Cycle cover with short cycles

Nicole Immorlica Mohammad Mahdian Vahab S. Mirrokni

Abstract

Cycle covering is a well-studied problem in computer scgenin this paper, we develop approximation
algorithms for variants of cycle covering problems whiclubd the size and/or length of the covering cycles.
In particular, we give g1 + In 2)-approximation for the lane covering problem [4, 5] in wetegh graphs
with metric lengths on the edges and @fin k) approximation for the bounded cycle cover problem [11]
with cycle-size bound: in uniform graphs. Our techniques are based on interpretiggeedy algorithm
(proposed and empirically evaluated by Ergun et al. [4, S]aadual-fitting algorithm. We then find the
approximation factor by bounding the solution of a fac®realing non-linear program. These are the first
non-trivial approximation algorithms for these problenWde show that our analysis is tight for the greedy
algorithm, and change the process of the dual-fitting allgarito improve the factor for small cycle bounds.
Finally, we prove that variants of the cycle cover probleniclitbound cycle size or length are APX-hard.

1 Introduction

Given a graph and a subset of marked elements (nodes, edgesne combination thereof), a cycle cover
problem seeks to find a minimum length set of cycles whoseruaamtains all marked elements. Many
practically important problems in routing and navigatiande formulated as cycle cover problems with
additional constraints on the set of cycles in the solution.

One commonly studied cycle cover problem is €t@nese postman problefirst introduced in 1962 by
Guan [9], in which the objective is to cover every edge attlease by a (not necessarily simple) cycle of
minimum length. Besides its obvious application to maihd®ly in China, this problem finds application in a
variety of routing problems such as robot navigation anglsriow plowing planning.

In many applications of the Chinese postman problem, artiaddl constraint naturally arises on the size
or length of the cycles. For example, a group of companiehimignt to design a set of trucking routes
(cycles) of minimum cost that satisfy all their shippingue@gments (i.e., traverses a set of given edges) and
obey union regulations which limit the driving time and nwniof stops each trucker can make [4, 5]. In
graph theoretic terms, this translates to covering all oresof the edges of a given graph with cycles, with an
upper bound on the size (i.e., number of edges) or length @@l distance) of each covering cycle. Another
application arises in the design of fault-tolerant optizetworks. In this application, studied by Hochbaum
and Olinick [11], the objective is to find a backup path formgvedge of the network, so that when a link of
the optical network fails, the network can route traffic ardthe fault without increasing the size (and hence
the errors) of the transmission by more than a bounded amdhig reduces to covering the graph with short
cycles with an additional constraint that the cycles shbaldimple.

Although the Chinese postman problem is polynomially solean directed and undirected graphs, any
variant which places a constant upper bound on the size gtHeaf the covering cycles is NP-hard [5]. In
fact, we will show that these variants are APX-hard.

In this paper, we study approximation algorithms for thelyem of finding cycles of bounded size that
cover a subset of the edges of a graph. We usually assume gleelestths of the graph form a metric.
This problem is also known as thane covering problenf4, 5]. To the best of our knowledge, the only
approximation algorithm known for this problem is a triviazlapproximation algorithm that covers each
edge with a cycle of size 2. We show that a greedy heuristipgged and empirically evaluated by Ergun

*Computer Science and Atrtificial Intelligence Lab, MIT, Caide, MA 02139. Email{nickle,mahdian,mirrokni} @theory.lcs.mit.edu.

et al. [4, 5] can be interpreted as a dual-fitting algorithnwinich edges grow their dual variables at rate
proportional to their length (see [14] for a discussion @& tbchnique of dual-fitting). We use this fact, and a
factor-revealing non-linear program (see [14]) to show thi algorithm achieves an approximation factor of
14 (k—1)(1+2 Y/ =1) for constank, andl +1n(2) ~ 1.69if k is given as part of the input. This is the first
approximation algorithm that provably beats the triiapproximation algorithm. Using the factor-revealing
program, we show that our analysis is tight for this greedpathm. For small values df, we show how the
approximation factor of the algorithm can be improved byéasing dual variables at a rate than-linearly
depends on the length of the edges. In particularkfer 3 we show that the approximation factor can be
improved tol.54 from 3 — /2 ~ 1.59.

We also explore several variants of the problem and show hovalgorithm extends to these variants.
One problem that we will consider is the lane covering probith a constraint on the length, as well as the
size of the cycles. We show that for this problem our alganitfives the same approximation factdr{1n 2).
Another problem, called thieounded cycle cover probleinas the additional restriction that cycles should be
simple as well as of bounded size [11]. For this problem, gpreach gives the firgd(ln k)-approximation
algorithm.

We also prove that cycle cover problems which place a bountti@size or length of the cycles is APX-
hard. Our proof uses a construction of Holyer [12]. We alsavprintegrality gaps in the set cover linear
programming formulation of the lane covering problem.

Related Works. Cycle cover problems in graphs have been studied extegdiagh a combinatorial
standpoint. The book of Zhang [22] reviews much of this &itare. The Chinese postman problem was first
introduced by Guan [9]. Edmonds and Johnson [3] gave thepfilghomial time algorithms for the problem
in undirected graphs. Papadimitriou [17] proved that thabjem is NP-hard in mixed graphs. Raghavachari
and Veerasamy [18] gave 3 2-approximation for this instance of the problem. A variahtlee Chinese
postman problem, theinimum weight cycle cover probleadds the restriction that covering cycles must be
simple. This problem was shown to be NP-hard by ThomassénlfaDet al. [13] proved an upper bound on
the length of such a cycle cover faconnected graphs and gave an algorithm to find it. The baliogele
cover problem, which constrains cycles to be of boundedasizeell as simple, was introduced by Hochbaum
and Olinick [11] to solve an optical network design problérhey presented a heuristic for the problem along
with an empirical analysisRing coveringa related optical network design problem with a slightlfjestent
objective was proposed by Slevinsky et al. [19]. Kenninggbal. [15] present a heuristic to solve the problem.
The lane covering problem was introduced by Ergun et al.][AyBo gave a heuristic for the problem along
with an empirical analysis. A variant on the cycle coveringlgem which imposes a lower bound on the size
of each cycle has been studied as well [1]. Other coveringlpras include covering a graph by cliques [8].

Structure of the Paper. In Section 2, we give a formal statement of the lane coverimgplem. In
Section 3 we present the natural greedy algorithm and amdiyim Section 4. In Section 5, we present a
method that improves the approximation factor of our alponifor3 < £ < 5. In Section 6, we discuss two
related cycle covering problems to which we can apply ounrdées. Finally, in Section 7, we present our
APX-hardness result.

2 Problem statement

Let G = (V, E) be a complete bidirected graph. A nonnegative lerfgtls assigned to each edgec E.
These lengths are symmetric (i.€,, = ¢,, for everyu,v € V) and satisfy the triangle inequality (i.e.,
luy < Lyw + Ly fOr everyu, v, w € V). In thelane covering problenid, 5], we are given a subsét of
directed edges df calledlanesand an integek > 3. The objective is to find a collection of (not necessarily
disjoint) cycles that cover all edges bf each containing at mostedges, with minimum total length.

In another variant of the lane covering problem, kegth-constrained lane covering probldg#) 5], we
are also given a boun8 on the length of each covering cycle. The goal is to find a mimmength cycle
cover of L of cycles of length at mog® and size at mosk.

Except where noted, in this paper, we will focus on the langdag problem. However, as we will see
in Section 6, our algorithmic techniques and lower boungsyaip the more general length-constrained lane
covering problem as well.

3 The greedy algorithm

In this section we present a natural greedy algorithm forddine covering problem that was first proposed
and analyzed empirically by Ergun et al. [5]. This algorithelies on a notion ofost effectivenegss a cycle

C, similar to the one used in the greedy set cover algorithmdéfime thecost effectiveness a cycleC as
the ratio of the total length of edges @ N L to the total length of the edges {ih. Using this notation, the
algorithm can be stated as follows.

ALGORITHM 3.1.
e While there is an edge i, do the following

— Find the most cost-effective cycl@ in the graph consisting of at moktedges. If there is more
than one such cycle, pick one arbitrarily.

— Pick C and remove its edges from

Whenk is a constant, the number of cycles of skzis at most a polynomial in the size of the graph, and
therefore Algorithm 3.1 can clearly be implemented in polyral time. However, wheh is part of the input,
it is not clear how to implement this algorithm efficiently.oké precisely, in order to establish a polynomial
running time for Algorithm 3.1, we need to show that it is pbksto find the most cost-effective cycle in
polynomial time. This is done in the following lemma.

LEMMA 3.1. There is a polynomial time algorithm that given a gragha nonnegative length. for every
e € E(G), asetL C E of lanes, and a parametdr computes the most cost-effective cycl&inf size at
mostk.

Proof. We denote the cost effectiveness of a cy€ldy ~(C'), and the cost effectiveness of the most cost-
effective cycle inG of size at most by v(G). We first show how to check in polynomial time whether
~v(G) > R for a given valueRr, and then use binary search to comput€). In order to check ify(G) > R,

we construct a weighted gragh that is the same a3, except the weight of the edges are defined differently.
Fore € E'\ L, we setthe weightof in H to Rl.. Fore € L, we set this weight toR — 1)/.. It is easy to see
that any cycleC' in G with y(C) > R corresponds to a cycle of negative weightdn Therefore, checking
whethery(G) > R reduces to checking whether there exists a negative weygle i G of size at most;,
which can be done in polynomial time (see [2], for examplejing this, we can do binary search to compute
~(@G) to any arbitrary precision. Assume, without loss of gentahat/.’'s are integers, and Iéf denote the
sum of all¢,.’s in the graph. Since for every, v(C) is the sum of lengths of the edgesiin L divided by the
sum of lengths of the edges @, the cost effectiveness of every cycle is a rational numbgr denominator

at mostU. Thus, for every two cycle§ andC’, eithery(C') = (C"), ory(C) and~(C") differ by more than
1/U?%. We know that; < (@) < 1. If we perform2log(U) iterations of binary search, we can compute an
interval[a, b] of length at most /U? such thaty(G) € [a,b]. Thus, if we construct the grapth as described
above withR = b, then every cycle of negative weight i will correspond to a most cost-effective cycle in
G. We can find such a cycle in polynomial time.

3.1 Dual-fitting formulation of the algorithm. Here we present a different formulation of Algo-
rithm 3.1, that allows us to analyze it using the method of fitieng. Before stating the algorithm, we present
an LP relaxation of the problem. In the following LP relaxatiof the problem¢ denotes the collection of all
cycles with at mosk edges in, and for a cycle”, /¢ denotesy . Le.

minimize Y lcac (3.1)
cec
subjectto Vee L: » o >1
C: eeC

vVCelC: zc >0

The dual of this LP is the following:

maximize Z Ye

eel
subjectto VC eC: Z Ye < Lo
ee LNC
Vee L: y. >0

Letting e, := y. /¢, we can write the above dual program as follows:

maximize Zfeae (3.2)
ecl
subjectto VC eC: Z lea, < Lo
ecLNC

YVeeL: a, >0
We are now ready to describe the restatement of Algorithnnxdrms of the dual variables. :

ALGORITHM 3.2.
e Initialize a.’s to zero for alle € L.

e Increase alk,’s at the same rate until one of the following events occutwtd events happen at the
same time, break the tie arbitrarily.

— ForacycleC € C, sum ofl.a. for alle € L N C becomes equal t&- (In other words, the edges
in L N C can pay for the cycl€’ with their dual variables). In this case, pi¢k freeze the value
of a, fore € L N C, and remove these edges frdn{i.e., these edges will not contribute to other
cycles any more).

As shown in the next section, the above formulation of thedyelgorithm enables us to use the technique
of dual-fitting in combination with a factor-revealing pragn to analyze the algorithm.

4 Analysis

The idea behind primal-dual algorithms is that the alganitomputes a solution for the problem (the primal
solution), together with éeasiblesolution for the dual linear program, so that the ratio ofc¢hst of the two
solutions can be bounded by a facforSince by LP duality every feasible solution of the dual LR iswer
bound on the cost of the optimal primal solution, this woulgply that the algorithm has an approximation
factor of \.

Algorithm 3.2 computes a solution for the problem, and a tsmiun, for the dual LP such that the cost
of the primal solution is equal to the cost of the dual solu(p’, . ; £.a.). Howevera.'s do not necessarily
constitute a feasible solution for the dual. The idea of dit@hg [21] is to find a value\ such that when we
divide all a.’s by A, we obtain a feasible dual solution. Since this feasibld dolation has cost equal to the
cost of the primal solution divided by and is also a lower bound on the optimal value, this provesttiea
algorithm is ak-approximation.

In order to find the besk for which the above analysis works, we use the techniqueabfaevealing
programs [14]. This technique consists on proving severadjualities between various parameters in the
instance of the problem, and writing them as a maximizaticogmam, whose solution bounds the worst
value forA. We call this maximization programfactor-revealing programUnlike [14], the factor-revealing
program that we get is non-linear. The final step of the amgalggo bound the solution of this program. This
is done in Section 4.2.

4.1 Deriving a factor-revealing program We give a bound on such in terms of the solution of a
factor-revealing (nonlinear) program. Consider a cycle C, denote the edges éfN C by ey, eq,... €,
and their corresponding.’s and/.'s by ay, ..., o, andéy, . .., £,, and let/ denote the total length of edges
in C (i.e., sum of¢;’s plus the length of the edges @ \ L). We would like to find a constant such that
for all such cycles, we havgg >P | lia; < Lc. The best such constant is equal to the maximum of the ratio
(>°F_, tiay) /Lc, where the maximum is taken over all such cyalésn all instances of the lane covering
problem.

The idea is to prove several inequalities betweel, ¢;'s, and/., and write them as the constraints
of a factor-revealing program (treating’s, ¢;’s and/ as variables) wit{>"_, ¢;a;) /¢ as the objective
function. The solution of this maximization program givessan upper bound on the best value\of

We start by assuming, without loss of generality, that

ap <ay<---<a (4.3)

This means that Algorithm 3.2 first covers at time«;, then coverg, at timeas, and so on. Consider the
time ¢ = «;, just before the algorithm covees. At this moment, all of the edges, ey, ..., e, are not
covered yet, and therefore they are contributing towardcttete C'. The total value of this contribution is
t Z]N ¢;. This value cannot be greater than the lengtty'p$ince otherwise we would have pick€dearlier
in the algorithm. Thus, for everywe have the following inequality:

Qa; Z 4 < Le. (4.4)
j>i
Furthermore, each edgés contained in a cycle of size two of lendtfi., and it can pay for this cycle at most
at time2. Thus, Algorithm 3.2 never increases@nbeyond 2. So, for every

The last inequality is the metric inequality: for every edgen the cycle, the length of this edge is at most the
cost of the path between the endpointg gthat uses the other edges of the cycle. Therefore, for eyery

b <lo—¢; (4.6)
Summarizing all the above inequalities, we get the follgpuemma.

LEMMA 4.1. Let 2z, denote the solution of the following maximization prograemd let A\, :=
maxi <p<{zp}.

P
maximize M (4.7)
Lo
s.t. a; Say <<y
. lo
Vi : a; <
t 2jsili
Vi : a; <2
Vi : 20; < le
P
> <t
j=1

Then Algorithm 3.2 is &,-approximation algorithm.

Proof. By the above argument, for every cydlewith p edges in, the values of;’s, «;'s, and/¢x constitute

a feasible solution of the maximization program (4.7). IH@?Z] liaj)/le < z, < Ag. Therefore, if we

scale down alk.’'s by a factor of\;, they will satisfy the constraints of the dual program (3 2)is means
that;—k > . lea. is alower bound on the value of the optimal solution. On tlreohand, it is clear from the
description of Algorithm 3.2 that the cost of the solutiompigcisely) , f.a.. Thus, Algorithm 3.2 always
outputs a solution whose cost is at magttimes the cost of the optimal solution.

5

4.2 Analyzing the factor-revealing program In this section we prove the following lemma.

LEMMA 4.2. For everyk, the value)\, defined by the factor-revealing program (4.7) in Lemma 4él imost
1+ (k—1)(1—271/k=1),

Proof. Without loss of generality we can scale élls so that/c = 1. Therefore, the factor-revealing
program (4.7) can be written as follows.

maximize Y /;a;

subjectto a3 <ax <<y (4.8)
1
Vi : a; < (4.9
' Zsz ﬁ]
Vi: a; <2 (4.10)
Vi : l; < % (4.11)
p
d o<1 (4.12)
j=1
Vi : £; >0 (4.13)
Let 8; = ﬁ Since/;’'s are nonnegativej;’'s are nondecreasing. Thus, there exists an ingex
0 <r < p,suchthap; < 2foralli =1,...,r,andB; > 2fori =r+1,...,p. Onthe other hand, for every
i, we havel; = % — B¢1+1 . Using this and inequalities (4.9) and (4.10), the objecfinction of the above

program can be bounded in terms®k as follows:

IN

P r P
ij()zj Zﬁ]ﬂ] + Z 223'
j=1 j=1

j=r+1
"1 1 2
= L g e,

B P Br>+ 2

N r_<g+g+”.+ﬂr+1 Bry1

By definition ofr, 5, < 2. Therefore, the above expression is a decreasing functiéng. On the other
hand, by the definition of, 3,.1 > 2. Thus, the above expression can be bounded by:

IN

B] BQ Br
T—<E+E+"'+?>+l

1/r
< r—r(%) +1,

where the last inequality follows from the inequality beeémegeometric and arithmetic means. By inequality
(4.12),41 > 1, and hence the above expression is at nestr (1 — 2*1/’). It is straightforward to see that
this is an increasing function ef By inequality (4.11)3, > 2 and therefore < k — 1. Thus, the objective
function of the maximization program can be bounded by

p
E i
=1

1+ (k1) (1 - 2*1/(’“*”) .

6

The results of this section and the previous section be suipetkn the following theorem.

THEOREMA4.1. For every fixed:, Algorithm 3.1 is a polynomial-time approximation algarit for the lane
covering problem with an approximation ratio at madst (k — 1) (1 — 2*1/(’“*1)). If k is part of the input,
the approximation ratio of this algorithm is at maist- In(2).

Proof. The theorem follows from Lemmas 4.1, 4.2, and 3.1, and the tfzat for everyk, the value
1+ (k—1)(1—27"*=1) s less tharl + In(2) < 1.69, and tends td + In(2) ask tends to infinity.

REMARK 1. Itis worth noting that the only place inequality (4.11) oétfactor-revealing program was used
was to show that < k£ — 1. This means that even if the lengths of the edges do notysé#tisftriangle
inequality (but they are symmetric), our algorithm ach&wee approximation ratio of + k(1 — 2~'/*) for
fixedk, and1 + In 2 for generalk.

4.3 A Tight Example The factor-revealing program (4.7) suggests how one canditight example
for the algorithm. In this section, we use this approach mnsthat the approximation guarantee given by
Theorem 4.1 is asymptotically tight. We construct an examplwhich the cycles of the optimal solution
consist entirely of edges if, but the algorithm still returns a sub-optimal solution.€Titlea is to place the
cycles of the optimal solution close together so that notiregd cycles go tight as well, confusing the greedy
algorithm.

THEOREMA4.2. For everye > 0 there is an instance of the lane covering problem such tratdtio of the
cost of the solution found by Algorithm 3.2 to the optimalsioh is at leastl + In 2 — e.

Proof. Let k be even and consider(&/2)-regular bipartite grapt with girth at leask (for existence of
such graphs, see for example [16]). By Konig's theorem (g@meexample, the graph theory textbook by
West [?]), H is (k/2)-edge-colorable. Below, we construct a new gréphy replacing each vertex &f with

a cycle and adding edges between cycles correspondinggoeadjvertices il . Cycles corresponding to the
vertices ofH will give an optimal cycle cover fof7, while Algorithm 3.2 will only pick cycles corresponding
to the edges ofi.

Each vertex off is replaced by a directed cycle consistingkadres of lengthl /k. Let B denote the set
of such cycles. The arcs of cycles B form the setL. Fix a(k/2)-edge-coloring ofH with colors from
¥ :={1,...,k/2}. For each vertex in H, color the arcs of the cycle correspondingitavith colors in
YU {0} such that every other arc in the cycle is colored with O andyss@lor in ¥ is used exactly once in this
cycle. We would like to add non-lane edges between thesegwd that Algorithm 3.2 covers every color-
arce € L attime

T if i = 0.
To achieve this, for every edgev of colori in H, we add two parallel non-lane edges between the
endpoints of the coloi-arcs in the cycles correspondingdcandwv. More precisely, if the colof-arcs in
these two cycles are, b, anda,b, we add two non-lane edges, one betwégranda,, and one between

b, anda,, each of Iengthk(,jji;l). This creates a cycle,b,a,b,. Let A; denote the set of such cycles.

The length of a cycler,bua,b, in A; is 2 + kf,f:.}r)]) = %, so Algorithm 3.2 picks this cycle at time

k/(k —i+ 1), assuming neither ag,b,, nora,b, is covered at an earlier time. Thus, cofarcs are covered
by timek/(k — i + 1). Let G denote the resulting graph. See Figure 1 for an example when6. An
instance of the lane covering problem is obtained by settindength of all edges to the length of the shortest
path between their endpoints in the underlying undirectagly ofG.

We show that no cycles in the above instance other than thasgf A; are picked by Algorithm 3.2 at
any time befor@. For the sake of contradiction, assume there is a cyclednm§ﬁ A; that is picked by the
algorithm at a time befor2. LetC be the first such cycley be the time at whicld’ is picked, be the number
of edges ofC that are inL at time«, andk be the total number of edgesin Suppose thaf’ ¢ B, and so
I <k —1. Letlc be the length of cycl€'. The bound orx implies that:

lo =al/k < 2(k—1)/k. (4.14)
7

_{kym—i+n ifi>1
2

2.0 1/6

3 4
1/6
1/
1/6 1
v
e {30
0
1/6 1
1 1/6 6
1/12 112
6 1/6 1

Figure 1: A local view of the construction fér= 6.

Consider the cycl€' of G such thatC' is obtained by shortcutting some edgegbfi.e.,C’ has the same
length asC' and visits the same set of lane edges). Without loss of gkiyevee may assumé€” is simple
(i.e. does not repeat a vertex). Lat ..., ¢, be the cycles inB which have a vertex in common witfi’.
Since every vertex id is adjacent to three edges, must intersect eact) in an edge.

Consider the subgrapi’ of H induced by the set of vertices, ..., v, corresponding to cycles
¢,-...,cm. Each edge of; has lengthl/k, and soC’ has length at least:/k. This, together with
inequality (4.14), implies that, < 2k. Thus, since has girth at leastk, H' must be acyclic. Therefore, if
H' has more than one vertex, it contains a leaf,sayLet v, be the unique vertex ifl’ adjacent ta, andi
be the color of the edge.v,. SinceC’ is simple, it intersects, in either one edge (the coléredge) ork — 1
edges. IfC’ intersects:, in just its colori edge, then the cycle which visits the cologdge ofc, instead of
the colors edge ofc, has shorter total length and covers the same number of lagesdthis is becausgé
is the first cycle not imfﬁAi that is picked by Algorithm 3.2). Thus, without loss of gealitly, we may
assumé”’ intersects:, in k — 1 edges, each of which has lengtht. SinceH' is acyclic, it must either have
at least two leaves or be a single vertexHlf has at least two leaves, thén > 2(k — 1)/k, contradicting
inequality (4.14). IfH' is a single vertex corresponding to a cyclandC’ does not traverse the entire cycle
¢, then the length of” is at least twice the number of lane edges covere@hynd sax > 2.

Thus, the only cycles that can be picked by Algorithm 3.2 atree tearlier than 2 are cycles in; and
cycles inB. The algorithm can pick any cycle iA; or in B at timea; = 1. Suppose it picks all cycles in
A; at this time. Thus, all cycles i8 now have onlyk — 1 lane edges and so can not be picked before time
k/(k—1). Next, attimexs = k/(k — 1), the algorithm can pick any cycle i, or in B. Suppose it picks all
cycles inA,. We can continue like this until timey, /», when the algorithm picks all cycles iy, /. Finally,
at time2, the algorithm covers the remaining lane edges (the arcslof 6) using cycles with two edges.

Therefore, Algorithm 3.2 buys all cycles Lﬂfﬁ A; along with a bunch of cycles with two edges and
spendszfﬁ T+ § - 9 per cycle inB, whereas the optimal solution spends 1 per cycl&inThus, the
greedy solution costs times more than the optimal solution, wherés

k/2
; Roaal T T T e
This tends tal + In 2 ask tends to infinity.

Theorem 4.2 shows that our analysis is asymptotically tiflor the case ok = 3, our analysis is also
tight. Again, we can use the factor-revealing program testraict an example and prove that facior /2 is
tight for this algorithm. The example is depicted and déxatiin Appendix.

8

5 Covering with small cycles

As Figure 3 shows, the approximation factor of Algorithm 8ah be as bad & /2 ~ 1.59 whenk = 3. In
this section, we show how to improve this factor. The idea grow thebudgeof each edge in Algorithm 3.2
at a rate proportional t, for somer > 1, instead of growing it at a rate proportionalto

p o

o
maximize e L A (5.15)
1%,
s.t. ap Say << q
lo
Vi : a; < —
iji 5]
2
li
Vi : 20; < le
P
> <t
j=1

Forr = 1.18, numerical results indicate that the approximation facfothe resulting algorithm fok = 3
is at mostl.54, and thus it performs better than Algorithm 3.1 in the warase. Fok = 4 andk = 5, the
approximation factor improves 59 and1.62 from 1.61 and1.63, respectively.

In the tight example given in Theorem 4.2, the length of alel@dges are equal, so this algorithm can not
improve the approximation factor of Algorithm 3.2 whiiis not a constant.

6 Extensions

In this section, we show that our algorithmic ideas can bgtdbto solve related covering problems a well.
We study two problems in particular: the length-constrditene covering problem, and the cycle cover
problem with simple short cycles.

6.1 Length-constrained lane covering problemRecall that in the length-constrained lane covering
problem, an additional inpug is given, and the objective is to cover the lanes with cyclils at mostk edges
andtotal length at mosB. The following theorem shows that Algorithm 3.1 giveglar In 2)-approximation
for this problem.

THEOREM®G6.1. Algorithm 3.1 is a polynomial-tim¢l + In 2)-approximation algorithm for the length-
constrained lane covering problem.

Proof. In orderto use Algorithm 3.1, we need to find the most costdéffe cycle of length at mod8. Similar

to the proof of Lemma 3.1, for a givel? we need to check if the cost effectiveness of a cycl€'iis greater
than R or not. We construct a new gragh whose edges have the same lengths &s.iWe set the cost of
an edge: € E(H) to bec(e) = Rl fore € E(H)\L andc(e) = (R — 1)¢, fore € L. In order to check
if there is a cycle of length at mo#t with cost effectivenes® in GG, we need to check if there is a cycle of
length at most3 with negative cost inf, or, equivalently, find cheapest length-constrained pati$.> If
costs are from polynomially bounded integer numbers, wescdre this problem optimally using dynamic
programming. Thus, by rounding the costs to multipleg @fe can check if there exists a path of cost at
mostne with length at mostB (wherern is the number of vertices in the graph). Létbe the maximum
length of a lane edge. We prove that the running time of thgsréthm is()(poly(n)@). Note that for an
edgee € E\L, if £. > nU, edgee cannot be on any path of negative cost; thus we can set thettgs
edgec(e) = RnU instead ofR(.. With this modification, the cost of any path is at mest/. Thus the

running time is at mos® (poly(n) "iU). We sete = #[i‘ for some constard > 0 to get a polynomial time

TThis problem is known as the shortest weight-constraingt pablem and is NP-complete [7]. However, pseudopolymbtitne algorithms and
FPTAS's are known for this problem [10].

algorithm to check if there is a cycle of length at m&stith the cost at moste = f‘ﬂ Similar to the proof
of Lemma 3.1, we use binary search to find the maximum valuefof which there is cycle of length at most
B and cost at moste. We can find such cycle in polynomial time. Using this methédiraling the most

cost-effective cycle, instead of inequality 4.4 in the aatevealing program, we have Zpi Ui < lc+ne.
We know that = <£U. < €OPT g

n|L] n|L]

0 < lo + e < Lo ¢'OPT

t= Yisili T Xl /n\L\
By settingal, = a, — }'OET, a,'s satisfy all inequalities of factor-revealing prograniahus) "~ _; a.l. =
(D eer acle)+ EI‘ZHCL)‘PT (I1+ln2+<)OPT This proves that the approximation factor of this polyial-

time algorithm is at mostl + In 2).

6.2 Cycle cover with simple short cyclesOur techniques also give results on timinded cycle cover
problem[11]. In the bounded cycle cover problem, we look for cyclésiae at mostt with the added
restriction that the cycles agmple i.e., do not repeat any edge. We show that an algorithm asirtal
Algorithm 3.1 gives arO(In k)-approximation for the bounded cycle cover problem in thecgd case of
uniform graphs. To the best of our knowledge, this is the fipgiroximation known for this problem.

Given a graplG, our algorithm first checks that the instance is feasibée, (ihat every edge is in a cycle
of size at mosk). Then it greedily selects the most cost-effective feasilykle and iterates until all edges are
covered by a cycle in the solution set. As in Lemma 3.1, thislmdone in polynomial time, even with the
added restriction that cycles be simple.

We follow the analysis in Section 4. First, we derive inediesd for the factor-revealing program. Fix a
cycle C of the optimal solution. Our input graph is no longer a contgladirected graph, so we no longer
have the inequality; < 2. However, by the feasibility of the instance, we know thatheadge is in a cycle
of size at mosk. Thereforeq; < k. Furthermore, the graph is uniform, so after scaling]5 wherep is the
size of the cycle”. Thus,a; -, ¢; < 1impliesa; < #. From these inequalities, it is easy to see that

p p
i;fzﬂi < Z 772-%1 k)
Z

—z—i—l ;E

p
= Hoan -l
= O(lnk)

wheres =1 + (’“%)p andH is the harmonic series.

7 Lower Bounds

In this section, we prove APX-hardness of the lane coveriodplem via a reduction from a version of the
maximum satisfiability problen§-OCC-MAX-3SATdefined below. In our reduction, all edges of the graph
whose lengths are not given by the underlying path metridaare edges, and so this result actually proves
that any variant of the Chinese postman problem which caimstthe size or length of covering cycles, such
as the bounded cycle cover problem mentioned in the inttimluds APX-hard.

Our reduction is based on a reduction used by Holyer [12]¢wg@NP-hardness of some edge-partitioning
problems. Given a satisfiability formula, Holyer consteuatseries of graphs for every variable and clause.
Each graph is an edge-disjoint union of directed trianglés triangles are arranged such that the graph can be
partitioned in exactly two ways into disjoint triangles -nmaly by taking all clockwise or all counterclockwise
triangles. By gluing these graphs together in a structutbciated by the satisfiability formula, Holyer forces
the orientation of the partitionings of variable and clagsaphs to be coordinated. Thus if the formula is
unsatisfiable, the resulting graph will have no triangldipaning.

10

@k=3 (b)k=4

Figure 2: Integrality gap examples.

We adapt this proof to work for our setting, using the maximaatisfiability problen5-OCC-MAX-3SAT
in order to prove an APX-hardness result. In an instance ®bHOCC-MAX-3SAT problem, we are given
a CNF formula withn variables andn = %” clauses of exactly three literals in which each variablauosc
exactly five times, and we want to find a truth assignmentfgatigthe maximum number of clauses. Fiege [6]
proved that it is NP-hard to distinguish between a 5-OCC-M3SAT instance in which all the clauses can
be satisfied and one in which at modt fraction of the clauses can be satisfied for some constant

We use the notation and definitions of Holyer. Let grafdh, be a graph withn? verticesV =
{(5121,.’112, Tg) S {O, 1, 2}”‘ Z?:] Tr; = O(mOd’l’l)} Let ((.’L'l,.’IJQ,.’IJg), (yl,yg,yg)) be an edge |nl‘lgm
whenever there exist and j such thatzy, = yr(modn) for k¥ # i,j andy; = (x; + 1)(modn) and
y; = (z; + 1)(modn). It is easy to check that the edgesm®f ,, can be partitioned in exactly two ways
into triangles. We call these two partitionings a T-pastiing and an F-partitioning. A patch is a subgraph
of Hs,, which consists of a triangle and the three triangles thatesha edge with this triangle. We call the
patch a T-patch if the central triangle is from a T-partitéord F-patch otherwise. We orient the edge#&lgf,
in such a way that all triangles of a T-partitioning are otéghclockwise and all triangles of an F-patrtitioning
are oriented counterclockwise. Call the resulting diregeaphDs ,,. It is easy to check that there are exactly
two distinct edge-partitioning abs ,, into directed triangles. For the proof, see Appendix.

THEOREM7.1. The lane covering problem is APX-hard for any constant

7.1 Integrality gap. Although Theorem 4.2 shows that Algorithm 3.1 is asymptolyctight, there
might be a better LP-based rounding algorithm for the seect® formulation. We can lower bound the
approximation ratio of any such algorithm by analyzing thtegrality gap of the set cover LP, LP 3.1

For k = 3, consider the union of two cycles of sizewith edge lengths as specified in Figure 2(a). Itis
not hard to check that the optimal fractional solution of ttrefor this example is 61.25 and optimal integral
solution is 67. Thus, the integrality gapﬁz—5 ~ 1.09. We acheive our best lower bound tfl 5 for the
integrality gap wherk = 4. In this case, the example is the union of squares and tearsgich that every
edge is in exactly two cycles of size at mdgisee Figure 2(b)).

Acknowledgements. We would like to thank Ozlem Ergun for introducing us to thisigem and Michel
Goemans for helpful comments.

References

11

[1] M. Blaser and B. Siebert. Computing cycle covers withshiort cycles. InProceedings of the 34st
Annual European Symposium of Algorithra801.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rjvastl Clifford Stein. Introduction to
Algorithms MIT Press, 2nd edition, 2001.

[3] J. Edmonds and E. Johnson. Matching euler tours and timesh postman problemMathematical
programming 5:88-124, 1973.

[4] Ozlem Ergun, Gultekin Kuyzu, and Martin Savelsberghll@morative logistics: The shipper collabora-
tion problem. submitted to Computers and Operations Re€adysseus 2003 Special Issue, 2003.

[5] Ozlem Ergun, Gultekin Kuyzu, and Martin SavelsbergheTdne covering problem. manuscript, 2003.

[6] U. Feige. A threshold ofn n for approximating set covedournal of the ACM45:634-652, 1998.

[7] M. R. Garey and D.S. Johnso@omputers and IntractabilityWv. H. Freeman and Company, 1979.

[8] O. Goldschmidt, D. Hochbaum, C. Hurkens, and G. Yu. Ap@ration algorithms for theé-clique
covering problemSIAM Journal of Discrete Math9(3):492-509, 1996.

[9] M. Guan. Graphic programming using odd and even poiGtinese Mathematic4:273-277, 1962.

[10] R. Hassin. Approximation schemes for the restrictentt@st path problemMath. Operation Research
17:36-42,1992.

[11] D. Hochbaum and E. Olinick. The bounded cycle-covebpgm. INFORMS Journal on Computing
13(2):104-119, 2001.

[12] Holyer. The np-completeness of some edge partitiopmoglems.SIAM journal of Computingl0:713—
717,1981.

[13] A. Itai, R.J. Lipton, C.H. Papadimitriou, and M. Rodekiovering graphs by simple circuitsSIAM
Journal on Computingl0:746—750, 1981.

[14] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. Vaii. Greedy facility location algorithms
analyzed using dual fitting with factor-revealing I@ournal of the ACM 50(6):795-824, November
2003.

[15] J. Kennington, V. Nair, and M. Rahman. Optimizationédslgorithms for finding minimal cost ring
covers in survivable network€omputational Optimization and Applicatiarist(2):219-230, 1999.

[16] F. Lazebnik and V.A. Ustimenko. Explicit constructiohgraphs with arbitrary large girth and of large
size. Discrete Applied Mathematic60:275—284, 1995.

[17] Christos H. Papadimitriou. On the complexity of edgersérsing.Journal of the ACM23(3):544-554,
1976.

[18] B. Rachavachari and J. Veerasamy. A 3/2-approximadigorithm for the mixed postman problem.
SIAM journal of Disc. Math.12:425-433, 1999.

[19] J.B. Slevinsky, W.D. Grover, and M.H. MacGregor‘'. Angatithm for survivable network design
employing multiple self-healing rings. BLOBECOM '93 pages 1568-1573, 1993.

[20] C. Thomassen. On the complexity of finding a minimum eycbver of a graph.SIAM journal of
computing 26:675-6777,1997.

[21] V. V. Vazirani. Approximation AlgorithmsSpringer-Verlag, Berlin, 2001.

[22] C.Q. ZhanglInteger flows and cycle cover of graptdarcel Dekker, Inc, 1997.

Appendix

The tight example for £ = 3 From the analysis of this program, we know that the worst éaisa cycle of
lane edges occurs when the first edge is picked attirtiee second edge at timé2, and the third edge at time
2. Itis easy to check that this situation occurs for the gragfigure 3 witha = 1 —1/2/2,b = /2/2 - 1/2,

¢ = 1/2,andd = 3 — 2v/2. The solid edges in this figure correspond to lanes, and tigtheof an edge not
drawn in this picture is taken to be the length of the shogast between its endpoints. The optimal solution
for this example picks the cyclesvz andywwv and at a total cost &f(a + b + ¢) = 2. Algorithm 3.2 might
pick the cycleuww at time1l, the cycleywz at time+/2, and the cyclesu andvy at time2. This solution has
a total cost oRa + 2b + 4¢ + d = 6 — 21/2. Therefore, the solution found by Algorithm 3.2 on this exden
costs3 — /2 &~ 1.5857 times the optimal solution cost, matching the upper bourdrgin Theorem 4.1 for
k=3.

Proof of Theorem 7.1

Proof. Consider an instance of the 5-OCC-MAX-3SAT problem wit variablesz,, . . ., z,, andm = %n

12

Cc

Figure 3: Tight example fot = 3.

clausesC = (Ci, ..., Cy,) where claus&’; consists of literalg; ; andl; » andl; 3. From this instance, we
construct the following directed graph. Correspondingaohevariablex;, we put a copyX; of the graph
D3 ¢. Corresponding to each clauSeg, we put three copieS; ; andC; , andC; 5 of the graphDs; 4. We join
the graphsX; andC; ; for1 <i <n,1 < j < mandl < k < 3 as follows: Ifl; ;, is equal taz;, merge an
F-patch ofX; with an F-patch o’; ;. If I; 1 is equal toz;, merge a T-patch ok; with an F-patch o} ;.
For everyj, we also merge one F-patch from eact(tf;, C; », andC; 3 and remove the edges of the central
triangle in the resulting F-patch. Note that since eachatdeiappears in at most five clauses, we can choose
all joining F- and T-patches to be disjoint from each othee &&ll the resulting directed grafiy.

We first prove the theorem fér= 3. Corresponding to the instaneof the 5-OCC-MAX-3SAT problem
we will construct an instanckz of the lane covering problem fér= 3 as follows. Let the set of lane edges
be the set of edges @¥; with unit length and the length of the remaining edges of ttagl be set according
to the shortest path metric of the underlying undirecteg@lgr#f there is a solution to this instance of the lane
covering problem whose covering cycles only use lane edgebave the following facts:

FacT .1. If C; is T-partitioned, it covers all the edges ©f ;, except the edges of the F-patch joinifig,
with the otherC; s’s. In particular, in order to cover all the edges correspamgl to clauseC; with lane
edges, at least one 6f; 1, C; », or C; 3 should be F-partitioned.

FACT .2. If I, = ;, then it is not possible that; ;, and X; are both F-partitioned. 11, ;, = z;, thenitis
not possible tha€’; ; is F-partitioned andX; is T-partitioned.

Together, these facts imply:

FAacT .3. Edges oC; 1, C;» andC} 3 can be partitioned into directed triangles if and only if @bt one of
the corresponding literals; 1, I; » andl; 3 is true.

ThusZ is satisfiable if and only if the covering cycles of the optimsiolution to the lane covering problem
only use lane edges. L&(X;) be the set of all edges @f; s corresponding td; except the edges of five the
F- and T-patches joining; to theC; ;'s; E(C;) be the set of all the edges of the thiBg,'s for C; 1, C} 2,
andC; ; except the edges joining th@; ;’s to the X;’s; and E(L,;) for i, j such that; is in clauseC; be
the set of edges of the patch mergiigandC; ;.. Thus,E(X;), E(C;), andE(L;;) for1 < i < nandl <
j < m form a patrtition of the edges @z, and sdZ is satisfiable if and only if the cost OPT of the optimum
solution to the instancé; is OPT = |E(Dz)| = m|E(C;)| + n|E(X;)| + 3m|E(L;j)| = ¢;m for some
constant; . For each unsatisfied clause, a cycle covering using justégiges leaves at least one lane edge
uncovered. We can cover this leftover edge with a two-cyinlyrring one additional unit of length. Thus,
there is a truth assignment in which at lelastclauses are satisfied only if ORT | E(D<)|+ (1 —b)m = com
for some constant, > ¢;.

Let A be ana-approximation algorithm for the lane covering problemhwit < 2. We will use A to
design an algorithml’ which, given an instancg of the 5-OCC-MAX-3SAT problem, distinguishes between
“yes” instances 1 is satisfiable) and “no” instances (at masfraction of clauses can be satisfied). The
algorithm A’ simply callsA on the instanc&; and outputs yes if the resulting solution costs at negst and

13

0" otherwise. Itis not hard to see thdt correctly distinguishes between “yes” and “no” instancgisice
th|s is NP-hard, it follows that it is NP-hard to approximéte lane covering problem Wlthln a factor &f.

To extend the APX-hardness for any constardddk — 2 vertices on each edge on one of three dimensions
in D3 ,,. The inapproximability result still holds, since the numbg&edges in the extenddd; ¢ andD; 4 is
still a constant.

Example for the integrality gap

Example for £ = 4. In this example we show that the integrality gap of the seecaW fork = 4 is at
Ieast% ~ 1.15. Consider the instance sketched in Figure 2(bY emvrtices,vy, .. ., v;. Suppose all edges in
the figure are lane edges and the lengths of the undrawn edgdseaomputed via the induced metric in the
underlying undirected graph. For some constangg andz to be fixed later, let the interior edgegvr, v7vs,
V37, U704, UsUT, V706 have lengthe, the hexagonal edgeswv;, vavs, v4v3, V45, VgV, Vg1 have lengthy,
and the exterior edgesgwvg, vsv2, v1v4 have lengthe.

Notice each edge of lengthis in precisely two cycles of sizé For example, edge, v; is in the cycle
v1v7vo and the cyclev, v;vg. Each edge of length is in one cycle of size and one cycle of sizé. For
example, edge.v; is in cyclevyv; w7 and cyclevyv,vyvs. Each edge of lengthis in precisely two cycles of
size4. For example, edge;vs is in cyclevsvgusve and cyclevsvguvyvg. Therefore, by assigning weighy2
to each size3 and sized cycle, the fractional solution can cover each lane edgeowithising any non-lane
edges. Thus, the cost of the optimal fractional solutiddris- 6y + 3z (the sum of all lane edge lengths).

However, there is no cycle cover in this graph that uses syaiesize at most (since there are no size
2 cycles, any such cover would need to haveycles of size3 or 3 cycles of sizet and1 cycle of size3
in order to cover alll5 edges exactly once, but it is easy to check that the graphmiiesontains disjoint
cycles of size3 or 3 disjoint cycles of sizet). Consider the following three integral solution typese th
solutions containing one perfect square and two perfezhgtes, for exampleys v v4vs, vgv1V7, VaV3VT,
V365 U7, V7403 add just two typer edges ¢;v; andvsv; in this example). The solutions containing three
perfect triangles, for exampleg v, v7, v4v3v7, VU5V, V2V V4VE, V3VgV1 V2, A just two type edges, {2v1
andw; vy in this example). The solutions contain three imperfeciasegs and three imperfect triangles, for
examplepsvyvyvs, V2vU3V6Vs, V4U3VEV1, V1V7V4, Us U7V, U3070g add just six type: edges. The union of the
cycles in any valid integral solution should form an Eulariaur, and so every vertex’s in degree should equal
its out degree. Thus, any integral solution must add an euerber of edges of each type, and so the optimal
integral solution should be one of the above three tymematter how we set, y, andz (of course, we must
check that there is no integral solution adding just 4 type z edges, but this can easily be checked by hand).
Therefore, the optimal integral solution cosit(8z + 6y + 3z, 6z + 8y + 3z, 6z + 6y + 9z).

Settingz = 1/2,y = 1/2, andz = 1/6 maximizes the ratio of the integral and fractional solusiamd
yields an integrality gap of2 ~ 1.15. O

14

