1). Let G denote the resulting graph. See Figure 1 for an example whenk = 6. An
instance of the lane covering problem is obtained by settingthe length of all edges to the length of the shortest
path between their endpoints in the underlying undirected graph ofG.

We show that no cycles in the above instance other than those in [k=2i=1Ai are picked by Algorithm 3.2 at

any time before2. For the sake of contradiction, assume there is a cycle outside[k=2i=1Ai that is picked by the
algorithm at a time before2. LetC be the first such cycle,� be the time at whichC is picked,l be the number
of edges ofC that are inL at time�, andk be the total number of edges inC. Suppose thatC 62 B, and sol � k � 1. Let lC be the length of cycleC. The bound on� implies that:lC = �l=k < 2(k � 1)=k: (4.14)

7

2
0

5

43

3

61

16

1/300

1/30

1/6

1/6

1/6 1/6

1/6 1/6

1/6
1/6

1/6
1/121/12

2
5

4

Figure 1: A local view of the construction fork = 6.

Consider the cycleC 0 of G such thatC is obtained by shortcutting some edges ofC 0 (i.e.,C 0 has the same
length asC and visits the same set of lane edges). Without loss of generality, we may assumeC 0 is simple
(i.e. does not repeat a vertex). Let
1; : : : ;
m be the cycles inB which have a vertex in common withC 0.
Since every vertex inG is adjacent to three edges,C 0 must intersect each
i in an edge.

Consider the subgraphH 0 of H induced by the set of verticesv1; : : : ; vm corresponding to cycles
1; : : : ;
m. Each edge of
i has length1=k, and soC 0 has length at leastm=k. This, together with
inequality (4.14), implies thatm < 2k. Thus, sinceH has girth at least2k, H 0 must be acyclic. Therefore, ifH 0 has more than one vertex, it contains a leaf, sayvr. Let vs be the unique vertex inH 0 adjacent tovr andi
be the color of the edgevrvs. SinceC 0 is simple, it intersects
r in either one edge (the color-i edge) ork� 1
edges. IfC 0 intersects
r in just its color-i edge, then the cycle which visits the color-i edge of
s instead of
the color-i edge of
r has shorter total length and covers the same number of lane edges (this is becauseC
is the first cycle not in[k=2i=1Ai that is picked by Algorithm 3.2). Thus, without loss of generality, we may
assumeC 0 intersects
r in k � 1 edges, each of which has length1=k. SinceH 0 is acyclic, it must either have
at least two leaves or be a single vertex. IfH 0 has at least two leaves, thenlC � 2(k � 1)=k, contradicting
inequality (4.14). IfH 0 is a single vertex corresponding to a cycle
 andC 0 does not traverse the entire cycle
, then the length ofC 0 is at least twice the number of lane edges covered byC 0, and so� � 2.

Thus, the only cycles that can be picked by Algorithm 3.2 at a time earlier than 2 are cycles inAi and
cycles inB. The algorithm can pick any cycle inA1 or in B at time�1 = 1. Suppose it picks all cycles inA1 at this time. Thus, all cycles inB now have onlyk � 1 lane edges and so can not be picked before timek=(k� 1). Next, at time�2 = k=(k� 1), the algorithm can pick any cycle inA2 or inB. Suppose it picks all
cycles inA2. We can continue like this until time�k=2, when the algorithm picks all cycles inAk=2. Finally,
at time2, the algorithm covers the remaining lane edges (the arcs of color 0) using cycles with two edges.

Therefore, Algorithm 3.2 buys all cycles in[k=2i=1Ai along with a bunch of cycles with two edges and

spends
Pk=2i=1 �ik + k2 � �0k per cycle inB, whereas the optimal solution spends 1 per cycle inB. Thus, the

greedy solution costs� times more than the optimal solution, where� is� = k=2Xi=1 1k � i+ 1 + 1 = 1 + Hk �Hk=2:
This tends to1 + ln 2 ask tends to infinity.

Theorem 4.2 shows that our analysis is asymptotically tight. For the case ofk = 3, our analysis is also
tight. Again, we can use the factor-revealing program to construct an example and prove that factor3�p2 is
tight for this algorithm. The example is depicted and described in Appendix.

8

5 Covering with small cycles
As Figure 3 shows, the approximation factor of Algorithm 3.1can be as bad as3�p2 � 1:59 whenk = 3. In
this section, we show how to improve this factor. The idea is to grow thebudgetof each edgee in Algorithm 3.2
at a rate proportional tòre, for somer > 1, instead of growing it at a rate proportional to`e.maximize Ppj=1 `rj�j`C (5.15)s:t: �1 � �2 � � � � � �p8i : �i � `CPj�i `rj8i : �i � 2lr�1i8i : 2`i � `CpXj=1 `j � `C8i : `i � 0
For r = 1:18, numerical results indicate that the approximation factorof the resulting algorithm fork = 3
is at most1:54, and thus it performs better than Algorithm 3.1 in the worst-case. Fork = 4 andk = 5, the
approximation factor improves to1:59 and1:62 from 1:61 and1:63, respectively.

In the tight example given in Theorem 4.2, the length of all lane edges are equal, so this algorithm can not
improve the approximation factor of Algorithm 3.2 whenk is not a constant.

6 Extensions
In this section, we show that our algorithmic ideas can be adapted to solve related covering problems a well.
We study two problems in particular: the length-constrained lane covering problem, and the cycle cover
problem with simple short cycles.

6.1 Length-constrained lane covering problemRecall that in the length-constrained lane covering
problem, an additional inputB is given, and the objective is to cover the lanes with cycles with at mostk edges
andtotal length at mostB. The following theorem shows that Algorithm 3.1 gives a(1+ ln 2)-approximation
for this problem.

THEOREM 6.1. Algorithm 3.1 is a polynomial-time(1 + ln 2)-approximation algorithm for the length-
constrained lane covering problem.

Proof. In order to use Algorithm 3.1, we need to find the most cost effective cycle of length at mostB. Similar
to the proof of Lemma 3.1, for a givenR we need to check if the cost effectiveness of a cycle inG is greater
thanR or not. We construct a new graphH whose edges have the same lengths as inG. We set the cost of
an edgee 2 E(H) to be
(e) = R`e for e 2 E(H)nL and
(e) = (R � 1)`e for e 2 L. In order to check
if there is a cycle of length at mostB with cost effectivenessR in G, we need to check if there is a cycle of
length at mostB with negative cost inH , or, equivalently, find cheapest length-constrained pathsin H .1 If
costs are from polynomially bounded integer numbers, we cansolve this problem optimally using dynamic
programming. Thus, by rounding the costs to multiples of� we can check if there exists a path of cost at
mostn� with length at mostB (wheren is the number of vertices in the graph). LetU be the maximum
length of a lane edge. We prove that the running time of this algorithm isO(poly(n)n2U�). Note that for an
edgee 2 EnL, if `e � nU , edgee cannot be on any path of negative cost; thus we can set the costof this
edge
(e) = RnU instead ofR`e. With this modification, the cost of any path is at mostn2U . Thus the
running time is at mostO(poly(n)n2U�). We set� = �0Un2jLj for some constant�0 > 0 to get a polynomial time

1This problem is known as the shortest weight-constrained path problem and is NP-complete [7]. However, pseudopolynomial-time algorithms and
FPTAS’s are known for this problem [10].

9

algorithm to check if there is a cycle of length at mostB with the cost at mostn� = �0UnjLj . Similar to the proof
of Lemma 3.1, we use binary search to find the maximum value ofR for which there is cycle of length at mostB and cost at mostn�. We can find such cycle in polynomial time. Using this method of finding the most
cost-effective cycle, instead of inequality 4.4 in the factor-revealing program, we have�iPj�i `j � `C +n�.
We know that� = �0UnjLj � �0OPTnjLj . Thus,�i � `C + �Pj�i `j � `CPj�i `j + �0OPT`injLj
By setting�0e = �e � �0OPT`enjLj , �0e’s satisfy all inequalities of factor-revealing program 4.7; thus

Pe2L �e`e =(Pe2L �0e`e)+ �0jLjOPTnjLj � (1+ln 2+ �0n)OPT. This proves that the approximation factor of this polynomial-
time algorithm is at most(1 + ln 2).
6.2 Cycle cover with simple short cyclesOur techniques also give results on thebounded cycle cover
problem [11]. In the bounded cycle cover problem, we look for cycles of size at mostk with the added
restriction that the cycles aresimple, i.e., do not repeat any edge. We show that an algorithm similar to
Algorithm 3.1 gives anO(ln k)-approximation for the bounded cycle cover problem in the special case of
uniform graphs. To the best of our knowledge, this is the firstapproximation known for this problem.

Given a graphG, our algorithm first checks that the instance is feasible (i.e., that every edge is in a cycle
of size at mostk). Then it greedily selects the most cost-effective feasible cycle and iterates until all edges are
covered by a cycle in the solution set. As in Lemma 3.1, this can be done in polynomial time, even with the
added restriction that cycles be simple.

We follow the analysis in Section 4. First, we derive inequalities for the factor-revealing program. Fix a
cycleC of the optimal solution. Our input graph is no longer a complete bidirected graph, so we no longer
have the inequality�i � 2. However, by the feasibility of the instance, we know that each edge is in a cycle
of size at mostk. Therefore,�i � k. Furthermore, the graph is uniform, so after scaling`i = 1p wherep is the
size of the cycleC. Thus,�iPj�i `i � 1 implies�i � pp�i+1 . From these inequalities, it is easy to see thatpXi=1 `i�i � pXi=1 1p min(pp� i+ 1 ; k)= sXi=1 pp� i+ 1 + pXi=s kp= H(p+ 1)�H(pk) + 1= O(ln k)
wheres = 1 + (k�1k)p andH is the harmonic series.

7 Lower Bounds
In this section, we prove APX-hardness of the lane covering problem via a reduction from a version of the
maximum satisfiability problem,5-OCC-MAX-3SAT, defined below. In our reduction, all edges of the graph
whose lengths are not given by the underlying path metric arelane edges, and so this result actually proves
that any variant of the Chinese postman problem which constrains the size or length of covering cycles, such
as the bounded cycle cover problem mentioned in the introduction, is APX-hard.

Our reduction is based on a reduction used by Holyer [12] to prove NP-hardness of some edge-partitioning
problems. Given a satisfiability formula, Holyer constructs a series of graphs for every variable and clause.
Each graph is an edge-disjoint union of directed triangles.The triangles are arranged such that the graph can be
partitioned in exactly two ways into disjoint triangles – namely by taking all clockwise or all counterclockwise
triangles. By gluing these graphs together in a structure asdictated by the satisfiability formula, Holyer forces
the orientation of the partitionings of variable and clausegraphs to be coordinated. Thus if the formula is
unsatisfiable, the resulting graph will have no triangle partitioning.

10

1

2

3

4

5

6

7

6

6

6

2
2

2

22

2

2

6

6

6

6

(a)k = 3
1 2

36

5 4

7

x

y

z

(b) k = 4
Figure 2: Integrality gap examples.

We adapt this proof to work for our setting, using the maximumsatisfiability problem5-OCC-MAX-3SAT
in order to prove an APX-hardness result. In an instance of the 5-OCC-MAX-3SAT problem, we are given
a CNF formula withn variables andm = 5n3 clauses of exactly three literals in which each variable occurs
exactly five times, and we want to find a truth assignment satisfying the maximum number of clauses. Fiege [6]
proved that it is NP-hard to distinguish between a 5-OCC-MAX-3SAT instance in which all the clauses can
be satisfied and one in which at most ab fraction of the clauses can be satisfied for some constantb.

We use the notation and definitions of Holyer. Let graphH3;n be a graph withn3 verticesV =f(x1; x2; x3) 2 f0; 1; 2gnjP3i=1 xi = 0(modn)g. Let ((x1; x2; x3); (y1; y2; y3)) be an edge inH3;n
whenever there existi and j such thatxk = yk(modn) for k 6= i; j and yi = (xi + 1)(modn) andyj = (xj + 1)(modn). It is easy to check that the edges ofH3;n can be partitioned in exactly two ways
into triangles. We call these two partitionings a T-partitioning and an F-partitioning. A patch is a subgraph
of H3;n which consists of a triangle and the three triangles that share an edge with this triangle. We call the
patch a T-patch if the central triangle is from a T-partitionand F-patch otherwise. We orient the edges ofH3;n
in such a way that all triangles of a T-partitioning are oriented clockwise and all triangles of an F-partitioning
are oriented counterclockwise. Call the resulting directed graphD3;n. It is easy to check that there are exactly
two distinct edge-partitioning ofD3;n into directed triangles. For the proof, see Appendix.

THEOREM 7.1. The lane covering problem is APX-hard for any constantk.

7.1 Integrality gap. Although Theorem 4.2 shows that Algorithm 3.1 is asymptotically tight, there
might be a better LP-based rounding algorithm for the set cover LP formulation. We can lower bound the
approximation ratio of any such algorithm by analyzing the integrality gap of the set cover LP, LP 3.1

For k = 3, consider the union of two cycles of size7 with edge lengths as specified in Figure 2(a). It is
not hard to check that the optimal fractional solution of theLP for this example is 61.25 and optimal integral
solution is 67. Thus, the integrality gap is6761:25 � 1:09. We acheive our best lower bound of1:15 for the
integrality gap whenk = 4. In this case, the example is the union of squares and triangles such that every
edge is in exactly two cycles of size at most4 (see Figure 2(b)).

Acknowledgements. We would like to thank Ozlem Ergun for introducing us to this problem and Michel
Goemans for helpful comments.

References

11

[1] M. Blaser and B. Siebert. Computing cycle covers withoutshort cycles. InProceedings of the 34st
Annual European Symposium of Algorithms, 2001.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, 2nd edition, 2001.

[3] J. Edmonds and E. Johnson. Matching euler tours and the chinese postman problem.Mathematical
programming, 5:88–124, 1973.

[4] Ozlem Ergun, Gultekin Kuyzu, and Martin Savelsbergh. Collaborative logistics: The shipper collabora-
tion problem. submitted to Computers and Operations Research Odysseus 2003 Special Issue, 2003.

[5] Ozlem Ergun, Gultekin Kuyzu, and Martin Savelsbergh. The lane covering problem. manuscript, 2003.
[6] U. Feige. A threshold oflnn for approximating set cover.Journal of the ACM, 45:634–652, 1998.
[7] M. R. Garey and D.S. Johnson.Computers and Intractability. W. H. Freeman and Company, 1979.
[8] O. Goldschmidt, D. Hochbaum, C. Hurkens, and G. Yu. Approximation algorithms for thek-clique

covering problem.SIAM Journal of Discrete Math., 9(3):492–509, 1996.
[9] M. Guan. Graphic programming using odd and even points.Chinese Mathematics, 1:273–277, 1962.

[10] R. Hassin. Approximation schemes for the restricted shortest path problem.Math. Operation Research,
17:36–42, 1992.

[11] D. Hochbaum and E. Olinick. The bounded cycle-cover problem. INFORMS Journal on Computing,
13(2):104–119, 2001.

[12] Holyer. The np-completeness of some edge partitioningproblems.SIAM journal of Computing, 10:713–
717, 1981.

[13] A. Itai, R.J. Lipton, C.H. Papadimitriou, and M. Rodeh.Covering graphs by simple circuits.SIAM
Journal on Computing, 10:746–750, 1981.

[14] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani. Greedy facility location algorithms
analyzed using dual fitting with factor-revealing lp.Journal of the ACM, 50(6):795–824, November
2003.

[15] J. Kennington, V. Nair, and M. Rahman. Optimization based algorithms for finding minimal cost ring
covers in survivable networks.Computational Optimization and Applications, 14(2):219–230, 1999.

[16] F. Lazebnik and V.A. Ustimenko. Explicit constructionof graphs with arbitrary large girth and of large
size.Discrete Applied Mathematics, 60:275–284, 1995.

[17] Christos H. Papadimitriou. On the complexity of edge traversing.Journal of the ACM, 23(3):544–554,
1976.

[18] B. Rachavachari and J. Veerasamy. A 3/2-approximationalgorithm for the mixed postman problem.
SIAM journal of Disc. Math., 12:425–433, 1999.

[19] J.B. Slevinsky, W.D. Grover, and M.H. MacGregor‘. An algorithm for survivable network design
employing multiple self-healing rings. InGLOBECOM ’93, pages 1568–1573, 1993.

[20] C. Thomassen. On the complexity of finding a minimum cycle cover of a graph.SIAM journal of
computing, 26:675–6777, 1997.

[21] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2001.
[22] C.Q. Zhang.Integer flows and cycle cover of graphs. Marcel Dekker, Inc, 1997.

Appendix
The tight example for k = 3 From the analysis of this program, we know that the worst casefor a cycle of
lane edges occurs when the first edge is picked at time1, the second edge at time

p2, and the third edge at time2. It is easy to check that this situation occurs for the graph in Figure 3 witha = 1�p2=2, b = p2=2� 1=2,
 = 1=2, andd = 3� 2p2. The solid edges in this figure correspond to lanes, and the length of an edge not
drawn in this picture is taken to be the length of the shortestpath between its endpoints. The optimal solution
for this example picks the cyclesuwx andywv and at a total cost of2(a+ b +
) = 2. Algorithm 3.2 might
pick the cycleuwv at time1, the cycleywx at time

p2, and the cyclesxu andvy at time2. This solution has
a total cost of2a+ 2b+ 4
+ d = 6� 2p2. Therefore, the solution found by Algorithm 3.2 on this example
costs3 �p2 � 1:5857 times the optimal solution cost, matching the upper bound given in Theorem 4.1 fork = 3.
Proof of Theorem 7.1

Proof. Consider an instanceI of the 5-OCC-MAX-3SAT problem withn variablesx1; : : : ; xn andm = 53n
12

c

a

a

c

b

b

0 d

u

v
w

x

y

Figure 3: Tight example fork = 3.

clausesC = (C1; : : : ; Cm) where clauseCj consists of literalslj;1 andlj;2 andlj;3. From this instance, we
construct the following directed graph. Corresponding to each variablexi, we put a copyXi of the graphD3;6. Corresponding to each clauseCj , we put three copiesCj;1 andCj;2 andCj;3 of the graphD3;4. We join
the graphsXi andCj;k for 1 � i � n, 1 � j � m and1 � k � 3 as follows: Iflj;k is equal toxi, merge an
F-patch ofXi with an F-patch ofCj;k. If lj;k is equal to�xi, merge a T-patch ofXi with an F-patch ofCj;k.
For everyj, we also merge one F-patch from each ofCj;1, Cj;2, andCj;3 and remove the edges of the central
triangle in the resulting F-patch. Note that since each variable appears in at most five clauses, we can choose
all joining F- and T-patches to be disjoint from each other. We call the resulting directed graphDI .

We first prove the theorem fork = 3. Corresponding to the instanceI of the 5-OCC-MAX-3SAT problem
we will construct an instanceLI of the lane covering problem fork = 3 as follows. Let the setL of lane edges
be the set of edges ofDI with unit length and the length of the remaining edges of the graph be set according
to the shortest path metric of the underlying undirected graph. If there is a solution to this instance of the lane
covering problem whose covering cycles only use lane edges,we have the following facts:

FACT .1. If Cj;k is T-partitioned, it covers all the edges ofCj;k except the edges of the F-patch joiningCj;k
with the otherCj;k0 ’s. In particular, in order to cover all the edges corresponding to clauseCj with lane
edges, at least one ofCj;1, Cj;2, orCj;3 should be F-partitioned.

FACT .2. If lj;k = xi, then it is not possible thatCj;k andXi are both F-partitioned. Iflj;k = �xi, then it is
not possible thatCj;k is F-partitioned andXi is T-partitioned.

Together, these facts imply:

FACT .3. Edges ofCj;1, Cj;2 andCj;3 can be partitioned into directed triangles if and only if at least one of
the corresponding literalslj;1, lj;2 andlj;3 is true.

ThusI is satisfiable if and only if the covering cycles of the optimum solution to the lane covering problem
only use lane edges. LetE(Xi) be the set of all edges ofD3;6 corresponding toXi except the edges of five the
F- and T-patches joiningXi to theCj;k ’s; E(Cj) be the set of all the edges of the threeD3;4’s for Cj;1, Cj;2,
andCj;3 except the edges joining theCj;k ’s to theXi’s; andE(Lij) for i, j such thatxi is in clauseCj be
the set of edges of the patch mergingXi andCj;k. Thus,E(Xi), E(Cj), andE(Lij) for 1 � i � n and1 �j � m form a partition of the edges ofDI , and soI is satisfiable if and only if the cost OPT of the optimum
solution to the instanceLI is OPT= jE(DI)j = mjE(Cj)j + njE(Xi)j + 3mjE(Lij)j =
1m for some
constant
1. For each unsatisfied clause, a cycle covering using just lane edges leaves at least one lane edge
uncovered. We can cover this leftover edge with a two-cycle,incurring one additional unit of length. Thus,
there is a truth assignment in which at leastbm clauses are satisfied only if OPT< jE(DI)j+(1�b)m =
2m
for some constant
2 >
1.

Let A be an�-approximation algorithm for the lane covering problem with � <
2
1 . We will useA to
design an algorithmA0 which, given an instanceI of the 5-OCC-MAX-3SAT problem, distinguishes between
“yes” instances (I is satisfiable) and “no” instances (at mostb fraction of clauses can be satisfied). The
algorithmA0 simply callsA on the instanceLI and outputs yes if the resulting solution costs at most
2m and

13

“no” otherwise. It is not hard to see thatA0 correctly distinguishes between “yes” and “no” instances.Since
this is NP-hard, it follows that it is NP-hard to approximatethe lane covering problem within a factor of
2
1 .

To extend the APX-hardness for any constantk, addk�2 vertices on each edge on one of three dimensions
in D3;n. The inapproximability result still holds, since the number of edges in the extendedD3;6 andD3;4 is
still a constant.

Example for the integrality gap

Example for k = 4. In this example we show that the integrality gap of the set cover LP fork = 4 is at
least1513 � 1:15. Consider the instance sketched in Figure 2(b) on7 vertices,v1; : : : ; v7. Suppose all edges in
the figure are lane edges and the lengths of the undrawn edges can be computed via the induced metric in the
underlying undirected graph. For some constantsx, y, andz to be fixed later, let the interior edgesv1v7, v7v2,v3v7, v7v4, v5v7, v7v6 have lengthx, the hexagonal edgesv2v1, v2v3, v4v3, v4v5, v6v5, v6v1 have lengthy,
and the exterior edgesv3v6, v5v2, v1v4 have lengthz.

Notice each edge of lengthx is in precisely two cycles of size3. For example, edgev1v7 is in the cyclev1v7v2 and the cyclev1v7v6. Each edge of lengthy is in one cycle of size3 and one cycle of size4. For
example, edgev2v1 is in cyclev2v1v7 and cyclev2v1v4v5. Each edge of lengthz is in precisely two cycles of
size4. For example, edgev3v6 is in cyclev3v6v5v2 and cyclev3v6v1v4. Therefore, by assigning weight1=2
to each size3 and size4 cycle, the fractional solution can cover each lane edge without using any non-lane
edges. Thus, the cost of the optimal fractional solution is6x+ 6y + 3z (the sum of all lane edge lengths).

However, there is no cycle cover in this graph that uses cycles of size at most4 (since there are no size2 cycles, any such cover would need to have5 cycles of size3 or 3 cycles of size4 and1 cycle of size3
in order to cover all15 edges exactly once, but it is easy to check that the graph doesnot contain5 disjoint
cycles of size3 or 3 disjoint cycles of size4). Consider the following three integral solution types: the
solutions containing one perfect square and two perfect triangles, for example,v2v1v4v5, v6v1v7, v2v3v7,v3v6v5v7, v7v4v3 add just two typex edges (v7v3 andv3v7 in this example). The solutions containing three
perfect triangles, for example,v2v1v7, v4v3v7, v6v5v7, v2v1v4v5, v3v6v1v2, add just two typey edges, (v2v1
andv1v2 in this example). The solutions contain three imperfect squares and three imperfect triangles, for
example,v2v1v4v5, v2v3v6v5, v4v3v6v1, v1v7v4, v5v7v2, v3v7v6 add just six typez edges. The union of the
cycles in any valid integral solution should form an Eulerian tour, and so every vertex’s in degree should equal
its out degree. Thus, any integral solution must add an even number of edges of each type, and so the optimal
integral solution should be one of the above three typesno matter how we setx, y, andz (of course, we must
check that there is no integral solution adding just2 or 4 typez edges, but this can easily be checked by hand).
Therefore, the optimal integral solution costsmin(8x+ 6y + 3z; 6x+ 8y + 3z; 6x+ 6y + 9z).

Settingx = 1=2, y = 1=2, andz = 1=6 maximizes the ratio of the integral and fractional solutions and
yields an integrality gap of1513 � 1:15. �

14

