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Abstract

A cost-sharing scheme is a set of rules defining how to sharedht of a service (often computed
by solving a combinatorial optimization problem) amongsw&ed customers. A cost-sharing scheme
is cross-monotonic if it satisfies the property that evegy@better off when the set of people who
receive the service expands. In this paper, we develop a tesienique for proving upper bounds on
the budget-balance factor of cross-monotonic cost-spaehemes. We apply this technique to games
defined based on several combinatorial optimization problencluding the problems of edge cover,
vertex cover, set cover, and metric facility location, aneach case derive tight or nearly-tight bounds.
In particular, we show that for the facility location gantegte is no cross-monotonic cost-sharing scheme
that recovers more than a third of the total cost. This resgkther with a recent 1/3-budget-balanced
cross-monotonic cost-sharing scheme of Pal and Tardee<lthe gap for the facility location game.
For the vertex cover and set cover games, we show that no-grosstonic cost-sharing scheme can
recover more than &(n~1/3) andO(2) fraction of the total cost, respectively. Finally, we stutig
implications of our results on the existence of group-efygbroof mechanisms. We show that every
group-strategyproof mechanism corresponds to a costrghscheme that satisfies a condition weaker
than cross-monotonicity. Using this, we prove that grotrptegyproof mechanisms satisfying additional
properties give rise to cross-monotonic cost-sharingreelseand therefore our upper bounds hold.

1 Introduction

Consider a situation where a group of customers (which weagaint$ wish to buy a service such as con-
nectivity to a network. The total cost of this service is adiion of the group of customers that is serviced: a
group of customers in distant towns might incur a larger st a group of customers in the same town. The
service provider must develop a pricing policy,amst-sharing schemdéhat, given any group of customers,
divides the cost of the service amongst them. For examplke ptausible cost-sharing scheme divides the
cost of the service evenly amongst the customers. Howewviigicase of network connectivity, this scheme
seems to undercharge distant customers with high connemtists and overcharge other customers.

Developing a fair and economically viable cost-sharingesaé is a central problem in cooperative game
theory (see, for example, [23] and [34]). The question of dwastitutes an equitable cost-sharing is diffi-
cult to define and has been the subject of centuries of thpdghihg from Aristotle’s proclamation of “equal
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treatment of equals and unequal treatment of unequals pogion to their inequality” in his book on Nico-
machean Ethics [1] through modern times. One plausibleonati equity is that ofcross-monotonicity

or population monotonicitfsee [32] for a survey). Intuitively, cross-monotonicitgquires that the price
charged to any individual in a group does not increase asrthggxpands. There is a large body of litera-
ture [5, 6, 12, 16, 22, 26, 29, 31] on cross-monotonic coatisg schemes faubmodularcost functions, a
subclass of cost functions of particular interest. Many Ima@isms exist, prominent among them the Shapley
value [29], which minimizes the worst-case efficiency l@s®] the Dutta-Ray solution [6]. Both of these are
budget-balanced and cross-monotonic for any submodusrfwoction.

There are many other interesting classes of cost functiatsatrise from (often NP-hard) optimization
problems. For example, the cost of providing the servicafsetS of agents could be expressed as the cost
of building the cheapest Steiner tree that covers the elenai®, or the minimum cost of opening facilities
and connecting each member$to an open facility. These two games, and many others ofipehanport,
are instances of covering problems. For such problemsuguslly impossible for a cross-monotonic cost-
sharing scheme to be budget-balanced. Moreover, even ifigebbalanced cross-monotonic cost-sharing
scheme exists, it might be hard to compute. Therefore, @tgral to consider cost sharing schemes that are
approximately budget balancethat is, they recover only a fraction of the cost of the ser%iApproximately
budget-balanced schemes have been proposed for minimumisgdree [14, 17], Steiner tree [14], Steiner
forest [18], facility location [25], and connected fagilibcation [20].

We can derive simple bounds on the budget-balance factamobimatorial optimization games using the
integrality gaps of the “natural” LP-relaxations. The @@sonotonicity of a cost-sharing scheme implies
that for every set of agents the cost shares form an allecatidhe core of the game (see Section 2 for
definitions). Therefore, the best budget-balance factoiesable by a cross-monotonic cost-sharing scheme
cannot be better than that of a cost sharing in the core. Alsiexiension of the classic Bondareva-Shapley
theorem [3, 28] implies that the best budget-balance fdotaa cost sharing in the core of integer covering
games is equal to the integrality gap of the “natural” LRxxakion of the problem (this fact was observed
by Jain and Vazirani [14]). This line of reasoning provestmsion cross-monotonic cost-sharing schemes
for many combinatorial optimization games In particulaetric facility location, vertex cover, and set
cover games cannot recover more thain@g 5, and— 1 — fraction of the total cost, respectively. Prior to this
work, this was the only method known for upper boundlng tlssmmonotonic cost-sharing schemes. In this
paper, we show stronger upper bounds for several combiabtgtimization games using a novel technique
based on the probabilistic method that will be explained éntBn 3. In particular, we prove that the best
budget-balance factor achievable for the facility locatigmame is3, proving optimality of the scheme given
by Pal and Tardos [25]. Also, for the vertex cover and seEcgames, we show that no cross-monotonic
cost sharing scheme can recover more tha@ @i '/?) andO(2) fraction of the total cost, respectively. We
also apply this technique to several other games includirgriaximum flow and the maximum matching
games. In subsequent work, Kénemann et al. [19] used ohnigees to prove a tight bound éfon the
budget-balance factor of the Steiner tree game.

As observed by Moulin [22], cross-monotonic cost-sharicigesnes can be used to constrgiciup strat-

'Sometimes calledoncavegames in the cooperative game theory literature.

2plternatively, we can relax the definition of budget balabgallowing the scheme to recover at least the cost of thécseand
at most a small multiple of the cost of the service. This dafiniseems more reasonable, since a business usually meadeast
recover its costs. However, the two definitions are equital@ to a constant multiple. To be consistent with other papa this
topic, we use the first definition in this paper.



egyproof mechanism®r mechanisms which resist collusion among the agentsadiy &lmost all known
group-strategyproof mechanisms are constructed in thiznera However, as our results indicate, many
classes of important cost functions fail to have budgetie@d cross-monotonic cost-sharing schemes. As
we know that there are group-strategyproof mechanismslthabt correspond to any cross-monotonic cost-
sharing scheme, our negative results for cross-monotehienses do not immediately imply negative results
for group-strategyproof mechanisms. However, we give #éigbarharacterization of group-strategyproof
mechanisms in terms of cost-sharing schemes that satigipdition weaker than cross-monotonicity, and
use this characterization to prove that group-strategfpmechanisms that satisfy an additional condition
calledupper continuitygive rise to cross-monotonic cost-sharing schemes, ameftiie our negative results
apply to such mechanisms.

The rest of this paper is organized as follows. In Section@pwesent the definitions of cross-monotonic
cost-sharing schemes. Section 3 contains a descriptiomrofigper bound technique, highlighted by the
example of the edge cover game (Section 3.1), and proof ofdsofor the set cover game (Section 3.2), the
vertex cover game (Section 3.3), the facility location ggf®ection 3.4) , and several combinatorial profit-
sharing games (Section 3.5). In Section 4 we define groapeglyproof mechanisms and prove several
results relating such mechanisms to cost-sharing schemes.

2 Definitions

Let .« denote a set of agents who are interested in a servicecost-sharing games defined by a function
C : 29 — RT U {0} which for every sefS C o7, gives the cosC(S) of providing service ta5.% A cost
allocationfor a setS C .« is a functiony) : S — RT U {0}, that for each agente S, specifies the share
(i) of 7 in the total cost of servicing. A cost-sharing schemis a collection of cost allocations for every
S C .

Definition 2.1 A cost-sharing schenis a function¢ : o7 x 29 +— R* U {0} such that, for evenf C o7
and everyi ¢ S,£(i,5) = 0.

Intuitively, we think of¢(i, S) as the share afin the total cost ifS is the set of agents receiving the service.

Ideally, we want cost-sharing schemes (and cost allocgititmbebudget-balancedthat is, for every
S C o, Yy ..46(,8) = C(S). Budget-balance is desirable as it guarantees econombdityieof the
auction. However, it is not always possible to achieve butlig&ance in combination with other properties,
or even if it is possible, it might be computationally harcctimpute the cost shares. Therefore, we relax this
notion to the notion of-budget balancéfor somea < 1).

Definition 2.2 A cost-sharing schendes a-budget-balanced, for everyS C o7, aC(S) <>, 5&(4,5) <
c(9).

This definition guarantees that the mechanism does notahaege agents, but it may under-charge them.
Alternatively, one could defina-budget balance a8(5) < 3, 4£(i, S) < 2C(S) and equivalently relax

3This is similar to the notion of aoalitional game with transferable paypéfhere the cost function is replaced by a function that
gives the value, or the worth of each set. This notion wasdefhed by von Neumann and Morgenstern [33].



the notion ofa-core (see Definition 2.3). All negative results hold withawdification in this alternative
framework as well; the positive results extend by multiptyeacht (i, S) by é To be consistent with other
papers, we use the first definition in this paper.

In addition to budget balance, we usually require cost atioas and cost-sharing schemes to satisfy
additional properties. One property that is extensivalglistd in the classic cooperative game theory litera-
ture [2, 3, 8, 27, 28, 30] is the property of being in ttwre, first suggested by Edgeworth [7] in 1881. This
property intuitively says that no subset of agents shouldveecharged for the service.

Definition 2.3 A cost allocationy for a setS C 7 is in thea-coreif and only if it is a-budget balanced
and foreveryI’ C S, Y. (i) < C(T). A cost-sharing schentgis in thea-core if and only if for every
S, &(+, S) is in thea-core.

Another property, which was studied by Moulin [22] and Mouéind Shenker [24] in order to design
group-strategyproof mechanisnisee Section 4), and has recently received consideralgatiatt in the
computer science literature (see, for example, [14, 1623]), is cross-monotonicityor population mono-
tonicity). This property captures the notion that agents should eqidmalized as the serviced set grows.
Namely,

Definition 2.4 A cost-sharing schenteis cross-monotoné for all S,7' C o7 andi € S, £(i,S) > &(i, S U
T).

It is a simple exercise to show that everybudget-balanced cross-monotonic cost-sharing scheine is
the a-core, but the converse need not hold. Therefore, crosstooigity is strictly stronger than the core
condition. Using this fact and a simple extension of thesitaBondareva-Shapley theorem [3, 28] (see Jain
and Vazirani [14]), one can derive upper bounds on the btoigieince factor of cross-monotonic cost-sharing
schemes for covering games in terms of the integrality gapeif LP formulation. In the next section, we
derive a technique based on the probabilistic method whildg/ stronger bounds.

3 Upper bounds for cross-monotonic cost-sharing schemes

In this section we present the main idea behind our upperdtaahnique and prove upper bounds for several
games defined based on combinatorial optimization probl&vesexplain the technique in Section 3.1 with a
simple example of the edge cover game and then extend it getlemver game in Section 3.2. Sections 3.3,
3.4, and 3.5 contain the proofs of our bounds for the vertericdacility location, and several other games.

3.1 A simple example: the edge cover game

In this section, we explain our technique using the edgercgame as a guiding example. The edge cover
game is defined as follows.

Definition 3.1 Let G = (V, E) be a graph with no isolated vertices. The set of agents in tye €over
game onG is the set of vertices a@f. Given a subsef of vertices, the cost f is the minimum size of a set
F C E of edges such that for everyc S, at least one of the edges incidentutads in F. Such a sef’ is
called anedge covefor S.



It is easy to see that for every s&t one can obtain a minimum edge cover$by taking a maximum
matching onS and adding one edge for every vertex that is not covered bgnthemum matching (see [4]).
Using this fact, we can give a cost-sharing scheme that haeh%{core of the game: charge each vertex that
is covered by the maximum matchir%g and other vertice%. Since there is no edge between two vertices
that are not covered by the maximum matching, this costirgipacheme satisfies the core property (but
not cross-monotonicity). Furthermore, it is easy to seetti@sum of the cost shares is always equ% to
times the edge cover fa8. Therefore, there is a cost-sharing scheme satisfying dhe groperty with a
budget-balance factor (%f In fact, Goemans [9] showed that for every graph there iss&sloaring scheme
in the %-core. However, in the following, we show that no cross-nton cost-sharing scheme can achieve
a budget-balance factor better thain

Theorem 3.1 For everye > 0, there is no(3 + €)-budget balanced cross-monotonic cost-sharing scheme
for the edge cover problem.

Here is the high-level idea of the proof: We assume, for eafittion, that there is a cross-monotonic cost-
sharing scheme that always recovers at Iea(%t & ¢) fraction of the total cost. We explicitly construct a
graphG (or in general the set of agentg and the structure based on which the cost function is defined)
and look at the cost-sharing scheme on this graph. For edgg, ¢his graph is simply a complete bipartite
graphK, ,, with n large enough. Then, we need to argue that there is & sétagents such that the total
cost shares of the elements®is less thar% + e times the size of the minimum edge-cover far This is
done using the probabilistic method: we pick a sulssat random from a certain distribution and show that
in expectation, the ratio of the recovered cost to the costisflow. Therefore, there is a manifestationf
for which this ratio is low. In the edge-cover example, wekpioe vertexv of G uniformly at random and
let S be the union ob and the set of vertices adjacentitoWe now need to bound the expected value of the
sum of cost shares of the elementsSofWe do this by using cross-monotonicity and bounding thé¢ sloare

of each vertex: € S by the cost share of in a substructurd’, of S. Bounding the expected cost share.of

in T, is done by showing that for every substructifteeveryu € T has the same probability of occurring in
a structureS in which T;, = T'. This implies that the expected cost share.af 7, (where the expectation

is over the choice of) is at most the cost df, divided by the number of agents i),. Summing up these
values for allu gives us the desired contradiction.

Proof of Theorem 3.1. Assume that there is (a% + ¢)-budget-balanced cross-monotonic cost-sharing
scheme. Let G be the complete bipartite graghy, ,,, wheren will be fixed later, and consideron G'. For
everyv € V(G), we letS, be the union ob and the set of vertices adjacentudthat is, all vertices of the
other part). We pick a se&t of agents by picking uniformly at random fromi/(G) and lettingS = S,,. By

the definition of the edge cover game,

C(Sy) =n for everyv. 1)

On the other hand,

Bs [} 66.8)] = Eofe@S)]+ B[ Y &w,S))]
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where the last inequality follows from the facts that formwveertexw and every ses, (u, .S) < 1, and that
for everyv € V(G) andu € S, \ {v}, &(u, S,) < &(u, {u,v}). Both of these facts are consequences of the
cross-monotonicity of. By the definition of expected values, we have

Bo| D &l {uv}) | =nEu (6 {u0])], ©

u€Sy \{v}

where the second expectation is over the choice dbm V(G) andw in S, \ {v}. However, choosing a
vertexv and then a neighbar of v at random is equivalent to choosing a random edigez at random, and
letting u be a random endpoint efandv be the other one. By the budget-balance condition, the suireof
cost shares of the endpointscis at most one. Therefore, for everyif « is a random endpoint ef andv
is the other endpoinf[¢ (u, {u,v})] < % Thus, the right-hand side of Equation 3 is at msfTherefore,
by Equations 1 and 2, we have

b Fiecsé(j’s)} St

<1+
—+e€
2

for n > 1/e. Therefore, there is a sét satisfying% < % + ¢, which is a contradiction with the

assumption thaf is (% + €)-budget balanced. O

It is not difficult to see that the cost-sharing schegrsatisfyingé(i, S) = % for everyi € S is cross-
monotonic and}-budget balanced. Therefore, the bound given in the ab@gréim is tight.

3.2 The set cover game

The set cover game is defined as follows.

Definition 3.2 Let« be a set of agents anfl be a collection of subsets of such that every element of

is contained in at least one set . For everyS C 7, the cost ofS in the set cover game is the minimum
size of a subcollectio# C & such that every: € S is contained in at least one set#. Such a collection
Z is called aset coverlfor S.

One can think of the edge-cover problem as a special case skticover problem in which the size of
each set is 2. It is not difficult to generalize Theorem 3.lh®dpecial case of set cover in which the size
of each set i%, and prove that fok constant, no cross-monotonic cost-sharing scheme foptbldem can
recover more than % fraction of the cost. Using a similar argument, the next tagoshows that for the
general case of the set cover game, no cross-monotonisicastig scheme can recover more tha(ﬁ(%)
of the total cost.

Theorem 3.2 There is no cross-monotonic cost-sharing schérfa the set cover game such that for every
setS C o7, £ recovers more than é)(ﬁ) fraction of the cost of.

Proof. Assume that there is such a cross-monotonic cost-sharmegrsez. Consider the following set cover
game. Letw be a set o2 agents that can be partitioned@s= A; UA,U---U A,,, whereA,’s are disjoint



sets each of size. Define& as the collection of all set$ C .7 suchthatSnA;| = 1foreveryi =1,...,n.
An alternative way to look at this is that and & are sets of vertices and edges ofranniform n-partite
complete hypergraph.

We pick a random sef of agents in the above game as follows: Pick a randdram {1,...,n}, and
for everyj # i, pick an agent; uniformly at random fromA;. LetT = {a; : j # i} andS = A; U T.
The cost of the optimal set cover solution 8nis always at least, since no set i’ contains two distinct
elements of4,, and therefore each element4f must be covered with a distinct setdh

We now bound the average recovered cost over the randomecbiotc

Bs [Sews)| = B[ ews)] + E[Sews)

zes zEA; jAi
< EL;iﬁ(x,{x}UT)} - E[%&(%T)}

Since all elements df’ can be covered by one set, the second term in the above erpresat most 1. We
write the first term asiEg , [{(x, {z} UT)] where the expectation is over the random choicé& @ind the
random choice of from A;. As in the proof of Theorem 3.5, the expected valu€ (@f, {x} U T') in this
experiment is equal to the expected value};ozglz1 ¢(aj,{a1,...,a,}) in an experiment that consists of
choosing an agent; from eachA; uniformly at random. By the budget-balance property, weagiwhave

> i=1€(aj,{ar,...;an}) < C({a1,...,a,}) = 1. Therefore, the first term in the left-hand side of the
inequality (4) is at most one. This means that the expectatidost share recovered from the §as at most
two. Therefore, the ratio of recovered cost to total cost & at most2/n < 4/|5]. O

It is worth noting that the above proof shows that even for ftiaetional set cover game, no cross-
monotonic cost-sharing scheme can achieve a budget-lealactor better thaw(1/n).* This is particularly
interesting for the following reason: It is easy to show th#ttere is ana-budget balanced cross-monotonic
cost-sharing scheme for the fractional set cover, thenrfpispecial case of the set cover problem of integral-
ity gap at mosiu, there is amyu-budget balanced cross-monotonic cost-sharing schemmexBmple, if we
could find a constant-factor for fractional set cover, we ld@utomatically get a constant-factor for metric
facility location, generalized Steiner tree, and many otiework design games. Unfortunately, the above
theorem shows this approach for designing cross-monotmwstsharing schemes fails to recover much of
the cost.

3.3 The vertex cover game

The vertex cover game is defined on a gréapk- (V, E'). The set of agents is the set of edge&-ofind the
cost of serving a séf C FE is equal to the minimum size of a sétof vertices such that for eache S, at
least one of the endpoints efis in A. Such a set is called\aertex covefor the setS. It is well-known that

the integrality gap of the LP relaxation of vertex cover isa@d therefore no allocation in core can recover
more than half the cost of the solution in the worst case [}, & show in the following theorem that if
we require the cost-sharing scheme to be cross-monotdwin, o constant-factor budget balanced scheme
exists.

4Other bounds in the section also apply to the fractionabwasi of the corresponding games.



Figure 1: Vertex Cover Sample Distribution

Theorem 3.3 For everye > 0, there is no cross-monotonic cost-sharing scheme for xexteer that on
every sefS of n agents, recovers at least(a + ¢)n '/ fraction of the cost of.

Proof. Assume, for contradiction, that such a schefrexists. We letG be a complete graph an + 2/
vertices, wheren and/ (m < ¢) are numbers that will be fixed later, and consider the daatisg scheme
¢ on G. We show that there is some sebf edges ofG' for which ¢ recovers at most g5|~'/3 fraction of
the cost. We do this by pickin§ randomly from a distribution described below, and showhmag the above
statement holds in expectation, and therefore there shi@udparticularS satisfying the above statement.

Let 7w be a permutation of the: + 2¢ vertices. LetA be the set of the first: vertices,B be the set of the
next/ vertices, and”' be the set of the remainingvertices. We denote th&h vertices of B andC (based
on the ordering given by) by b; andc¢;. Let S, denote the set of ath/ edges betweed and B, together
with the set of edgeb;c; fori = 1,...,¢. We pickS by picking the permutation uniformly at random and
letting S = S;. See Figure 1 for an example.

If we denote the set of edges betweéand B by T', we have

E [Z £(e, S)} <E [Z 5(e,T)] <m, )

ecT ecT

where the first inequality follows from the cross-monotdyiof £ and the second inequality is implied by
the budget balance assumption and the fact that the cose ghithimum vertex cover ifl" is m. We also

let T; be the set of alin + 1 edges inS that haveb, as an endpoint (see Figure 1). Equation 4 and the
cross-monotonicity of imply the following.

Es [} ¢6.9)]| = E{Z{(e,S)}JrZE:E[g(bici,S)]

€S ecT i=1
¢
< m+ZE[§(biCi,Ti)]7 (5)
i—1

We now need to analyze the expectation{(f;c;, T;) over the random choice of. Notice that the only
elements ofr that are important ig(b;c;, T;) are the firstn elements and the: + i'th and m + ¢ + i'th
elements#; andc;). Therefore, the expectation §fb;c;, T;) over the choice ofr is equal to the expectation
of &(Vm+2Um+1, {V1Vm+1, V2Vm+1, - -+, UmVUm+1, Um+2Vm+1}) over the random choice of an ordered list
v1,v9,.--,Umao Of m + 2 different vertices ofG. However, in this experiment it is clear by symmetry
that the expected cost shareb,, 1 is the same foi = 1,...,m,m + 2, and therefore by the budget
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balance condition each of these expected cost shares iSSﬁt,—,ﬁaﬁ-). This, together with Equation 5 imply
the following.
14
. < b
Bs | €(0.5) | <mt+ — ©)
€S

On the other hand, the size of the minimum vertex coves ia always/. Therefore, the expected value of
the ratio of) 0,5 £(i, S) to C(S) is at most’y + ﬁ Thus, there is a se&t for which this ratio is at most

% + L. Takingm = V/Z, we see that the allocation chrecovers at most "’%\/’z < (2 +¢)|S|~1/? fraction
of the cost. O

We can show the following positive result for cross-monatocost sharing schemes for the vertex
cover which, together with the Moulin mechanism [22] implign approximately budget-balanced group-
strategyproof mechanism for this problem (see Section 4).d@/not know the right bound for the budget-
balance factor of the vertex cover game.

Theorem 3.4 For the vertex cover game, the cost-sharing scheme thagekahe edgew in the setS an
amount equal tanin(1/degg(u), 1/degg(v)) is cross-monotonic an%-budget balanced.

Proof. It is clear that this scheme is cross-monotone. We only neectify the budget-balance factor.
Consider a sef of n agents (edges), and the gra@ft] induced on this set of edges. We prove that the total
cost share of the agents $his at Ieas% times the cost of a vertex cover 6t

Divide the set of vertices into two subsdisand H, whereL is the set vertices of degree less th@n in
G[S] and H is the rest of verticesi{ = V (G) — L). As a vertex cover solution, selebt and both endpoints
of all edges(u, v) such that, v € L. We show that the cost shares of the edgeS sum to at least %
fraction of the cost of this solution. First consider any eddpetween vertices i. The cost share afis at
least—=, thus its cost share coveb% of the cost of picking both its endpoints. Now consider thetiges in

H. Since the degree of each vertexc H is greater than or equal tgn, the sum of the cost shares of the

edges adjacent tois at Ieast%\/_ = -L . Each edge is included in at most two such summations (hamely

-
when both its endpoints are ), and thus the sum of the cost shares of edges adjacentiwegartH is at
least aﬁ fraction of the cost off. Therefore, the sum of the cost shares of the agerfisismat Ieas%

times the cost of the optimal vertex cover for g

3.4 The metric facility location game

Given a set of cities, facilities with opening costs, andnmetonnection costs between cities and facilities,
the facility location problem seeks to open a subset ofifeegland connect each city to a facility in a manner
that minimizes the total cost. In the facility location ggreach city is an agent. The cost of a subset of
agents is the cost of the minimum facility location solutfon that subset; a cross-monotonic cost-sharing
scheme tries to share this cost among the agents. In thisrseste prove that any cross-monotonic cost-

sharing scheme for facility location is at b(%sbudget-balanced. This matches the budget-balance faictor

the scheme given by Pal and Tardos [25].
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Figure 2: Facility Location Sample Distribution

We start by giving an example on which the scheme of Pal ando$d25] recovers only a third of the
cosP. This example will be used as the randomly chosen structuoeri proof.

Lemma 3.1 Let Z be an instance of the facility location problem consistirffgro+ k cities ¢y, . .., ¢,
d,...,c, andm facilities fi,..., f,, each of opening cost 3. For evefyand j, the connection costs
betweenf; and ¢; and betweery; and c;» are all 1, and other connection costs are obtained by thentria
inequality. See Figure 2(a). Themif = w(k) and k tends to infinity, the optimal solution far has cost
3m + o(m).

Proof. The solution which opens just one facility, s@y, has cosBm + k£ + 1 = 3m + o(m). We show
that this solution is optimal. Consider any feasible solutivhich openg facilities. The first opened facility
can coverk + 1 clients with connection cost. Each additional facility can covdr additional client with
connection cost. Thus, the number of clients with connection cost k& + f. The remainingn — f clients
have connection cost Therefore, the cost of the solutiondg + & + f +3(m — f) =3m + k+ f. As
f > 1, this shows that any feasible solution costs at least as msithe solution we constructed. O

Theorem 3.5 Any cross-monotonic cost-sharing scheme for the facditation game is at most/3-budget
balanced.

Proof. Consider the following instance of the facility locatioroptem. There aré setsA;, ..., Ay of m
cities each, wherew = w(k) andk = w(1). For every subseB of cities containing exactly one city from
eachA; (|Bn A;| = 1 for all ), there is a facilityf g with connection cost to each city inB. The remaining
connection costs are defined by extending the metric, thétiaescost of connecting cityto facility fz for

i ¢ Bis 3. The facility opening costs are all 3.

We pick a random sef of cities in the above instance as follows: Pick a randdrom {1,..., %k}, and
for everyj # i, pick a citya; uniformly at random fromd;. LetT = {a; : j # i} andS = A; UT. See
Figure 2(b) for an example. It is easy to see that th&datluces an instance of the facility location problem

This example also shows that the dual computed by the Jaiimavi facility location algorithm [15] can be a factor 3 awa
from the optimal dual.
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almost identical to the instan@in Lemma 3.1 (the only difference is that here we have moriitfas, but
it is easy to see that the only relevant facilities are thesahat are present in). Therefore, the cost of the
optimal solution onS'is 3m + o(m).

We show that for any cross-monotonic cost-sharing schgntee average recovered cost over the choice
of S'is at mostn+o(m) and thus conclude that there is sofehose recovered cost is at mast-o(m). As
in the previous proofs, we start bounding the expected tatstl share by using the linearity of expectations
and cross-monotonicity:

Bs[Y¢e9)] = E[Y &es)]|+ B[D ¢la;,9)]

ceS cEA; VE
< E[Y élefun) |+ B|Y € 1)]
cEA; J#i

Notice the sef has a facility location solution of co8t+ £ — 1 and thus by the budget balance condition the
second term in the above expression is at mesR. The first term in the above expression can be written as
mEg . [£(c, {c} UT)] where the expectation is over the random choicg ahd the random choice offrom

A;. However, it can be seen easily that this is equivalent tddlewing random experiment: From each
Aj;, pick a city a; uniformly at random. Then pickfrom {1, ...k} uniformly at random and let = a;
andT = {a; : j # i¢}. From this description it is clear that the expected valug(ef{c} U T') is equal

to %Z?:l £(aj,{a1,...,a;}). This, by the budget balance property and the fact {haf...,q;} has a
solution of cost + 3, cannot be more thah;ﬁ. Therefore,

k+3
Es |Y_€(e.8) | < m(==) + (k+2) = m+ o(m), (7)
ceS
whenm = w(k) andk = w(1). Therefore, the expected value of the ratio of recovered tcowtal cost
tends tol /3. O

3.5 Other combinatorial optimization games

In this section we prove bounds for three other combindt@pdimization games (in particular, the ones
considered by Deng, Ibaraki, and Nagamochi [4]). Theselpnob are maximization problems; therefore
instead of cost-sharing schemes, we congulefit-sharingschemes, as defined below.

Definition 3.3 A profit-sharing gaméor a coalitional game with transferable utilitleis defined by a set/
of agents, and a function : 29 — R* U {0} that for every sef, gives the value(S) of S (or the profit
earned if agents ir§ collaborate). A profit-sharing scheme is a function <7 x 27 — R* U {0}, such
that for everyS C o7 and everyi ¢ S, £(i,S) = 0. Such a scheme is calledbudget-balance@for some
a > 1)iffor everyS C o7, v(S) < > .cg6(4,5) < av(S). A profit-sharing schemg is in the a-coreif
it is a-budget-balanced and for evetyandT C S, Y ..+ &(4,5) > v(T). A profit-sharing schemég is
cross-monotond for all S,T C o/ andi € S, £(i,5) <&(i,SUT).

In this section, we consider profit-sharing schemes for #maas of maximum flow, maximum arbores-
cence packing, and maximum matching, and derive lower ®wndthe budget-balance factor of cross-
monotonic profit-sharing schemes for these games.
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Figure 3: The grapld for the maximum flow game

The maximum flow game In the maximum flow game, we are given a directed gréps (V, E) with a
sources and a sink. Agents are directed edges@f Given a subset of edgesS, the value ofS is the value
of the maximum flow froms to ¢ on the subgraph afF induced by the edges &f. It is known that the core
of the maximum flow game is nonempty [4]. The situation ised#it for cross-monotonic profit-sharing
schemes.

Theorem 3.6 There is nw(n)-budget-balanced profit-sharing scheme for the maximumdkowe where:
is the number of agents in the set that receives the service.

Proof. Let G be a graph consisting of three nodes named, and¢; n — 1 edges froms to w; andn — 1
edges fromu to t. Let E,, and E,; denote the set of edges frasito « and fromuw to ¢, respectively. See
Figure 3. We pick a random s8tof n agents as follows: With probability/2, pick a random edge from s
tou, and letS = {e} U E,;. With probability1/2, pick a random edgefrom « to ¢, and letS = {e} U E,.
For example the sef could contain the thick edges in Figure 3.

Assumet is ano(n)-budget-balanced cross-monotonic profit-sharing schem@ .fWe have

Bs |S6@s)] > gEa, |2 dalduba| 5B e, | ¥t Ut

a€S a€Fyt a€Fsy

> %EEE [ Y ¢ada, e})] +%E6£Eut [ > ada, e})]

a€FEyt a€Fsy

1 1
= DB, ey, |56 00 + e 0]
n—1
L

>

On the other hand, the value of every $epicked using the above procedure is one. Therefore, the
expected ratio of the sum of profit shares to the valug ©f at least(n — 1)/2. O

Remark 3.1 It is easy to see that the above proof also works for the problef packing the maximum
number of arborescences in a digraph, and gives the same loseand. Anr-arborescence is a spanning
tree rooted at- in which all edges are directed away fram The maximum-arborescence game is defined
on a digraphG = (V, E') with a rootr where each edge is an agent. The value of aSsistthe maximum
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number of edge-disjoint-arborescences on the subgraph inducedSbyOne can think of the value &f as
the maximum bandwidth for broadcasting messages fromall vertices of the graph. It is known that the
core of this game is nonempty [4].

The maximum matching game As a last example, we consider the maximum matching gamehiohw
the agents are vertices of a gra@gh and the value of a subset of vertic8ss the size of the maximum
matching in the subgraph ¢&f induced bysS (denoted=[S]). One can show that there i2éebudget-balanced
profit-allocation in the core of this game.

Theorem 3.7 There is noo(n)-budget-balanced profit-sharing scheme for the maximunchrag game,
wheren is the set of agents that receive the service.

Proof. We use the same construction that was used in the proof of&imed.1. LetG be a complete bipartite
graph withn — 1 vertices in each part (here we use- 1 instead ofn so that the size o becomes:), and
pick S by picking a random vertex itv and all vertices in the other part. Using an argument esgnthe
same as the one in the proof of Theorem 3.1, the expected sprofiafshares of the elements 8fis at least
(n — 1)/2. On the other hand, the value §fis always one. Thus, there is &won which the ratio between
the total profit share and the value 9fs at leastn — 1)/2. O

4 Group-strategyproof mechanisms

One of the important applications of cross-monotonic abstring schemes is in the construction of group-
strategyproof cost-sharing mechanisms [22, 24]. In thisiee, we explore the connection between cross-
monotonic cost-sharing schemes and group-strategypaostfshiaring mechanisms, and implications of the
upper bounds of the previous section on such mechanismsechios 4.1 we define the setting and present
some preliminaries. In Section 4.2 we discuss an issue idefigition of group-strategyproof mechanisms,
and note that in order to exclude a trivial mechanism, we neede a stronger version of one of the axioms.
In Section 4.3 we give a partial characterization of grouwptegyproof mechanisms in terms of cost-sharing
schemes satisfying a property weaker than cross-mondonige then use this characterization to prove that
group-strategyproof mechanisms that satisfy additiongpgrties give rise to cross-monotonic cost-sharing
schemes.

4.1 Preliminaries

Let .o/ be a set of» agents interested in receiving a service. Each aghas a value:; € R for receiving
the service, that is, she is willing to pay at mastto get the service. We further assume that the utility of
agenti is given byu;q; — z;, whereg; is an indicator variable which indicates whether she hasived the
service or not, and; is the amount she has to pay.cast-sharing mechanisia an algorithm that elicits a
bid b; € R from each agent, and based on these bids, decides whiclsafentld receive the service and
how much each of them has to pay. More formally, a cost-sparmechanism is a function that associates
to each vectob of bids a set)(b) C &/ of agents to be serviced, and a vectgb) € R" of payments.
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When there is no ambiguity, we writ@ andz instead ofQ(b) andx(b), respectively. We assume that a
mechanism satisfies the following conditichs:

¢ No Positive Transfer (NPTYhe payments are non-negative (thatis> 0 for all 7).

¢ Voluntary Participation (VP)An agent who does not receive the service is not chargetligthg = 0
fori ¢ @), and an agent who receives the service is not charged mamehth bid (that isg; < b; for
i€Q)

e Consumer Sovereignty (C$jor each agent, there is some bid; such that ifi bids b;, she will get
the service, no matter what others bid.

Furthermore, we would like the mechanisms to be approximaigdget balanced. Mimicking the defi-
nition for cost-sharing schemes, we call a mechanishudget balanced if the total amount the mechanism
charges the agents is betweefi(Q) andC(Q) (that is,aC(Q) < ZieQ x; < C(Q)).

We look for mechanisms, callegioup strategyproof mechanispvghich satisfy the following property in
addition to NPT, VP, and CS. Lét C .7 be a coalition of agents, and v’ be two vectors of bids satisfying
u; = u, for everyi ¢ S (we think of u as the value of agents, and as a vector of strategically chosen
bids). Let(Q,x) and(Q’, z’) denote the outputs of the mechanism when the bids aredw’, respectively.

A mechanism igjroup strategyprooff for every coalitionS of agents, if the inequality;q; — = > w;q; — x;
holds for everyi € S, then it holds with equality for every € S. In other words, there should not be any
coalition S and vectoru’ of bids such that if members ¢f announce.’ instead ofu (their value) as their
bids, then every member of the coalitiéhis at least as happy as in the truthful scenario, and at lewst o
person is happiet.

Given a cross-monotonic cost-sharing schemeloulin [22] defined a cost-sharing mechanigv; as
follows.

Mechanism M_:

Initialize S «— 7.
Repeat

LetS — {ie S:b >&(i,9)}.
Until for all i € S, b; > £(4,.5).
Return@ = S andz; = £(4,.S) for all .

Notice that the mechanisiivl, always services the maximal subset of agents whose bidsl atdeast
as large as their cost shares in that®setoulin [22] proved the following result.

Theorem A (Moulin [22]) If £ is a cross-monotonic cost-sharing scheme, thénis group-strategyproof.

SFor a discussion about these properties see Moulin [22] amdiand Shenker [24].

"Notice that we do not allow members of the coalition to samifiheir own utility to benefit the group’s total utility, this
we disallow side-payments. Side-payments require a tamsfmoney between agents which might be restricted in sattimgs
either due to legal concerns or issues of trust, and so we doamsider side-payments here. For a discussion of coliusith
side-payments, see Goldberg and Hartline [11].

8Note that there is a unique maximal set as if two sets aretfiestsien, by cross-monotonicity, their union is as well.
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4.2 A discussion about the definition

In the definition of group-strategyproof mechanisms in tapgr by Moulin and Shenker [24] (which is the
basis for the definition of this concept in most computer remepapers), it is not required that an agent
can bid in a way that guarantees her not to receive the seririgearticular, it is assumed that the bids are
non-negative, and an agent who bids zero can still be setvitber payment is also zero [24, page 517].
As we see in the following example, according to this defanitifor every cost function there is a trivial
budget-balanced group-strategyproof mechanism.

Example 4.1 Arbitrarily order the agents from to n. Then, find the first agernitin this order whose bid is
atleastC'({s,...,n}). The set that will receive the service(s= {i,...,n}, and the total cost of servicing
this set is paid by the agent Other agents pay nothing.

Proposition 4.1 Assuming non-negative bids, the mechanism in Example Butlget-balanced and group-
strategyproof.

Proof. Itis not hard to see that this mechanism is budget-balancddatisfies NPT, VP, and CS. To show
that it is group-strategyproof, létbe the first agent to receive service when agents bid trighfoi » + 1
if no agent receives service) aride the first agent to receive service when a coalition devidfg < i, it
must be thay is part of the coalition and raised his bid to a number grethtem or equal ta&'({j,...,n}),
but this decreases his utility. jf= ¢, then the outcome is identical to the truthful scenario andcutility
changes. Ifj > i, then the utility of any agent < j is now zero and so did not increase. The utility of any
agentkt > j did not change as his allocation and payment remained the.damally, as the payment gfis
at least his payment in the truthful scenario, the utilitytagént;j can not increase either. Thus the coalition
can not be successful. O

Although it satisfies all of the axioms, this mechanism isatisgactory, since in practice a coalition can
convince a member that has zero utility for receiving th&isersimply not to bid, thus reducing the cost to
others. Furthermore, this mechanism fails to satisfy thenax in the original paper of Moulin [22], where a
stronger version of CS is assumed that guarantees that ganhaan bid in a way that she does not receive
the service, no matter how others bid.

In order to exclude mechanisms like the one in Example 4. hnieconsider mechanisms that satisfy the
stronger definition of CS by Moulin [22]. To this end, we alltlre utilities and bids to beegative NPT and
VP guarantee that any agent with negative bid will not rex#ie service. An alternative approach (adapted
by Moulin [22]) is to assume that utilities, bids, and paysere all positivé. In many combinatorial games,
the cost function is not strictly increasing and therefoie feasonable to allow cost shares to be zero. Thus,
we use negative bids to indicate that an agent does not waetéo/e the service. However, it is easy to see
that all our results hold in the setting considered by Mo[2i?).

4.3 A partial characterization of group-strategyproof medanisms

In Section 3, we proved that for certain games every crossatonic cost-sharing scheme is poorly budget
balanced. A natural question to ask is whether all grougtesglyproof mechanisms for these games are so

®This is equivalent to a property called free riders or no free lunchwhich was used in an earlier version of this paper [13].
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poorly budget balanced. Towards this aim, one might hopé&idavsa converse to Theorem A, namely that
every group-strategyproof mechanism corresponds to a-tnesotonic cost-sharing scheme. Unfortunately,
this statement is not necessarily true (See, for examplpeAgix A, or the incremental cost-sharing method
for supermodular cost functions in the paper by Moulin [22#) this section, we prove that for any group-
strategyproof mechanism, we can construct a cost-shadhgnse that satisfies a weaker condition than
cross-monotonicity. Then, we use this characterizatioshtmw that group-strategyproof mechanisms that
satisfy certain additional properties correspond to ecroegotonic cost-sharing schemes.

We start by defining a property weaker than cross-monotyniior cost-sharing schemes. Recall that a
cost-sharing scheme is cross-monotonic, if the removahofi @gent from the service set does not increase
the cost to any other agent.

Definition 4.1 Let¢ : o7 x 29 — R U {0} be a cost-sharing schem§, C <7, andi € S. We sayi is

a positiveelement ofS if for everyj € S\ {i}, £(4,5 \ {i}) > £(4,5) and for at least one sucha strict
inequality holds;i is a negativeelement ofS if for everyj € S\ {i}, (4,5 \ {¢}) < &(4,5) and for at
least one suchi a strict inequality holds. If for allj € S\ {i}, £(5,.5 \ {i}) = £(J, S), we sayi is aneutral
element of5. We say that is semi-cross-monotonjaf every element of every set is either positive, negative,
or neutral. In other words¢ is semi-cross-monotonic if there is no $8C ./ and three distinct elements

1,715 72 of S, such thaf(jhs\ {Z}) < 6(.7175) andf(j%s \ {Z}) > f(j%s)'lo

Thus, cross-monotonicity is precisely a special case of-sepss-monotonicity, when every element of
every set is either positive or neutral. The results in thigisn are based on the following partial characteri-
zation of group-strategyproof mechanisms.

Theorem 4.1 For everya-budget-balanced group-strategyproof cost-sharing rmagmM for a cost func-
tion C, there is a cost-sharing schertig, for C' such that

() & is a-budget-balanced and semi-cross-monotonic.

(b) forany setS and bid vectob such that; = —1fori ¢ S andb; > £4(i, S) fori € S, the mechanism
M services the sef.

(c) for any bid vectomb, if the serviced set i§, then the payment afc S is equal to (7, .S).

We note that this is not a complete characterization of gisitgtegyproof mechanisms, as there are
semi-cross-monotonic cost-sharing schemes that do naspmnd to any group-strategyproof mechanism
(See Appendix B). Finding a complete characterization aft-sharing schemes that give rise to group-
strategyproof mechanisms is an interesting open direction

Before proving the above theorem, we state two of the corefiaof this theorem. These results charac-
terize group-strategyproof mechanisms that satisfy theviorg additional properties.

Definition 4.2 A mechanismM is upper continuoudf for every agent, if i gets the service for every bid
value greater tharx holding other bids fixed, theigets the service if he bids

1ONotice that this definition allows sets that contain bothatisg and positive elements. Also, an element can be a p®siti
element of one set and a negative element of another.
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Definition 4.3 A mechanism isubsidy-fredf, for any bid vector, the total charge to any subset of agesit
at most the cost of servicing that subset.

Although arguably not well-motivated, the condition of epzontinuity allows us to prove the following
equivalence between cross-monotonic cost-sharing schantkegroup-strategyproof mechanisms satisfying
this condition, hence implying that all the upper bounds e ltudget-balance factor of cross-monotonic
cost-sharing schemes proved in Section 3 apply to such mischs as well. This theorem can be viewed
as guidance in the search for group-strategyproof meamanig) order to design a mechanism with better
revenue properties than the best cross-monotonic costiglechemes, one must build a mechanism which
violates upper continuity.

Theorem 4.2 The cost functiot has an upper-continuous-budget-balanced group-strategyproof mecha-
nism if and only if it has am-budget-balanced cross-monotonic cost-sharing scheme.

The subsidy-freeness property was considered previoysidulin [21]. This property parallels the
core condition of cost-sharing games and is motivated byatijement that no subset of serviced agents
should be over-charged to accommodate others. The foliptviaorem shows the equivalence of group-
strategyproof mechanisms satisfying this property angdssmonotonic cost-sharing schemes, in the case
that the mechanism is perfectly budget balanced. We do raw kinthis theorem holds for budget-balance
factors other than 1, and so the results of Section 3 onlyyirtiat the problems presented there do not have
budget-balanced group-strategyproof mechanisms satiséybsidy-freeness.

Theorem 4.3 The cost functio®’ has a subsidy-free budget-balanced group-strategypreahanism if and
only if it has a budget-balanced cross-monotonic costisigagscheme.

In the rest of this section, we present the proofs of Theorehs4.2, and 4.3.

Proof of Theorem 4.1.  (a): We start by defining the cost-sharing schegne. For an agent, let b7 be

a large enough value such that if agemids b}, she will get the service, independent of other agents’ bids
(such a value exists by CS). For a $£1C 7, consider the scenario where the agents$'ibid their value

in b*, and others bid-1. By CS and VP, the set of agents serviced by the mechanismsirs¢bnario is
preciselyS. We define the cost shagg,(i,.S) as the payment charged by the mechanism to the agent
this scenario. By this definition and the fact thiat is a-budget balanced, it is clear th@i, is alsoa-budget
balanced.

Now, we prove that ¢ is semi-cross-monotonic. Assume, for contradiction, thate is a sef C o
and three distinct agentsji, jo € S such that¢(j1,5 \ {i}) < £(j1,S) and&(ja, S\ {i}) > &(j2,9).
Consider three bid vectots', b, andb? defined as follows: In all of these vectors, agents S\ {i} bid b’
and agents € </ \ S bid —1. The bid ofi in these vectors is} = b}, b? = £r4(4, .S), andb = —1. By VP
and CS, the set of serviced agentbais S, atb? is S\ {i}, and atb? is eitherS or S \ {i}. Furthermore,
by the definition of ,(, the payment of each agenat the bid vectord' andb? is £(j, S) andé(j, S\ {i}),

respectively. We consider two cases based on whetiseserviced at the bid vectdr:

Case 1:iis served at the bid vectd”. By VP, i’s payment ab? is at most? = &,(i, S). If i’s payment is
strictly less thar v(i, S), then in a scenario where the utility of the agents is givebhy would have
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an incentive to announce a bid#gf, contradicting the strategyproofness of the mechanisreréfare,
when all agents bid according &, the payment of must be equal tg.,(i, S). Now consider the
paymentz;, (b?) of j; when agents bid?. If z;,(b?) < £(j1,S), then in the scenario where the
utility of the agents is given by!, {i,5;} can form a successful coalition: they can bid according
to b2, thereby decreasing the paymentjof and not changing the paymentifAlso, if z;, (b?) >
(71,8 \ {i}), then in the scenario where the utility of the agents is gheb?, {i,j;} can form a
successful coalition: they can bid accordingto This decreases the paymentjpfand is indifferent
between the two situations, as her utility is zero in bothug§(j1, S) < zj, (b?) < £(j1, 9\ {i}),
contradicting the definition of; .

Case 2:1 is not served at the bid vectdr®. Consider the payment;, (b?) of j» when agents bid?. If
zj,(b%) < £(j2,5 \ {i}), then if the true utility of the agents is given by, {i,j»} can form a
coalition: they can bid according t&, thereby reducing,’s payment while keeping the utility af
constant at zero. Also, if;, (b?) > £(ja, S), then if the utility of the agents is given 18y, {4, j»} can
form a coalition and bid according t, thereby reducings,’s payment and keepingg utility constant
at zero. Therefore(j2, S\ {i}) < zj,(b?) < £(ja, S), contradicting the definition of,.

The contradiction in both cases shows that is semi-cross-monotonic.
(b): Index the agents such th&t= {1,...,k}. Fori = 0,...,k, define the bid vectob(®) as follows:
b =bifor1 < j <k —i, b =b; > (), ) fork —i < j < k,andbl) = ~1forj € o7\ S. We
will prove by induction oni that if the agents bid(?), then the mechanisaM will service the agents it$
and chargeg € S an amount equal tr((7,.5). This statement fof = k& would imply (b). The induction
basis { = 0) is obvious from CS and the definition 6. To show the induction step, we assume that the
statement is true forand prove it fori + 1. The only difference between the bid vect®*® andb(*+1) is
the bid of the agent — . If at the bid vectob("+1) agentk — i is either not serviced, or is charged an amount
more thar{ y((k — 4, S), then this agent has an incentive to announce a big ofwhen the true utilities of
the agents is given bg(*1). Similarly, if & — i is serviced and charged an amount less etk —i,5)
when agents bid according 1), then when the true utilities of the agents is givent§), agentk — i
has an incentive to bit},_;. Therefore, ab(t1), k — i gets serviced and pays(k — i,.5). This means
that from the perspective of agent- i, outcomes ab(¥ andb(*+1) are the same. Therefore, for every other
agentj, the ageny must be indifferent between these two outcomes as welle sittierwise{7, j} can form
a coalition at one of the two bid vectots? or b(+1). Therefore, by the induction hypothesis, at the bid
vectorb(it1) | every ageny e S must receive the service and be chargé S).
(€): LetS; ={ie S|b <&m(i,S)} S2=8\51, andS; = &7\ S. By VP, everyi € S; is not
charged more thafiy(7,S) atb. Suppose the price charged to some agént S; is strictly less than
&(i*,S). Consider a bid vectds’ in which every agent € S; bidsb}, everyi € Sy bidsb; (his bid inb)
and everyi € S3 bids —1. From part (b), at the bid vectdy, setS will receive the service ande S will
pay (i, S). Now, since the agerit € S, is charged strictly less thag(i*, S) atb, then when the true
utilities are given byb’, i* can form a coalition with the agents #y U S5 and submit the bid vectds. As a
result,i* pays strictly less and no member of the coalition pays manetradicting group-strategyproofness.
Therefore the price of any agent S, equalsé (i, .S) at the bid vectob.

Now consider an agerite Ss. If his payment differs between andb’, then: can form a coalition with
the agents in5; U S3 and submit the bid vector in which he pays less. Agesirictly benefits from this,
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while the situation of the agents ¥y U S5 does not change, again contradicting the group-strategjipess
of M. Therefore the payment of every agert S, also equalg (i, S). O

Proof of Theorem 4.2.  The “if” part of this statement follows from Theorem A and gimple observation
that the Moulin mechanism\1, is upper continuous.

Given ana-budget-balanced group-strategyproof mechaniginwe show that the cost-sharing scheme
& defined in the proof of Theorem 4.1 is cross-monotonic. lreotliords, we need to show that every
element of every set is either positive or neutral. Detiieas in the proof of Theorem 4.1. Consider a set
S C o/ and an agente S. Letb be a bid vector such thag = b} for everyj € S\ {i}, b; = —1 for every
j €\ S, andb; is any number greater than,(i, S). By part (b) of Theorem 4.1, at any such bid vector,
the setS gets the service. Therefore, by the upper continuithotind CS, the set gets the service whehn
bids& (i, S) and every other agent bids accordingtoCall this bid vectoib’.

Now, assume, for contradiction, th@t((j, S \ {i}) < {m(j, S) for somej € S\ {i}. We argue that
{1, j} can form a successful coalition when the utilities of theragés given byb’. In this situation, ifi bids
—1 and; does not change her bid, then by Theorem 4.1 thé&'Sefi} receives the service and aggmays
Em(7,S \ {i}). This outcome makes the agegnstrictly happier, and ageritis indifferent between the two
outcomes. This contradicts the group-strategyproofnégst oThis contradiction shows that every element
1 of every setS is either positive or neutral, and hengg is cross-monotonic. O

Proof of Theorem 4.3.  As in the previous proof, the “if” direction is a direct coliay of Theorem A and
the simple observation that, satisfies subsidy-freeness.

Given a subsidy-free 1-budget-balanced mechanidimwe show that the cost-sharing schegng de-
fined in Theorem 4.1 is cross-monotonic. First, notice tlyapért (c) of Theorem 4.1, subsidy-freeness of
M implies that{ » is in thel-core ofC, that is, for everyl’ C S C &7, we have

> Emli8) < C(T). ®

JET

Now, consider asef C <7 and an agente S. If i is a negative element &f, then for everyj € S\ {i},
we haveia(7,5) > Em (7,5 \ {i}), and at least for ong this inequality is strict. Therefore,

Yo m(S) > Y Eml S\ {ih) = O(s - {i}), 9)
jeS\{i} jeS\{i}
where the last equality follows from the fact thit is 1-budget-balanced. Equation 9 contradicts Equation 8
forT =S\ {i}. O

5 Conclusion

In this paper, we studied upper bounds for the budget-baltaator of cross-monotonic cost-sharing schemes
for a variety of combinatorial optimization games. Our t@gues are quite general and may prove applicable
to a variety of other combinatorial games. For example, éann et al. [19] used techniques similar to
the ones introduced in this paper to solve an open questisadpm the conference version of this paper
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regarding the Steiner tree game. As another example, tigyfdmcation game restricted to a tree always
has a budget-balanced cost allocation in the core [10], leutiovnot have a tight lower and upper bound on
the budget-balance factor of the best cross-monotonicst@sing schemes for this game. For the facility
location game on the line, we have an upper boun%i. of

An interesting open question is to fully characterize @bsiring schemes that can ariseagfor some
group-strategyproof mechanisii. The results of Section 4.3 is a step toward solving thislprab Another
open question is to generalize Theorem 4.3 for mechanisthsbwidget-balance factors less than one.

Finally, we would like to note that there was an error in Exémp2 and Theorem 4.2 of the conference
version of this paper [13]: The mechanism in Example 4.2 egodworly budget-balanced, and the mechanism

in Theorem 4.2 is not group-strategyproof. We would like hartk Hervé Moulin for noticing the latter
mistake.

Acknowledgments. We would like to thank Michel Goemans and Rahul Sami for helgfscussions. We
are grateful to Hervé Moulin for a careful reading of thigopaand pointing out a mistake in the proof of
Theorem 4.2 in the conference version of this paper, andfatspointing out the stronger version of CS
originally proposed in his paper. Finally, we would like tmhk Martin Pal for introducing the problem and
for helpful discussions.

References

[1] Aristotle. Book V. In R. Crisp, K. Ameriks, and D.M. Clagk editors,Nicomachean Ethicpages
81-102. Cambridge University Press, 2000.

[2] R.J. Aumann.Lectures on Game TheoryVestview Press, 1989.

[3] O.N. Bondareva. Some applications of linear prograngrtim cooperative gamesProblemy Kiber-
netiki, 1963.

[4] X. Deng, T. Ibaraki, and H. Nagamochi. Algorithms and gqoexity in combinatorial optimization
games. ISODA 1997.

[5] B. Dutta. The egalitarian solution and reduced game @ntigs in convex gamednternational Journal
of Game Theory19:153-169, 1990.

[6] B. Dutta and D. Ray. A concept of egalitarianism undertipgration constraints. Econometrica
57:615-635, 1989.

[7] F.Y. Edgeworth.Mathematical PsychicsKegan Paul Publishers, 1881.

[8] D.B. Gillies. Solutions to general non-zero-sum game#.W. Tucker and R.D. Luce, editor§ontri-
butions to the Theory of Games, Volume IV (Annals of Mathem8tudies, 4Qpages 47—85. Princeton
University Press, 1959.

[9] M. Goemans. Personal communication.

[10] M.X. Goemans and M. Skutella. Cooperative facilitydtion gamesSODA 2000.

20



[11] A. Goldberg and J. Hartline. Collusion-resistant meeubms for single-parameter agentsPhoceed-
ings of 16th ACM Symposium on Discrete Algorithpeges 620—629, 2005.

[12] T. Hokari. Population monotonic solutions on convexngs. International Journal of Game Theary
29:327-338, 2000.

[13] N. Immorlica, M. Mahdian, and V.S. Mirrokni. Limitaties of cross-monotonic cost-sharing schemes.
In Proceedings of 16th ACM Symposium on Discrete Algorith@®@), 2005.

[14] K. Jain and V.V. Vazirani. Applications of approximaii algorithms to cooperative games. Rro-
ceedings of the thiry-third annual ACM Symposium on Theb@amputing (STOC)pages 364—-372,
2001.

[15] K. Jain and V.V. Vazirani. Approximation algorithmsrfimetric facility location and k-median problems
using the primal-dual schema and lagrangian relaxationrnal of the ACM48:274-296, 2001.

[16] K. Jain and V.V. Vazirani. Equitable cost allocationia primal-dual-type algorithms. IRroceedings
of the thiry-fourth annual ACM Symposium on Theory of ComgyiSTOC) pages 313-321, 2002.

[17] K. Kentand D. Skorin-Kapov. Population monotonic calbcation on MST’sIn Operational Reearch
Proceedings KQlpages 43-48, 1996.

[18] J. Kdnemann, S. Leonardi, and G. Schafer. A grougtsgyproof mechanism for Steiner forests. In
Proceedings of 16th ACM Symposium on Discrete Algoritipages 612—-619, 2005.

[19] J. Kdnemann, S. Leonardi, G. Schafer, and S. van Zwenom primal-dual to cost shares and back: A
stronger LP relaxation for the Steiner forest problemPiloceedings of 32nd International Colloquium
on Automata, Languages and Programmigg05. to appear.

[20] S. Leonardi and G. Schafer. Cross-monotonic costistpanethods for connected facility location
games. IrProceedings of 5th ACM Conference on Electronic Comm@ages 242—243, 2004.

[21] H. Moulin. Axioms of cooperative decision makjnghapter 4 (Cost sharing games and the core).
Cambridge University Press, 1988.

[22] H. Moulin. Incremental cost sharing: Characterizathy coalition strategy-proofnes&ocial Choice
and Welfare 16:279-320, 1999.

[23] H. Moulin. Axiomatic Cost and Surplus Sharing. In K.Jréw, A.K. Sen, and K. Suzumura, editors,
Handbook of Social Choice and Welfammlume 1, pages 289-357. Elseveir Science Publishers B.V.
2002.

[24] H. Moulin and S. Shenker. Strategyproof Sharing of Sabuar Costs: Budget Balance vs. Efficiency.
Economic Theoryl8:511-533, 2001.

[25] M. Pal and E. Tardos. Group strategyproof mechanisimgimal-dual algorithms. IfProceedings of
44th Annual IEEE Symposium on Foundations of Computer &eiffOCS)pages 584-593, 2003.

[26] E.C. Rosenthal. Monotonicity of the core and value ima@yic cooperative gamesinternational
Journal of Game Theoryi9:45-57, 1990.

21



[27] H.E. Scarf. The core of an n person garieonometrica35(1):50-69, 1967.
[28] L. S. Shapley. On balanced sets and coMmval Research Logistics Quarterly4:453-460, 1967.

[29] L.S. Shapley. A value for n-person games. In H. Kuhn and/ATucker, editorsContributions to the
Theory of Gamesrolume 2, pages 307—317. Princeton University Press,.1953

[30] M. Shubik. Edgeworth market games. In A.W. Tucker an®.R.uce, editorsContributions to the
Theory of Games, Volume IV (Annals of Mathematics Studidspdges 267—-278. Princeton University
Press, 1959.

[31] Y. Sprumont. Population monotonic allocation schefeesooperative games with transferable utility.
Games and Economic Behavi@:378-394, 1990.

[32] W. Thomson. Population-monotonic allocation rulesW.A. Barnett, H. Moulin, M. Salles, and N.J.
Schofield, editorsSocial Choice, Welfare and Ethigsages 79-124. Cambridge University Press, 1995.

[33] J.von Newmann and O. Morgenstefirheory of Games and Economic Behavidwhn Wiley and Sons,
1944,

[34] H.P. Young. Cost Allocation. In R.J. Aumann and S. Haditors,Handbook of Game Theory with
Economic Applicationsvolume 2, pages 1193-1235. Elseveir Science Publishgts1®94.

A A group-strategyproof mechanism with no cross-monotonicost-sharing
scheme

In this appendix, we give an example that shows that for samsefanctions, group-strategyproof mecha-
nisms do not correspond to cross-monotonic cost-sharimgnses.

Example A.1 Suppose there are three agerits2, and3, with a cost function given by

(2 if | S| = 3,
Cs) = { 1 otherwise

We consider the following mechanism for this cost function:

Mechanism M:
If b > 1then

If min(by,b3) > 3 then@ = {1,2,3} andz = (1, 1, 3),
else ifmax(bs, b3) < 3 then@ = {1} andz = (1,0,0),
else ifb, > b3 then@ = {1,2} andz = (1, 3,0),
else ifby > by then@ = {1,3} andz = (3,0, 1),

else iff <b; < 1then
If min(by, bg) > 3 then@ = {2,3} andz = (0, 1, 1),
else ifmax(bs, b3) < 1 then@ = 0 andz = (0,0,0),
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else ifby > by then@ = {1,3} andz = (3,0
else ifb; < 3 then

else ifby > 1 then@ = {2} andz = (0,1,0),
else ifb3 > 1 then@ = {3} andz = (0,0, 1),
else@Q = andz = (0,0,0).

The cost-sharing schengg, is not cross-monotonic since, forexamg@e (1, {1,2,3}) > &aq(1, {1,2}).
In fact, it is not hard to see that no cross-monotonic coatis scheme fo€' exists. Still, as the following
lemma shows, the mechanis# is group-strategyproof.

Proposition A.1 The mechanisnM in Example A.1 is group-strategyproof.

Proof. Let u; denote the true utility of for receiving the service); denote his bid, and;(b) denote his
payment when the bids ate Notez;(b) = 0 if and only if i does not receive the service.

We first prove by contradiction that any successful coalitioust includel. Suppose not (that i$; =
uy). First consider the case, > 4. Note that fori € {2,3}, wheneveri receives the service, he pays
Therefore; can benefit only ifu; > % and he is not receiving service. However, in any input bidaewith
by > % b; > % implies that; receives the service, s@an not benefit in any coalition. Next suppage< %
Consider the cross-monotonic cost-sharing schemé2, 3} — R, where fori € {2,3}, £(i,{2,3}) = 3
and¢(i, {i}) = 1. The Moulin mechanisni 1, is equivalent toM whenu; < 3 and so Theorem A implies
that there is no subset §2, 3} can form a successful coalition in this case.

Now consider any coalition including. Suppose:; < % If by < % then the outcome does not change
if we setb; = uy. Thus, we only need to consider coalitions in whigh> % Asuy < % and the minimum
non-zero price of is % it must be thatl ¢ Q(b) even though; > % This happens only Whe%\ <h <1
andmax(bs, b3) < % ormin(be,bs) > 1. In the first case, as no agent receives service, all usiliie zero
and so no one can benefit. In the second case, r{2,3}, the payment of is % Therefore, ifi is in
the coalition, it must be thai; > % If 7 is not in the coalition, them; = b; > % by assumption. Thus
min(ug, u3) > 3. Butthenz(b) = z(u) and so no agent's utility for the outcome changes.

Next, supposei; > % Fori € {2, 3}, in the truthful scenarié pays at mos%. Asi’s payment is always
at Ieast%, 1 can not benefit from a decrease in price. Thereiaran benefit only ifu; > % andi ¢ Q(u).
But this is impossible for any vector witly > 1, soi can not benefit in any coalition. Therefotemust be
the agent that benefits from the coalition. As the minimurogfor1 is % in order forl to benefit, it must
be thatu; >  but eitherl ¢ Q(u) or 1(u) = 1. This means that eithenin(uz, u3) > 1 (case one) or
max(uz, u3) < % (case two). Furthermore,can only benefitifr, (b) = 3 since, wheny; > 1, 1is receiving
the service at pricé and so the price must decrease, and wiqe_:n uyp < 1, 1is not receiving the service but
can not afford to pay and so must receive the service at pr%cd\low, in case onenfin(usg, ug) > %), in the
truthful scenari@ and3 have positive utility. In order fox1(b) = 3, i for i = 2 ori = 3 must lower his bid
tob; < % But then if the coalition consists of justindl, ¢ ¢ Q(b) and soi’s utility decreases. Similarly, if
the coalition is{1, 2, 3}, then1 only benefits if{2,3} ¢ Q(b) and so the utility of 2 or 3 decreases. In case
two (max(us, uz) < 3), 1 can only benefit ifi for i = 2 ori = 3 raises his bid td; > 1. But then if the
coalition consists of justand1, x;(b) = % and sai’s utility becomes negative. Similarly, if the coalition is
{1,2, 3}, then at least one of 2 or 3 must péyand so his utility becomes negative. O

23



B A semi-cross-monotonic cost-sharing scheme with no groegtrategyproof
mechanism

Suppose there are just two agertend2. The cost of servicing both agentstisvhile the cost of servicing
either agent individually i$. The following is a budget-balanced semi-cross-monotoost-sharing scheme:

§(1,{1,2}) =&(2,{1,2}) =3, £(1,{1}) =¢£(2,{2}) =1

However, this scheme can not correspond to the paymentsyimm@up-strategyproof mechanism. First
consider the bid vectds! = (3, 3). By group-strategyproofness, the mechanism must serxietlg one of
the agents; otherwise they could collude and bid eithdr, 2) or (2, —1). Without loss of generality, suppose
it services agen?. Now consider the bid vectds? = (3,2). Again, the mechanism must service agent
since otherwise he could bitland get the service at pride Finally, consider the bid vectds® = (b, 2),
wherebj is as in the proof of Theorem 4.1. Now the mechanism must@ejust agent at pricel. But this
implies that in bid vectob?, agentl could have profitably deviated by biddig.

Remark B.1 In this cost-sharing scheme, removing either agent fronsété€l, 2} decreased the cost share
of the other agent. This property allowed us to draw conolusiabout the serviced set in bid vectsr
which led us to our contradiction. This highlights the feliog general fact: if two agentsand j are both
negative in a sef, then eitherg(i, S\ {j}) = £(4,5) or £(4,5 \ {i}) = £(4,S) (or both).
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