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Abstract

A cost-sharing scheme is a set of rules defining how to share the cost of a service (often computed
by solving a combinatorial optimization problem) amongst serviced customers. A cost-sharing scheme
is cross-monotonic if it satisfies the property that everyone is better off when the set of people who
receive the service expands. In this paper, we develop a novel technique for proving upper bounds on
the budget-balance factor of cross-monotonic cost-sharing schemes. We apply this technique to games
defined based on several combinatorial optimization problems including the problems of edge cover,
vertex cover, set cover, and metric facility location, and in each case derive tight or nearly-tight bounds.
In particular, we show that for the facility location game, there is no cross-monotonic cost-sharing scheme
that recovers more than a third of the total cost. This resulttogether with a recent 1/3-budget-balanced
cross-monotonic cost-sharing scheme of Pál and Tardos closes the gap for the facility location game.
For the vertex cover and set cover games, we show that no cross-monotonic cost-sharing scheme can
recover more than aO(n−1/3) andO( 1

n ) fraction of the total cost, respectively. Finally, we studythe
implications of our results on the existence of group-strategyproof mechanisms. We show that every
group-strategyproof mechanism corresponds to a cost-sharing scheme that satisfies a condition weaker
than cross-monotonicity. Using this, we prove that group-strategyproof mechanisms satisfying additional
properties give rise to cross-monotonic cost-sharing schemes and therefore our upper bounds hold.

1 Introduction

Consider a situation where a group of customers (which we call agents) wish to buy a service such as con-
nectivity to a network. The total cost of this service is a function of the group of customers that is serviced: a
group of customers in distant towns might incur a larger costthan a group of customers in the same town. The
service provider must develop a pricing policy, orcost-sharing scheme, that, given any group of customers,
divides the cost of the service amongst them. For example, one plausible cost-sharing scheme divides the
cost of the service evenly amongst the customers. However, in the case of network connectivity, this scheme
seems to undercharge distant customers with high connection costs and overcharge other customers.

Developing a fair and economically viable cost-sharing scheme is a central problem in cooperative game
theory (see, for example, [23] and [34]). The question of what constitutes an equitable cost-sharing is diffi-
cult to define and has been the subject of centuries of thought, dating from Aristotle’s proclamation of “equal

∗A preliminary version of this paper appeared in [13].
†Microsoft Research, Redmond, WA 98052, USA. Email:{nickle,mahdian}@microsoft.com. The first author was supported

in part by an NSF fellowship. The second author was supportedby a Microsoft fellowship.
‡Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA. Email: mir-

rokni@theory.csail.mit.edu. Research was supported in part by NSF contracts ITR-0121495 and CCR-0098018.

1



treatment of equals and unequal treatment of unequals in proportion to their inequality” in his book on Nico-
machean Ethics [1] through modern times. One plausible notion of equity is that ofcross-monotonicity
or population monotonicity(see [32] for a survey). Intuitively, cross-monotonicity requires that the price
charged to any individual in a group does not increase as the group expands. There is a large body of litera-
ture [5, 6, 12, 16, 22, 26, 29, 31] on cross-monotonic cost-sharing schemes forsubmodularcost functions1, a
subclass of cost functions of particular interest. Many mechanisms exist, prominent among them the Shapley
value [29], which minimizes the worst-case efficiency loss,and the Dutta-Ray solution [6]. Both of these are
budget-balanced and cross-monotonic for any submodular cost function.

There are many other interesting classes of cost functions that arise from (often NP-hard) optimization
problems. For example, the cost of providing the service fora setS of agents could be expressed as the cost
of building the cheapest Steiner tree that covers the elements ofS, or the minimum cost of opening facilities
and connecting each member ofS to an open facility. These two games, and many others of practical import,
are instances of covering problems. For such problems, it isusually impossible for a cross-monotonic cost-
sharing scheme to be budget-balanced. Moreover, even if a budget-balanced cross-monotonic cost-sharing
scheme exists, it might be hard to compute. Therefore, it is natural to consider cost sharing schemes that are
approximately budget balanced, that is, they recover only a fraction of the cost of the service.2 Approximately
budget-balanced schemes have been proposed for minimum spanning tree [14, 17], Steiner tree [14], Steiner
forest [18], facility location [25], and connected facility location [20].

We can derive simple bounds on the budget-balance factor of combinatorial optimization games using the
integrality gaps of the “natural” LP-relaxations. The cross-monotonicity of a cost-sharing scheme implies
that for every set of agents the cost shares form an allocation in the core of the game (see Section 2 for
definitions). Therefore, the best budget-balance factor achievable by a cross-monotonic cost-sharing scheme
cannot be better than that of a cost sharing in the core. A simple extension of the classic Bondareva-Shapley
theorem [3, 28] implies that the best budget-balance factorfor a cost sharing in the core of integer covering
games is equal to the integrality gap of the “natural” LP-relaxation of the problem (this fact was observed
by Jain and Vazirani [14]). This line of reasoning proves bounds on cross-monotonic cost-sharing schemes
for many combinatorial optimization games. In particular,metric facility location, vertex cover, and set
cover games cannot recover more than a11.463 , 1

2 , and 1
lnn fraction of the total cost, respectively. Prior to this

work, this was the only method known for upper bounding the cross-monotonic cost-sharing schemes. In this
paper, we show stronger upper bounds for several combinatorial optimization games using a novel technique
based on the probabilistic method that will be explained in Section 3. In particular, we prove that the best
budget-balance factor achievable for the facility location game is1

3 , proving optimality of the scheme given
by Pál and Tardos [25]. Also, for the vertex cover and set cover games, we show that no cross-monotonic
cost sharing scheme can recover more than anO(n−1/3) andO( 1

n) fraction of the total cost, respectively. We
also apply this technique to several other games including the maximum flow and the maximum matching
games. In subsequent work, Könemann et al. [19] used our techniques to prove a tight bound of1

2 on the
budget-balance factor of the Steiner tree game.

As observed by Moulin [22], cross-monotonic cost-sharing schemes can be used to constructgroup strat-

1Sometimes calledconcavegames in the cooperative game theory literature.
2Alternatively, we can relax the definition of budget balanceby allowing the scheme to recover at least the cost of the service and

at most a small multiple of the cost of the service. This definition seems more reasonable, since a business usually needs to at least
recover its costs. However, the two definitions are equivalent up to a constant multiple. To be consistent with other papers on this
topic, we use the first definition in this paper.
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egyproof mechanisms, or mechanisms which resist collusion among the agents. In fact, almost all known
group-strategyproof mechanisms are constructed in this manner. However, as our results indicate, many
classes of important cost functions fail to have budget-balanced cross-monotonic cost-sharing schemes. As
we know that there are group-strategyproof mechanisms thatdo not correspond to any cross-monotonic cost-
sharing scheme, our negative results for cross-monotonic schemes do not immediately imply negative results
for group-strategyproof mechanisms. However, we give a partial characterization of group-strategyproof
mechanisms in terms of cost-sharing schemes that satisfy a condition weaker than cross-monotonicity, and
use this characterization to prove that group-strategyproof mechanisms that satisfy an additional condition
calledupper continuitygive rise to cross-monotonic cost-sharing schemes, and therefore our negative results
apply to such mechanisms.

The rest of this paper is organized as follows. In Section 2, we present the definitions of cross-monotonic
cost-sharing schemes. Section 3 contains a description of our upper bound technique, highlighted by the
example of the edge cover game (Section 3.1), and proof of bounds for the set cover game (Section 3.2), the
vertex cover game (Section 3.3), the facility location game(Section 3.4) , and several combinatorial profit-
sharing games (Section 3.5). In Section 4 we define group-strategyproof mechanisms and prove several
results relating such mechanisms to cost-sharing schemes.

2 Definitions

Let A denote a set ofn agents who are interested in a service. Acost-sharing gameis defined by a function
C : 2A 7→ R

+ ∪ {0} which for every setS ⊆ A , gives the costC(S) of providing service toS.3 A cost
allocation for a setS ⊆ A is a functionψ : S 7→ R

+ ∪ {0}, that for each agenti ∈ S, specifies the share
ψ(i) of i in the total cost of servicingS. A cost-sharing schemeis a collection of cost allocations for every
S ⊆ A .

Definition 2.1 A cost-sharing schemeis a functionξ : A × 2A 7→ R
+ ∪ {0} such that, for everyS ⊂ A

and everyi 6∈ S, ξ(i, S) = 0.

Intuitively, we think ofξ(i, S) as the share ofi in the total cost ifS is the set of agents receiving the service.

Ideally, we want cost-sharing schemes (and cost allocations) to bebudget-balanced, that is, for every
S ⊆ A ,

∑

i∈S ξ(i, S) = C(S). Budget-balance is desirable as it guarantees economic viability of the
auction. However, it is not always possible to achieve budget balance in combination with other properties,
or even if it is possible, it might be computationally hard tocompute the cost shares. Therefore, we relax this
notion to the notion ofα-budget balance(for someα ≤ 1).

Definition 2.2 A cost-sharing schemeξ isα-budget-balancedif, for everyS ⊆ A ,αC(S) ≤∑

i∈S ξ(i, S) ≤
C(S).

This definition guarantees that the mechanism does not over-charge agents, but it may under-charge them.
Alternatively, one could defineα-budget balance asC(S) ≤∑

i∈S ξ(i, S) ≤ 1
αC(S) and equivalently relax

3This is similar to the notion of acoalitional game with transferable payoff, where the cost function is replaced by a function that
gives the value, or the worth of each set. This notion was firstdefined by von Neumann and Morgenstern [33].
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the notion ofα-core (see Definition 2.3). All negative results hold without modification in this alternative
framework as well; the positive results extend by multiplying eachξ(i, S) by 1

α . To be consistent with other
papers, we use the first definition in this paper.

In addition to budget balance, we usually require cost allocations and cost-sharing schemes to satisfy
additional properties. One property that is extensively studied in the classic cooperative game theory litera-
ture [2, 3, 8, 27, 28, 30] is the property of being in thecore, first suggested by Edgeworth [7] in 1881. This
property intuitively says that no subset of agents should beovercharged for the service.

Definition 2.3 A cost allocationψ for a setS ⊆ A is in theα-core if and only if it isα-budget balanced
and for everyT ⊆ S,

∑

i∈T ψ(i) ≤ C(T ). A cost-sharing schemeξ is in theα-core if and only if for every
S, ξ(·, S) is in theα-core.

Another property, which was studied by Moulin [22] and Moulin and Shenker [24] in order to design
group-strategyproof mechanisms(see Section 4), and has recently received considerable attention in the
computer science literature (see, for example, [14, 16, 17,25]), is cross-monotonicity(or population mono-
tonicity). This property captures the notion that agents should not be penalized as the serviced set grows.
Namely,

Definition 2.4 A cost-sharing schemeξ is cross-monotoneif for all S, T ⊆ A andi ∈ S, ξ(i, S) ≥ ξ(i, S ∪
T ).

It is a simple exercise to show that everyα-budget-balanced cross-monotonic cost-sharing scheme isin
theα-core, but the converse need not hold. Therefore, cross-monotonicity is strictly stronger than the core
condition. Using this fact and a simple extension of the classic Bondareva-Shapley theorem [3, 28] (see Jain
and Vazirani [14]), one can derive upper bounds on the budget-balance factor of cross-monotonic cost-sharing
schemes for covering games in terms of the integrality gap oftheir LP formulation. In the next section, we
derive a technique based on the probabilistic method which yields stronger bounds.

3 Upper bounds for cross-monotonic cost-sharing schemes

In this section we present the main idea behind our upper bound technique and prove upper bounds for several
games defined based on combinatorial optimization problems. We explain the technique in Section 3.1 with a
simple example of the edge cover game and then extend it to theset cover game in Section 3.2. Sections 3.3,
3.4, and 3.5 contain the proofs of our bounds for the vertex cover, facility location, and several other games.

3.1 A simple example: the edge cover game

In this section, we explain our technique using the edge cover game as a guiding example. The edge cover
game is defined as follows.

Definition 3.1 LetG = (V,E) be a graph with no isolated vertices. The set of agents in the edge cover
game onG is the set of vertices ofG. Given a subsetS of vertices, the cost ofS is the minimum size of a set
F ⊆ E of edges such that for everyv ∈ S, at least one of the edges incident tov is in F . Such a setF is
called anedge coverfor S.
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It is easy to see that for every setS, one can obtain a minimum edge cover ofS by taking a maximum
matching onS and adding one edge for every vertex that is not covered by themaximum matching (see [4]).
Using this fact, we can give a cost-sharing scheme that is in the 2

3 -core of the game: charge each vertex that
is covered by the maximum matching13 , and other vertices23 . Since there is no edge between two vertices
that are not covered by the maximum matching, this cost-sharing scheme satisfies the core property (but
not cross-monotonicity). Furthermore, it is easy to see that the sum of the cost shares is always equal to2

3
times the edge cover forS. Therefore, there is a cost-sharing scheme satisfying the core property with a
budget-balance factor of23 . In fact, Goemans [9] showed that for every graph there is a cost-sharing scheme
in the 3

4 -core. However, in the following, we show that no cross-monotonic cost-sharing scheme can achieve
a budget-balance factor better than1

2 .

Theorem 3.1 For everyǫ > 0, there is no(1
2 + ǫ)-budget balanced cross-monotonic cost-sharing scheme

for the edge cover problem.

Here is the high-level idea of the proof: We assume, for contradiction, that there is a cross-monotonic cost-
sharing scheme that always recovers at least a(1

2 + ǫ) fraction of the total cost. We explicitly construct a
graphG (or in general the set of agentsA and the structure based on which the cost function is defined),
and look at the cost-sharing scheme on this graph. For edge cover, this graph is simply a complete bipartite
graphKn,n, with n large enough. Then, we need to argue that there is a setS of agents such that the total
cost shares of the elements ofS is less than1

2 + ǫ times the size of the minimum edge-cover forS. This is
done using the probabilistic method: we pick a subsetS at random from a certain distribution and show that
in expectation, the ratio of the recovered cost to the cost ofS is low. Therefore, there is a manifestation ofS
for which this ratio is low. In the edge-cover example, we pick one vertexv of G uniformly at random and
let S be the union ofv and the set of vertices adjacent tov. We now need to bound the expected value of the
sum of cost shares of the elements ofS. We do this by using cross-monotonicity and bounding the cost share
of each vertexu ∈ S by the cost share ofu in a substructureTu of S. Bounding the expected cost share ofu
in Tu is done by showing that for every substructureT , everyu ∈ T has the same probability of occurring in
a structureS in whichTu = T . This implies that the expected cost share ofu in Tu (where the expectation
is over the choice ofS) is at most the cost ofTu divided by the number of agents inTu. Summing up these
values for allu gives us the desired contradiction.

Proof of Theorem 3.1. Assume that there is a(1
2 + ǫ)-budget-balanced cross-monotonic cost-sharing

schemeξ. LetG be the complete bipartite graphKn,n, wheren will be fixed later, and considerξ onG. For
everyv ∈ V (G), we letSv be the union ofv and the set of vertices adjacent tov (that is, all vertices of the
other part). We pick a setS of agents by pickingv uniformly at random fromV (G) and lettingS = Sv. By
the definition of the edge cover game,

C(Sv) = n for everyv. (1)

On the other hand,

ES

[

∑

i∈S

ξ(i, S)
]

= Ev

[

ξ(v, Sv)
]

+ Ev

[

∑

u∈Sv\{v}
ξ(u, Sv)

]

≤ 1 + Ev

[

∑

u∈Sv\{v}
ξ(u, {u, v})

]

, (2)
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where the last inequality follows from the facts that for every vertexu and every setS, ξ(u, S) ≤ 1, and that
for everyv ∈ V (G) andu ∈ Sv \ {v}, ξ(u, Sv) ≤ ξ(u, {u, v}). Both of these facts are consequences of the
cross-monotonicity ofξ. By the definition of expected values, we have

Ev

[

∑

u∈Sv\{v}
ξ(u, {u, v})

]

= nEv,u

[

ξ(u, {u, v})
]

, (3)

where the second expectation is over the choice ofv from V (G) andu in Sv \ {v}. However, choosing a
vertexv and then a neighboru of v at random is equivalent to choosing a random edgee in G at random, and
lettingu be a random endpoint ofe andv be the other one. By the budget-balance condition, the sum ofthe
cost shares of the endpoints ofe is at most one. Therefore, for everye, if u is a random endpoint ofe andv
is the other endpoint,E[ξ(u, {u, v})] ≤ 1

2 . Thus, the right-hand side of Equation 3 is at mostn
2 . Therefore,

by Equations 1 and 2, we have

ES

[
∑

i∈S ξ(i, S)

C(S)

]

≤ 1 + n
2

n
<

1

2
+ ǫ

for n > 1/ǫ. Therefore, there is a setS satisfying
∑

i∈S
ξ(i,S)

C(S) < 1
2 + ǫ, which is a contradiction with the

assumption thatξ is (1
2 + ǫ)-budget balanced. �

It is not difficult to see that the cost-sharing schemeξ satisfyingξ(i, S) = 1
2 for everyi ∈ S is cross-

monotonic and12 -budget balanced. Therefore, the bound given in the above theorem is tight.

3.2 The set cover game

The set cover game is defined as follows.

Definition 3.2 LetA be a set of agents andE be a collection of subsets ofA such that every element ofA

is contained in at least one set inE . For everyS ⊆ A , the cost ofS in the set cover game is the minimum
size of a subcollectionF ⊆ E such that everyx ∈ S is contained in at least one set inF . Such a collection
F is called aset coverfor S.

One can think of the edge-cover problem as a special case of the set cover problem in which the size of
each set is 2. It is not difficult to generalize Theorem 3.1 to the special case of set cover in which the size
of each set isk, and prove that fork constant, no cross-monotonic cost-sharing scheme for thisproblem can
recover more than a1k fraction of the cost. Using a similar argument, the next theorem shows that for the
general case of the set cover game, no cross-monotonic cost-sharing scheme can recover more than aO( 1

n)
of the total cost.

Theorem 3.2 There is no cross-monotonic cost-sharing schemeξ for the set cover game such that for every
setS ⊆ A , ξ recovers more than aO( 1

|S|) fraction of the cost ofS.

Proof. Assume that there is such a cross-monotonic cost-sharing schemeξ. Consider the following set cover
game. LetA be a set ofn2 agents that can be partitioned asA = A1∪A2∪· · ·∪An, whereAi’s are disjoint
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sets each of sizen. DefineE as the collection of all setsS ⊂ A such that|S∩Ai| = 1 for everyi = 1, . . . , n.
An alternative way to look at this is thatA andE are sets of vertices and edges of ann-uniform n-partite
complete hypergraph.

We pick a random setS of agents in the above game as follows: Pick a randomi from {1, . . . , n}, and
for everyj 6= i, pick an agentaj uniformly at random fromAj . Let T = {aj : j 6= i} andS = Ai ∪ T .
The cost of the optimal set cover solution onS is always at leastn, since no set inE contains two distinct
elements ofAi, and therefore each element ofAi must be covered with a distinct set inE .

We now bound the average recovered cost over the random choice ofS.

ES

[

∑

x∈S

ξ(x, S)

]

= E

[

∑

x∈Ai

ξ(x, S)

]

+ E

[

∑

j 6=i

ξ(aj , S)

]

≤ E

[

∑

x∈Ai

ξ(x, {x} ∪ T )

]

+ E

[

∑

j 6=i

ξ(aj , T )

]

Since all elements ofT can be covered by one set, the second term in the above expression is at most 1. We
write the first term asnES,x [ξ(x, {x} ∪ T )] where the expectation is over the random choice ofS and the
random choice ofx from Ai. As in the proof of Theorem 3.5, the expected value ofξ(x, {x} ∪ T ) in this
experiment is equal to the expected value of1

n

∑n
j=1 ξ(aj , {a1, . . . , an}) in an experiment that consists of

choosing an agentaj from eachAj uniformly at random. By the budget-balance property, we always have
∑n

j=1 ξ(aj , {a1, . . . , an}) ≤ C({a1, . . . , an}) = 1. Therefore, the first term in the left-hand side of the
inequality (4) is at most one. This means that the expected total cost share recovered from the setS is at most
two. Therefore, the ratio of recovered cost to total cost ofS is at most2/n < 4/|S|. �

It is worth noting that the above proof shows that even for thefractional set cover game, no cross-
monotonic cost-sharing scheme can achieve a budget-balance factor better thanO(1/n).4 This is particularly
interesting for the following reason: It is easy to show thatif there is anα-budget balanced cross-monotonic
cost-sharing scheme for the fractional set cover, then for any special case of the set cover problem of integral-
ity gap at mostµ, there is anαµ-budget balanced cross-monotonic cost-sharing scheme. For example, if we
could find a constant-factor for fractional set cover, we would automatically get a constant-factor for metric
facility location, generalized Steiner tree, and many other network design games. Unfortunately, the above
theorem shows this approach for designing cross-monotoniccost-sharing schemes fails to recover much of
the cost.

3.3 The vertex cover game

The vertex cover game is defined on a graphG = (V,E). The set of agents is the set of edges ofG, and the
cost of serving a setS ⊆ E is equal to the minimum size of a setA of vertices such that for eache ∈ S, at
least one of the endpoints ofe is inA. Such a set is called avertex coverfor the setS. It is well-known that
the integrality gap of the LP relaxation of vertex cover is 2,and therefore no allocation in core can recover
more than half the cost of the solution in the worst case [3, 28]. We show in the following theorem that if
we require the cost-sharing scheme to be cross-monotonic, then no constant-factor budget balanced scheme
exists.

4Other bounds in the section also apply to the fractional variants of the corresponding games.
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Figure 1: Vertex Cover Sample Distribution

Theorem 3.3 For everyǫ > 0, there is no cross-monotonic cost-sharing scheme for vertex cover that on
every setS of n agents, recovers at least a(2 + ǫ)n−1/3 fraction of the cost ofS.

Proof. Assume, for contradiction, that such a schemeξ exists. We letG be a complete graph onm + 2ℓ
vertices, wherem andℓ (m < ℓ) are numbers that will be fixed later, and consider the cost-sharing scheme
ξ onG. We show that there is some setS of edges ofG for which ξ recovers at most a|S|−1/3 fraction of
the cost. We do this by pickingS randomly from a distribution described below, and showing that the above
statement holds in expectation, and therefore there shouldbe a particularS satisfying the above statement.

Let π be a permutation of them+ 2ℓ vertices. LetA be the set of the firstm vertices,B be the set of the
nextℓ vertices, andC be the set of the remainingℓ vertices. We denote thei’th vertices ofB andC (based
on the ordering given byπ) by bi andci. Let Sπ denote the set of allmℓ edges betweenA andB, together
with the set of edgesbici for i = 1, . . . , ℓ. We pickS by picking the permutationπ uniformly at random and
lettingS = Sπ. See Figure 1 for an example.

If we denote the set of edges betweenA andB by T , we have

E
[

∑

e∈T

ξ(e, S)
]

≤ E
[

∑

e∈T

ξ(e, T )
]

≤ m, (4)

where the first inequality follows from the cross-monotonicity of ξ and the second inequality is implied by
the budget balance assumption and the fact that the cost of the minimum vertex cover inT is m. We also
let Ti be the set of allm + 1 edges inS that havebi as an endpoint (see Figure 1). Equation 4 and the
cross-monotonicity ofξ imply the following.

ES

[

∑

i∈S

ξ(i, S)
]

= E
[

∑

e∈T

ξ(e, S)
]

+

ℓ
∑

i=1

E
[

ξ(bici, S)]

≤ m+

ℓ
∑

i=1

E
[

ξ(bici, Ti)
]

, (5)

We now need to analyze the expectation ofξ(bici, Ti) over the random choice ofπ. Notice that the only
elements ofπ that are important inξ(bici, Ti) are the firstm elements and them + i’th andm + ℓ + i’th
elements (bi andci). Therefore, the expectation ofξ(bici, Ti) over the choice ofπ is equal to the expectation
of ξ(vm+2vm+1, {v1vm+1, v2vm+1, . . . , vmvm+1, vm+2vm+1}) over the random choice of an ordered list
v1, v2, . . . , vm+2 of m + 2 different vertices ofG. However, in this experiment it is clear by symmetry
that the expected cost share ofvivm+1 is the same fori = 1, . . . ,m,m + 2, and therefore by the budget
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balance condition each of these expected cost shares is at most 1
m+1 . This, together with Equation 5 imply

the following.

ES

[

∑

i∈S

ξ(i, S)
]

≤ m+
ℓ

m+ 1
. (6)

On the other hand, the size of the minimum vertex cover inS is alwaysℓ. Therefore, the expected value of
the ratio of

∑

i∈S ξ(i, S) to C(S) is at mostmℓ + 1
m+1 . Thus, there is a setS for which this ratio is at most

m
ℓ + 1

m+1 . Takingm =
√
ℓ, we see that the allocation onS recovers at most a2√

ℓ
< (2 + ǫ)|S|−1/3 fraction

of the cost. �

We can show the following positive result for cross-monotonic cost sharing schemes for the vertex
cover which, together with the Moulin mechanism [22] implies an approximately budget-balanced group-
strategyproof mechanism for this problem (see Section 4). We do not know the right bound for the budget-
balance factor of the vertex cover game.

Theorem 3.4 For the vertex cover game, the cost-sharing scheme that charges the edgeuv in the setS an
amount equal tomin(1/degS(u), 1/degS(v)) is cross-monotonic and1

2
√

n
-budget balanced.

Proof. It is clear that this scheme is cross-monotone. We only need to verify the budget-balance factor.
Consider a setS of n agents (edges), and the graphG[S] induced on this set of edges. We prove that the total
cost share of the agents inS is at least 1

2
√

n
times the cost of a vertex cover forS.

Divide the set of vertices into two subsetsL andH, whereL is the set vertices of degree less than
√
n in

G[S] andH is the rest of vertices (H = V (G)−L). As a vertex cover solution, selectH and both endpoints
of all edges(u, v) such thatu, v ∈ L. We show that the cost shares of the edges inS sum to at least a 1

2
√

n

fraction of the cost of this solution. First consider any edge e between vertices inL. The cost share ofe is at
least 1√

n
, thus its cost share covers1√

n
of the cost of picking both its endpoints. Now consider the vertices in

H. Since the degree of each vertexv ∈ H is greater than or equal to
√
n, the sum of the cost shares of the

edges adjacent tov is at least1n
√
n = 1√

n
. Each edge is included in at most two such summations (namely,

when both its endpoints are inH), and thus the sum of the cost shares of edges adjacent to vertices inH is at
least a 1

2
√

n
fraction of the cost ofH. Therefore, the sum of the cost shares of the agents inS is at least 1

2
√

n

times the cost of the optimal vertex cover forS. �

3.4 The metric facility location game

Given a set of cities, facilities with opening costs, and metric connection costs between cities and facilities,
the facility location problem seeks to open a subset of facilities and connect each city to a facility in a manner
that minimizes the total cost. In the facility location game, each city is an agent. The cost of a subset of
agents is the cost of the minimum facility location solutionfor that subset; a cross-monotonic cost-sharing
scheme tries to share this cost among the agents. In this section, we prove that any cross-monotonic cost-
sharing scheme for facility location is at best1

3 -budget-balanced. This matches the budget-balance factorof
the scheme given by Pál and Tardos [25].
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Figure 2: Facility Location Sample Distribution

We start by giving an example on which the scheme of Pál and Tardos [25] recovers only a third of the
cost5. This example will be used as the randomly chosen structure in our proof.

Lemma 3.1 Let I be an instance of the facility location problem consisting of m + k cities c1, . . . , cm,
c′1, . . . , c

′
k and m facilities f1, . . . , fm each of opening cost 3. For everyi and j, the connection costs

betweenfi and ci and betweenfi and c′j are all 1, and other connection costs are obtained by the triangle
inequality. See Figure 2(a). Then ifm = ω(k) andk tends to infinity, the optimal solution forI has cost
3m+ o(m).

Proof. The solution which opens just one facility, sayf1, has cost3m + k + 1 = 3m + o(m). We show
that this solution is optimal. Consider any feasible solution which opensf facilities. The first opened facility
can coverk + 1 clients with connection cost1. Each additional facility can cover1 additional client with
connection cost1. Thus, the number of clients with connection cost1 is k+ f . The remainingm− f clients
have connection cost3. Therefore, the cost of the solution is3f + k + f + 3(m − f) = 3m + k + f . As
f ≥ 1, this shows that any feasible solution costs at least as muchas the solution we constructed. �

Theorem 3.5 Any cross-monotonic cost-sharing scheme for the facility location game is at most1/3-budget
balanced.

Proof. Consider the following instance of the facility location problem. There arek setsA1, . . . , Ak of m
cities each, wherem = ω(k) andk = ω(1). For every subsetB of cities containing exactly one city from
eachAi (|B∩Ai| = 1 for all i), there is a facilityfB with connection cost1 to each city inB. The remaining
connection costs are defined by extending the metric, that is, the cost of connecting cityi to facility fB for
i 6∈ B is 3. The facility opening costs are all 3.

We pick a random setS of cities in the above instance as follows: Pick a randomi from {1, . . . , k}, and
for everyj 6= i, pick a cityaj uniformly at random fromAj . Let T = {aj : j 6= i} andS = Ai ∪ T . See
Figure 2(b) for an example. It is easy to see that the setS induces an instance of the facility location problem

5This example also shows that the dual computed by the Jain-Vazirani facility location algorithm [15] can be a factor 3 away
from the optimal dual.
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almost identical to the instanceI in Lemma 3.1 (the only difference is that here we have more facilities, but
it is easy to see that the only relevant facilities are the ones that are present inI). Therefore, the cost of the
optimal solution onS is 3m+ o(m).

We show that for any cross-monotonic cost-sharing schemeξ, the average recovered cost over the choice
of S is at mostm+o(m) and thus conclude that there is someS whose recovered cost is at mostm+o(m). As
in the previous proofs, we start bounding the expected totalcost share by using the linearity of expectations
and cross-monotonicity:

ES

[

∑

c∈S

ξ(c, S)
]

= E
[

∑

c∈Ai

ξ(c, S)
]

+ E
[

∑

j 6=i

ξ(aj , S)
]

≤ E
[

∑

c∈Ai

ξ(c, {c} ∪ T )
]

+ E
[

∑

j 6=i

ξ(aj , T )
]

Notice the setT has a facility location solution of cost3+k−1 and thus by the budget balance condition the
second term in the above expression is at mostk+ 2. The first term in the above expression can be written as
mES,c [ξ(c, {c} ∪ T )] where the expectation is over the random choice ofS and the random choice ofc from
Ai. However, it can be seen easily that this is equivalent to thefollowing random experiment: From each
Aj , pick a cityaj uniformly at random. Then picki from {1, . . . , k} uniformly at random and letc = ai

andT = {aj : j 6= i}. From this description it is clear that the expected value ofξ(c, {c} ∪ T ) is equal
to 1

k

∑k
j=1 ξ(aj , {a1, . . . , ak}). This, by the budget balance property and the fact that{a1, . . . , ak} has a

solution of costk + 3, cannot be more thank+3
k . Therefore,

ES

[

∑

c∈S

ξ(c, S)
]

≤ m(
k + 3

k
) + (k + 2) = m+ o(m), (7)

whenm = ω(k) andk = ω(1). Therefore, the expected value of the ratio of recovered cost to total cost
tends to1/3. �

3.5 Other combinatorial optimization games

In this section we prove bounds for three other combinatorial optimization games (in particular, the ones
considered by Deng, Ibaraki, and Nagamochi [4]). These problems are maximization problems; therefore
instead of cost-sharing schemes, we considerprofit-sharingschemes, as defined below.

Definition 3.3 A profit-sharing game(or a coalitional game with transferable utilities) is defined by a setA
of agents, and a functionv : 2A 7→ R

+ ∪ {0} that for every setS, gives the valuev(S) of S (or the profit
earned if agents inS collaborate). A profit-sharing scheme is a functionξ : A × 2A 7→ R

+ ∪ {0}, such
that for everyS ⊆ A and everyi 6∈ S, ξ(i, S) = 0. Such a scheme is calledα-budget-balanced(for some
α ≥ 1) if for everyS ⊆ A , v(S) ≤ ∑

i∈S ξ(i, S) ≤ αv(S). A profit-sharing schemeξ is in theα-core if
it is α-budget-balanced and for everyS andT ⊆ S,

∑

i∈T ξ(i, S) ≥ v(T ). A profit-sharing schemeξ is
cross-monotoneif for all S, T ⊆ A andi ∈ S, ξ(i, S) ≤ ξ(i, S ∪ T ).

In this section, we consider profit-sharing schemes for the games of maximum flow, maximum arbores-
cence packing, and maximum matching, and derive lower bounds on the budget-balance factor of cross-
monotonic profit-sharing schemes for these games.
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Figure 3: The graphG for the maximum flow game

The maximum flow game In the maximum flow game, we are given a directed graphG = (V,E) with a
sources and a sinkt. Agents are directed edges ofG. Given a subset of edges,S, the value ofS is the value
of the maximum flow froms to t on the subgraph ofG induced by the edges ofS. It is known that the core
of the maximum flow game is nonempty [4]. The situation is different for cross-monotonic profit-sharing
schemes.

Theorem 3.6 There is noo(n)-budget-balanced profit-sharing scheme for the maximum flowgame wheren
is the number of agents in the set that receives the service.

Proof. Let G be a graph consisting of three nodes nameds, u, andt; n − 1 edges froms to u; andn − 1
edges fromu to t. LetEsu andEut denote the set of edges froms to u and fromu to t, respectively. See
Figure 3. We pick a random setS of n agents as follows: With probability1/2, pick a random edgee from s
to u, and letS = {e} ∪Eut. With probability1/2, pick a random edgee from u to t, and letS = {e} ∪Esu.
For example the setS could contain the thick edges in Figure 3.

Assumeξ is ano(n)-budget-balanced cross-monotonic profit-sharing scheme forG. We have

ES

[

∑

a∈S

ξ(a, S)

]

≥ 1

2
E

e
R←Esu

[

∑

a∈Eut

ξ(a, {e} ∪ Eut)

]

+
1

2
E

e
R←Eut

[

∑

a∈Esu

ξ(a, {e} ∪ Esu)

]

≥ 1

2
E

e
R←Esu

[

∑

a∈Eut

ξ(a, {a, e})
]

+
1

2
E

e
R←Eut

[

∑

a∈Esu

ξ(a, {a, e})
]

= (n− 1)E
a

R←Esu,b
R←Eut

[

1

2
ξ(a, {a, b}) +

1

2
ξ(b, {a, b})

]

≥ n− 1

2
.

On the other hand, the value of every setS picked using the above procedure is one. Therefore, the
expected ratio of the sum of profit shares to the value ofS is at least(n− 1)/2. �

Remark 3.1 It is easy to see that the above proof also works for the problems of packing the maximum
number of arborescences in a digraph, and gives the same lower bound. Anr-arborescence is a spanning
tree rooted atr in which all edges are directed away fromr. The maximumr-arborescence game is defined
on a digraphG = (V,E) with a root r where each edge is an agent. The value of a setS is the maximum
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number of edge-disjointr-arborescences on the subgraph induced byS. One can think of the value ofS as
the maximum bandwidth for broadcasting messages fromr to all vertices of the graph. It is known that the
core of this game is nonempty [4].

The maximum matching game As a last example, we consider the maximum matching game, in which
the agents are vertices of a graphG, and the value of a subset of verticesS is the size of the maximum
matching in the subgraph ofG induced byS (denotedG[S]). One can show that there is a2-budget-balanced
profit-allocation in the core of this game.

Theorem 3.7 There is noo(n)-budget-balanced profit-sharing scheme for the maximum matching game,
wheren is the set of agents that receive the service.

Proof. We use the same construction that was used in the proof of Theorem 3.1. LetG be a complete bipartite
graph withn − 1 vertices in each part (here we usen− 1 instead ofn so that the size ofS becomesn), and
pick S by picking a random vertex inG and all vertices in the other part. Using an argument essentially the
same as the one in the proof of Theorem 3.1, the expected sum ofprofit shares of the elements ofS is at least
(n − 1)/2. On the other hand, the value ofS is always one. Thus, there is anS on which the ratio between
the total profit share and the value ofS is at least(n− 1)/2. �

4 Group-strategyproof mechanisms

One of the important applications of cross-monotonic cost-sharing schemes is in the construction of group-
strategyproof cost-sharing mechanisms [22, 24]. In this section, we explore the connection between cross-
monotonic cost-sharing schemes and group-strategyproof cost-sharing mechanisms, and implications of the
upper bounds of the previous section on such mechanisms. In Section 4.1 we define the setting and present
some preliminaries. In Section 4.2 we discuss an issue in thedefinition of group-strategyproof mechanisms,
and note that in order to exclude a trivial mechanism, we needto use a stronger version of one of the axioms.
In Section 4.3 we give a partial characterization of group-strategyproof mechanisms in terms of cost-sharing
schemes satisfying a property weaker than cross-monotonicity. We then use this characterization to prove that
group-strategyproof mechanisms that satisfy additional properties give rise to cross-monotonic cost-sharing
schemes.

4.1 Preliminaries

Let A be a set ofn agents interested in receiving a service. Each agenti has a valueui ∈ R for receiving
the service, that is, she is willing to pay at mostui to get the service. We further assume that the utility of
agenti is given byuiqi − xi, whereqi is an indicator variable which indicates whether she has received the
service or not, andxi is the amount she has to pay. Acost-sharing mechanismis an algorithm that elicits a
bid bi ∈ R from each agent, and based on these bids, decides which agents should receive the service and
how much each of them has to pay. More formally, a cost-sharing mechanism is a function that associates
to each vectorb of bids a setQ(b) ⊆ A of agents to be serviced, and a vectorx(b) ∈ R

n of payments.
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When there is no ambiguity, we writeQ andx instead ofQ(b) andx(b), respectively. We assume that a
mechanism satisfies the following conditions:6

• No Positive Transfer (NPT): The payments are non-negative (that is,xi ≥ 0 for all i).

• Voluntary Participation (VP): An agent who does not receive the service is not charged (that is,xi = 0
for i 6∈ Q), and an agent who receives the service is not charged more than his bid (that is,xi ≤ bi for
i ∈ Q)

• Consumer Sovereignty (CS): For each agenti, there is some bidb∗i such that ifi bids b∗i , she will get
the service, no matter what others bid.

Furthermore, we would like the mechanisms to be approximately budget balanced. Mimicking the defi-
nition for cost-sharing schemes, we call a mechanismα-budget balanced if the total amount the mechanism
charges the agents is betweenαC(Q) andC(Q) (that is,αC(Q) ≤∑

i∈Q xi ≤ C(Q)).

We look for mechanisms, calledgroup strategyproof mechanisms, which satisfy the following property in
addition to NPT, VP, and CS. LetS ⊆ A be a coalition of agents, andu, u′ be two vectors of bids satisfying
ui = u′i for every i 6∈ S (we think ofu as the value of agents, andu′ as a vector of strategically chosen
bids). Let(Q,x) and(Q′, x′) denote the outputs of the mechanism when the bids areu andu′, respectively.
A mechanism isgroup strategyproofif for every coalitionS of agents, if the inequalityuiq

′
i−x′i ≥ uiqi−xi

holds for everyi ∈ S, then it holds with equality for everyi ∈ S. In other words, there should not be any
coalitionS and vectoru′ of bids such that if members ofS announceu′ instead ofu (their value) as their
bids, then every member of the coalitionS is at least as happy as in the truthful scenario, and at least one
person is happier.7

Given a cross-monotonic cost-sharing schemeξ, Moulin [22] defined a cost-sharing mechanismMξ as
follows.

MechanismMξ:

Initialize S ← A .
Repeat

LetS ← {i ∈ S : bi ≥ ξ(i, S)}.
Until for all i ∈ S, bi ≥ ξ(i, S).
ReturnQ = S andxi = ξ(i, S) for all i.

Notice that the mechanismMξ always services the maximal subset of agents whose bids are all at least
as large as their cost shares in that set.8 Moulin [22] proved the following result.

Theorem A (Moulin [22]) If ξ is a cross-monotonic cost-sharing scheme, thenMξ is group-strategyproof.

6For a discussion about these properties see Moulin [22] and Moulin and Shenker [24].
7Notice that we do not allow members of the coalition to sacrifice their own utility to benefit the group’s total utility, that is

we disallow side-payments. Side-payments require a transfer of money between agents which might be restricted in some settings
either due to legal concerns or issues of trust, and so we do not consider side-payments here. For a discussion of collusion with
side-payments, see Goldberg and Hartline [11].

8Note that there is a unique maximal set as if two sets are feasible then, by cross-monotonicity, their union is as well.
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4.2 A discussion about the definition

In the definition of group-strategyproof mechanisms in the paper by Moulin and Shenker [24] (which is the
basis for the definition of this concept in most computer science papers), it is not required that an agent
can bid in a way that guarantees her not to receive the service. In particular, it is assumed that the bids are
non-negative, and an agent who bids zero can still be serviced, if her payment is also zero [24, page 517].
As we see in the following example, according to this definition, for every cost function there is a trivial
budget-balanced group-strategyproof mechanism.

Example 4.1 Arbitrarily order the agents from1 to n. Then, find the first agenti in this order whose bid is
at leastC({i, . . . , n}). The set that will receive the service isQ = {i, . . . , n}, and the total cost of servicing
this set is paid by the agenti. Other agents pay nothing.

Proposition 4.1 Assuming non-negative bids, the mechanism in Example 4.1 isbudget-balanced and group-
strategyproof.

Proof. It is not hard to see that this mechanism is budget-balanced and satisfies NPT, VP, and CS. To show
that it is group-strategyproof, leti be the first agent to receive service when agents bid truthfully (or n + 1
if no agent receives service) andj be the first agent to receive service when a coalition deviates. If j < i, it
must be thatj is part of the coalition and raised his bid to a number greaterthan or equal toC({j, . . . , n}),
but this decreases his utility. Ifj = i, then the outcome is identical to the truthful scenario and so no utility
changes. Ifj > i, then the utility of any agentk < j is now zero and so did not increase. The utility of any
agentk > j did not change as his allocation and payment remained the same. Finally, as the payment ofj is
at least his payment in the truthful scenario, the utility ofagentj can not increase either. Thus the coalition
can not be successful. �

Although it satisfies all of the axioms, this mechanism is unsatisfactory, since in practice a coalition can
convince a member that has zero utility for receiving the service simply not to bid, thus reducing the cost to
others. Furthermore, this mechanism fails to satisfy the axioms in the original paper of Moulin [22], where a
stronger version of CS is assumed that guarantees that each agent can bid in a way that she does not receive
the service, no matter how others bid.

In order to exclude mechanisms like the one in Example 4.1, weonly consider mechanisms that satisfy the
stronger definition of CS by Moulin [22]. To this end, we allowthe utilities and bids to benegative. NPT and
VP guarantee that any agent with negative bid will not receive the service. An alternative approach (adapted
by Moulin [22]) is to assume that utilities, bids, and payments are all positive.9 In many combinatorial games,
the cost function is not strictly increasing and therefore it is reasonable to allow cost shares to be zero. Thus,
we use negative bids to indicate that an agent does not want toreceive the service. However, it is easy to see
that all our results hold in the setting considered by Moulin[22].

4.3 A partial characterization of group-strategyproof mechanisms

In Section 3, we proved that for certain games every cross-monotonic cost-sharing scheme is poorly budget
balanced. A natural question to ask is whether all group-strategyproof mechanisms for these games are so

9This is equivalent to a property calledno free riders, or no free lunch, which was used in an earlier version of this paper [13].
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poorly budget balanced. Towards this aim, one might hope to show a converse to Theorem A, namely that
every group-strategyproof mechanism corresponds to a cross-monotonic cost-sharing scheme. Unfortunately,
this statement is not necessarily true (See, for example, Appendix A, or the incremental cost-sharing method
for supermodular cost functions in the paper by Moulin [22]). In this section, we prove that for any group-
strategyproof mechanism, we can construct a cost-sharing scheme that satisfies a weaker condition than
cross-monotonicity. Then, we use this characterization toshow that group-strategyproof mechanisms that
satisfy certain additional properties correspond to cross-monotonic cost-sharing schemes.

We start by defining a property weaker than cross-monotonicity for cost-sharing schemes. Recall that a
cost-sharing scheme is cross-monotonic, if the removal of each agent from the service set does not increase
the cost to any other agent.

Definition 4.1 Let ξ : A × 2A 7→ R
+ ∪ {0} be a cost-sharing scheme,S ⊆ A , and i ∈ S. We sayi is

a positiveelement ofS if for everyj ∈ S \ {i}, ξ(j, S \ {i}) ≥ ξ(j, S) and for at least one suchj a strict
inequality holds;i is a negativeelement ofS if for everyj ∈ S \ {i}, ξ(j, S \ {i}) ≤ ξ(j, S) and for at
least one suchj a strict inequality holds. If for allj ∈ S \ {i}, ξ(j, S \ {i}) = ξ(j, S), we sayi is a neutral
element ofS. We say thatξ is semi-cross-monotonic, if every element of every set is either positive, negative,
or neutral. In other words,ξ is semi-cross-monotonic if there is no setS ⊆ A and three distinct elements
i, j1, j2 of S, such thatξ(j1, S \ {i}) < ξ(j1, S) andξ(j2, S \ {i}) > ξ(j2, S).10

Thus, cross-monotonicity is precisely a special case of semi-cross-monotonicity, when every element of
every set is either positive or neutral. The results in this section are based on the following partial characteri-
zation of group-strategyproof mechanisms.

Theorem 4.1 For everyα-budget-balanced group-strategyproof cost-sharing mechanismM for a cost func-
tionC, there is a cost-sharing schemeξM for C such that

(a) ξM is α-budget-balanced and semi-cross-monotonic.

(b) for any setS and bid vectorb such thatbi = −1 for i 6∈ S andbi > ξM(i, S) for i ∈ S, the mechanism
M services the setS.

(c) for any bid vectorb, if the serviced set isS, then the payment ofi ∈ S is equal toξM(i, S).

We note that this is not a complete characterization of group-strategyproof mechanisms, as there are
semi-cross-monotonic cost-sharing schemes that do not correspond to any group-strategyproof mechanism
(See Appendix B). Finding a complete characterization of cost-sharing schemes that give rise to group-
strategyproof mechanisms is an interesting open direction.

Before proving the above theorem, we state two of the corollaries of this theorem. These results charac-
terize group-strategyproof mechanisms that satisfy the following additional properties.

Definition 4.2 A mechanismM is upper continuousif for every agenti, if i gets the service for every bid
value greater thanx holding other bids fixed, theni gets the service if he bidsx.

10Notice that this definition allows sets that contain both negative and positive elements. Also, an element can be a positive
element of one set and a negative element of another.
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Definition 4.3 A mechanism issubsidy-freeif, for any bid vector, the total charge to any subset of agents is
at most the cost of servicing that subset.

Although arguably not well-motivated, the condition of upper-continuity allows us to prove the following
equivalence between cross-monotonic cost-sharing schemes and group-strategyproof mechanisms satisfying
this condition, hence implying that all the upper bounds on the budget-balance factor of cross-monotonic
cost-sharing schemes proved in Section 3 apply to such mechanisms as well. This theorem can be viewed
as guidance in the search for group-strategyproof mechanisms: in order to design a mechanism with better
revenue properties than the best cross-monotonic cost-sharing schemes, one must build a mechanism which
violates upper continuity.

Theorem 4.2 The cost functionC has an upper-continuousα-budget-balanced group-strategyproof mecha-
nism if and only if it has anα-budget-balanced cross-monotonic cost-sharing scheme.

The subsidy-freeness property was considered previously by Moulin [21]. This property parallels the
core condition of cost-sharing games and is motivated by theargument that no subset of serviced agents
should be over-charged to accommodate others. The following theorem shows the equivalence of group-
strategyproof mechanisms satisfying this property and cross-monotonic cost-sharing schemes, in the case
that the mechanism is perfectly budget balanced. We do not know if this theorem holds for budget-balance
factors other than 1, and so the results of Section 3 only imply that the problems presented there do not have
budget-balanced group-strategyproof mechanisms satisfying subsidy-freeness.

Theorem 4.3 The cost functionC has a subsidy-free budget-balanced group-strategyproof mechanism if and
only if it has a budget-balanced cross-monotonic cost-sharing scheme.

In the rest of this section, we present the proofs of Theorems4.1, 4.2, and 4.3.

Proof of Theorem 4.1. (a): We start by defining the cost-sharing schemeξM. For an agenti, let b∗i be
a large enough value such that if agenti bids b∗i , she will get the service, independent of other agents’ bids
(such a value exists by CS). For a setS ⊆ A , consider the scenario where the agents inS bid their value
in b

∗, and others bid−1. By CS and VP, the set of agents serviced by the mechanism in this scenario is
preciselyS. We define the cost shareξM(i, S) as the payment charged by the mechanism to the agenti in
this scenario. By this definition and the fact thatM isα-budget balanced, it is clear thatξM is alsoα-budget
balanced.

Now, we prove thatξM is semi-cross-monotonic. Assume, for contradiction, thatthere is a setS ⊆ A

and three distinct agentsi, j1, j2 ∈ S such thatξ(j1, S \ {i}) < ξ(j1, S) andξ(j2, S \ {i}) > ξ(j2, S).
Consider three bid vectorsb1,b2, andb3 defined as follows: In all of these vectors, agentsj ∈ S \{i} bid b∗j
and agentsj ∈ A \ S bid−1. The bid ofi in these vectors isb1i = b∗i , b2i = ξM(i, S), andb3i = −1. By VP
and CS, the set of serviced agents atb

1 is S, atb3 is S \ {i}, and atb2 is eitherS or S \ {i}. Furthermore,
by the definition ofξM, the payment of each agentj at the bid vectorsb1 andb

3 is ξ(j, S) andξ(j, S \ {i}),
respectively. We consider two cases based on whetheri is serviced at the bid vectorb2:

Case 1: i is served at the bid vectorb2. By VP, i’s payment atb2 is at mostb2i = ξM(i, S). If i’s payment is
strictly less thanξM(i, S), then in a scenario where the utility of the agents is given byb

1, iwould have
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an incentive to announce a bid ofb2i , contradicting the strategyproofness of the mechanism. Therefore,
when all agents bid according tob2, the payment ofi must be equal toξM(i, S). Now consider the
paymentxj1(b

2) of j1 when agents bidb2. If xj1(b
2) < ξ(j1, S), then in the scenario where the

utility of the agents is given byb1, {i, j1} can form a successful coalition: they can bid according
to b

2, thereby decreasing the payment ofj1, and not changing the payment ofi. Also, if xj1(b
2) >

ξ(j1, S \ {i}), then in the scenario where the utility of the agents is givenby b
2, {i, j1} can form a

successful coalition: they can bid according tob
1. This decreases the payment ofj1, andi is indifferent

between the two situations, as her utility is zero in both. Thus,ξ(j1, S) ≤ xj1(b
2) ≤ ξ(j1, S \ {i}),

contradicting the definition ofj1.

Case 2: i is not served at the bid vectorb2. Consider the paymentxj2(b
2) of j2 when agents bidb2. If

xj2(b
2) < ξ(j2, S \ {i}), then if the true utility of the agents is given byb3, {i, j2} can form a

coalition: they can bid according tob2, thereby reducingj2’s payment while keeping the utility ofi
constant at zero. Also, ifxj2(b

2) > ξ(j2, S), then if the utility of the agents is given byb2, {i, j2} can
form a coalition and bid according tob1, thereby reducingj2’s payment and keepingi’s utility constant
at zero. Therefore,ξ(j2, S \ {i}) ≤ xj2(b

2) ≤ ξ(j2, S), contradicting the definition ofj2.

The contradiction in both cases shows thatξM is semi-cross-monotonic.

(b): Index the agents such thatS = {1, . . . , k}. For i = 0, . . . , k, define the bid vectorb(i) as follows:

b
(i)
j = b∗j for 1 ≤ j ≤ k − i, b(i)j = bj > ξM(j, S) for k − i < j ≤ k, andb(i)j = −1 for j ∈ A \ S. We

will prove by induction oni that if the agents bidb(i), then the mechanismM will service the agents inS
and chargesj ∈ S an amount equal toξM(j, S). This statement fori = k would imply (b). The induction
basis (i = 0) is obvious from CS and the definition ofξM. To show the induction step, we assume that the
statement is true fori and prove it fori + 1. The only difference between the bid vectorsb

(i) andb
(i+1) is

the bid of the agentk− i. If at the bid vectorb(i+1) agentk− i is either not serviced, or is charged an amount
more thanξM(k − i, S), then this agent has an incentive to announce a bid ofb∗k−i when the true utilities of
the agents is given byb(i+1). Similarly, if k − i is serviced and charged an amount less thanξM(k − i, S)
when agents bid according tob(i+1), then when the true utilities of the agents is given byb

(i), agentk − i
has an incentive to bidbk−i. Therefore, atb(i+1), k − i gets serviced and paysξM(k − i, S). This means
that from the perspective of agentk− i, outcomes atb(i) andb

(i+1) are the same. Therefore, for every other
agentj, the agentj must be indifferent between these two outcomes as well, since otherwise{i, j} can form
a coalition at one of the two bid vectorsb(i) or b

(i+1). Therefore, by the induction hypothesis, at the bid
vectorb(i+1), every agentj ∈ S must receive the service and be chargedξ(j, S).

(c): Let S1 = {i ∈ S | bi ≤ ξM(i, S)}, S2 = S \ S1, andS3 = A \ S. By VP, everyi ∈ S1 is not
charged more thanξM(i, S) at b. Suppose the price charged to some agenti∗ ∈ S1 is strictly less than
ξ(i∗, S). Consider a bid vectorb′ in which every agenti ∈ S1 bids b∗i , everyi ∈ S2 bids bi (his bid inb)
and everyi ∈ S3 bids−1. From part (b), at the bid vectorb′, setS will receive the service andi ∈ S will
payξM(i, S). Now, since the agenti∗ ∈ S1 is charged strictly less thanξM(i∗, S) atb, then when the true
utilities are given byb′, i∗ can form a coalition with the agents inS1 ∪ S3 and submit the bid vectorb. As a
result,i∗ pays strictly less and no member of the coalition pays more, contradicting group-strategyproofness.
Therefore the price of any agenti ∈ S1 equalsξM(i, S) at the bid vectorb.

Now consider an agenti ∈ S2. If his payment differs betweenb andb
′, theni can form a coalition with

the agents inS1 ∪ S3 and submit the bid vector in which he pays less. Agenti strictly benefits from this,
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while the situation of the agents inS1 ∪S3 does not change, again contradicting the group-strategyproofness
ofM. Therefore the payment of every agenti ∈ S2 also equalsξM(i, S). �

Proof of Theorem 4.2. The “if” part of this statement follows from Theorem A and thesimple observation
that the Moulin mechanismMξ is upper continuous.

Given anα-budget-balanced group-strategyproof mechanismM, we show that the cost-sharing scheme
ξM defined in the proof of Theorem 4.1 is cross-monotonic. In other words, we need to show that every
element of every set is either positive or neutral. Defineb

∗ as in the proof of Theorem 4.1. Consider a set
S ⊆ A and an agenti ∈ S. Letb be a bid vector such thatbj = b∗j for everyj ∈ S \ {i}, bj = −1 for every
j ∈ A \ S, andbi is any number greater thanξM(i, S). By part (b) of Theorem 4.1, at any such bid vector,
the setS gets the service. Therefore, by the upper continuity ofM and CS, the setS gets the service wheni
bidsξM(i, S) and every other agent bids according tob. Call this bid vectorb′.

Now, assume, for contradiction, thatξM(j, S \ {i}) < ξM(j, S) for somej ∈ S \ {i}. We argue that
{i, j} can form a successful coalition when the utilities of the agents is given byb′. In this situation, ifi bids
−1 andj does not change her bid, then by Theorem 4.1 the setS \ {i} receives the service and agentj pays
ξM(j, S \ {i}). This outcome makes the agentj strictly happier, and agenti is indifferent between the two
outcomes. This contradicts the group-strategyproofness of M. This contradiction shows that every element
i of every setS is either positive or neutral, and henceξM is cross-monotonic. �

Proof of Theorem 4.3. As in the previous proof, the “if” direction is a direct corollary of Theorem A and
the simple observation thatMξ satisfies subsidy-freeness.

Given a subsidy-free 1-budget-balanced mechanismM, we show that the cost-sharing schemeξM de-
fined in Theorem 4.1 is cross-monotonic. First, notice that by part (c) of Theorem 4.1, subsidy-freeness of
M implies thatξM is in the1-core ofC, that is, for everyT ⊆ S ⊆ A , we have

∑

j∈T

ξM(j, S) ≤ C(T ). (8)

Now, consider a setS ⊆ A and an agenti ∈ S. If i is a negative element ofS, then for everyj ∈ S \{i},
we haveξM(j, S) ≥ ξM(j, S \ {i}), and at least for onej this inequality is strict. Therefore,

∑

j∈S\{i}
ξM(j, S) >

∑

j∈S\{i}
ξM(j, S \ {i}) = C(S − {i}), (9)

where the last equality follows from the fact thatM is 1-budget-balanced. Equation 9 contradicts Equation 8
for T = S \ {i}. �

5 Conclusion

In this paper, we studied upper bounds for the budget-balance factor of cross-monotonic cost-sharing schemes
for a variety of combinatorial optimization games. Our techniques are quite general and may prove applicable
to a variety of other combinatorial games. For example, Könemann et al. [19] used techniques similar to
the ones introduced in this paper to solve an open question posed in the conference version of this paper
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regarding the Steiner tree game. As another example, the facility location game restricted to a tree always
has a budget-balanced cost allocation in the core [10], but we do not have a tight lower and upper bound on
the budget-balance factor of the best cross-monotonic cost-sharing schemes for this game. For the facility
location game on the line, we have an upper bound of6

7 .

An interesting open question is to fully characterize cost-sharing schemes that can arise asξM for some
group-strategyproof mechanismM. The results of Section 4.3 is a step toward solving this problem. Another
open question is to generalize Theorem 4.3 for mechanisms with budget-balance factors less than one.

Finally, we would like to note that there was an error in Example 4.2 and Theorem 4.2 of the conference
version of this paper [13]: The mechanism in Example 4.2 can be poorly budget-balanced, and the mechanism
in Theorem 4.2 is not group-strategyproof. We would like to thank Hervé Moulin for noticing the latter
mistake.

Acknowledgments.We would like to thank Michel Goemans and Rahul Sami for helpful discussions. We
are grateful to Hervé Moulin for a careful reading of this paper and pointing out a mistake in the proof of
Theorem 4.2 in the conference version of this paper, and alsofor pointing out the stronger version of CS
originally proposed in his paper. Finally, we would like to thank Martin Pál for introducing the problem and
for helpful discussions.
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A A group-strategyproof mechanism with no cross-monotoniccost-sharing
scheme

In this appendix, we give an example that shows that for some cost functions, group-strategyproof mecha-
nisms do not correspond to cross-monotonic cost-sharing schemes.

Example A.1 Suppose there are three agents,1, 2, and3, with a cost function given by

C(S) =

{

2 if |S| = 3,
1 otherwise.

We consider the following mechanism for this cost function:

MechanismM:

If b1 ≥ 1 then
If min(b2, b3) >

1
2 thenQ = {1, 2, 3} andx = (1, 1

2 ,
1
2),

else ifmax(b2, b3) <
1
2 thenQ = {1} andx = (1, 0, 0),

else ifb2 ≥ b3 thenQ = {1, 2} andx = (1
2 ,

1
2 , 0),

else ifb3 > b2 thenQ = {1, 3} andx = (1
2 , 0,

1
2),

else if 1
2 ≤ b1 < 1 then

If min(b2, b3) >
1
2 thenQ = {2, 3} andx = (0, 1

2 ,
1
2),

else ifmax(b2, b3) <
1
2 thenQ = ∅ andx = (0, 0, 0),
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else ifb2 ≥ b3 thenQ = {1, 2} andx = (1
2 ,

1
2 , 0),

else ifb3 > b2 thenQ = {1, 3} andx = (1
2 , 0,

1
2),

else ifb1 < 1
2 then

If min(b2, b3) ≥ 1
2 thenQ = {2, 3} andx = (0, 1

2 ,
1
2),

else ifb2 ≥ 1 thenQ = {2} andx = (0, 1, 0),
else ifb3 ≥ 1 thenQ = {3} andx = (0, 0, 1),
elseQ = ∅ andx = (0, 0, 0).

The cost-sharing schemeξM is not cross-monotonic since, for example,ξM(1, {1, 2, 3}) > ξM(1, {1, 2}).
In fact, it is not hard to see that no cross-monotonic cost-sharing scheme forC exists. Still, as the following
lemma shows, the mechanismM is group-strategyproof.

Proposition A.1 The mechanismM in Example A.1 is group-strategyproof.

Proof. Let ui denote the true utility ofi for receiving the service,bi denote his bid, andxi(b) denote his
payment when the bids areb. Notexi(b) = 0 if and only if i does not receive the service.

We first prove by contradiction that any successful coalition must include1. Suppose not (that is,b1 =
u1). First consider the caseu1 ≥ 1

2 . Note that fori ∈ {2, 3}, wheneveri receives the service, he pays1
2 .

Therefore,i can benefit only ifui >
1
2 and he is not receiving service. However, in any input bid vector with

b1 ≥ 1
2 , bi > 1

2 implies thati receives the service, soi can not benefit in any coalition. Next supposeu1 <
1
2 .

Consider the cross-monotonic cost-sharing schemeξ : {2, 3} → R+ where fori ∈ {2, 3}, ξ(i, {2, 3}) = 1
2

andξ(i, {i}) = 1. The Moulin mechanismMξ is equivalent toM whenu1 <
1
2 and so Theorem A implies

that there is no subset of{2, 3} can form a successful coalition in this case.

Now consider any coalition including1. Supposeu1 <
1
2 . If b1 < 1

2 , then the outcome does not change
if we setb1 = u1. Thus, we only need to consider coalitions in whichb1 ≥ 1

2 . Asu1 <
1
2 and the minimum

non-zero price of1 is 1
2 , it must be that1 6∈ Q(b) even thoughb1 ≥ 1

2 . This happens only when12 ≤ b1 < 1
andmax(b2, b3) <

1
2 or min(b2, b3) >

1
2 . In the first case, as no agent receives service, all utilities are zero

and so no one can benefit. In the second case, fori ∈ {2, 3}, the payment ofi is 1
2 . Therefore, ifi is in

the coalition, it must be thatui ≥ 1
2 . If i is not in the coalition, thenui = bi >

1
2 by assumption. Thus

min(u2, u3) ≥ 1
2 . But thenx(b) = x(u) and so no agent’s utility for the outcome changes.

Next, supposeu1 ≥ 1
2 . Fori ∈ {2, 3}, in the truthful scenarioi pays at most12 . As i’s payment is always

at least12 , i can not benefit from a decrease in price. Thereforei can benefit only ifui >
1
2 andi 6∈ Q(u).

But this is impossible for any vector withu1 ≥ 1
2 , soi can not benefit in any coalition. Therefore,1 must be

the agent that benefits from the coalition. As the minimum price for1 is 1
2 , in order for1 to benefit, it must

be thatu1 >
1
2 but either1 6∈ Q(u) or x1(u) = 1. This means that eithermin(u2, u3) >

1
2 (case one) or

max(u2, u3) <
1
2 (case two). Furthermore,1 can only benefit ifx1(b) = 1

2 since, whenu1 ≥ 1, 1 is receiving
the service at price1 and so the price must decrease, and when1

2 ≤ u1 < 1, 1 is not receiving the service but
can not afford to pay1 and so must receive the service at price1

2 . Now, in case one (min(u2, u3) >
1
2 ), in the

truthful scenario2 and3 have positive utility. In order forx1(b) = 1
2 , i for i = 2 or i = 3 must lower his bid

to bi ≤ 1
2 . But then if the coalition consists of justi and1, i 6∈ Q(b) and soi’s utility decreases. Similarly, if

the coalition is{1, 2, 3}, then1 only benefits if{2, 3} 6⊂ Q(b) and so the utility of 2 or 3 decreases. In case
two (max(u2, u3) <

1
2 ), 1 can only benefit ifi for i = 2 or i = 3 raises his bid tobi ≥ 1

2 . But then if the
coalition consists of justi and1, xi(b) = 1

2 and soi’s utility becomes negative. Similarly, if the coalition is
{1, 2, 3}, then at least one of 2 or 3 must pay1

2 , and so his utility becomes negative. �
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B A semi-cross-monotonic cost-sharing scheme with no group-strategyproof
mechanism

Suppose there are just two agents,1 and2. The cost of servicing both agents is6 while the cost of servicing
either agent individually is1. The following is a budget-balanced semi-cross-monotoniccost-sharing scheme:

ξ(1, {1, 2}) = ξ(2, {1, 2}) = 3, ξ(1, {1}) = ξ(2, {2}) = 1

However, this scheme can not correspond to the payments in any group-strategyproof mechanism. First
consider the bid vectorb1 = (3, 3). By group-strategyproofness, the mechanism must service exactly one of
the agents; otherwise they could collude and bid either(−1, 2) or (2,−1). Without loss of generality, suppose
it services agent2. Now consider the bid vectorb2 = (3, 2). Again, the mechanism must service agent2
since otherwise he could bid3 and get the service at price1. Finally, consider the bid vectorb3 = (b∗1, 2),
whereb∗1 is as in the proof of Theorem 4.1. Now the mechanism must service just agent1 at price1. But this
implies that in bid vectorb2, agent1 could have profitably deviated by biddingb∗1.

Remark B.1 In this cost-sharing scheme, removing either agent from theset{1, 2} decreased the cost share
of the other agent. This property allowed us to draw conclusions about the serviced set in bid vectorb

1

which led us to our contradiction. This highlights the following general fact: if two agentsi andj are both
negative in a setS, then eitherξ(i, S \ {j}) = ξ(i, S) or ξ(j, S \ {i}) = ξ(j, S) (or both).
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