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Abstract

Service providers rely on the management systems housed in their Network Operations Centers (NOCs)
to remotely operate, monitor and provision their data networks. Lately there has been a tremendous increase
in management traffic due to the growing complexity and size of the data networks and the services provi-
sioned on them. Traffic engineering for management flows to avoid congestion resulting in loss of critical
data (e.g. billing records, network alarms etc.) is essential for the smooth functioning of these networks. As
is the case with most intra-domain routing protocols the management flows in many of these networks are
routed on shortest paths connecting the NOC with the serviceproviders POPs (points of presence). These
collection of paths thus form a “confluent” tree rooted at thegateway router connected to the NOC. The
links close to the gateway router may form a bottleneck in this tree resulting in congestion. Typically this
congestion is alleviated by adding layer two tunnels (virtual links) that bypass the traffic off some links of
this tree by routing it directly to the gateway router. The traffic engineering problem is then to minimize the
number of virtual links needed for alleviating congestion.

In this paper we formulate a traffic engineering problem motivated by the above mentioned applications.
We show that the general versions of this problem are hard to solve. However, for some simpler cases in
which the underlying network is a tree, we design efficient algorithms. We use these algorithms as the basis
for designing efficient heuristics for alleviating congestion in general non-tree service provider network
topologies.
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1 Introduction

Service providers rely on their management systems
housed in their Network Operations Centers (NOCs)
to remotely operate, monitor, and provision their data
networks. These management systems and the net-
work used for carrying management traffic are critical
resources without which customer services cannot be
quickly provisioned, billing data cannot be collected,
software upgrades and backups cannot be performed,
and faults cannot be identified and fixed. The grow-
ing complexity and size of data networks, and the ser-
vices provisioned on them, has resulted in a tremen-
dous increase in management traffic. This traffic is ei-
ther routed in-band with the data traffic on a common
network or it is routed out-of-band on a secure, sepa-
rate network, dedicated to carrying management traf-
fic. Historically, traffic engineering and capacity plan-
ning have been done without regard to management
traffic requirements. However, traffic engineering for
management traffic, the goal of which is to avoid con-
gestion which results in packet losses and retransmis-
sions, is now becoming essential for the smooth func-
tioning of service provider networks.

Generally speaking, a service providers network
consists of a number of management domains defined
by a partition of the network topology. The domains
are managed by a Network Operations Center (NOC),
which is connected to its managed domains via a man-
agement gateway router (MGR) within each domain.
The MGR within a domain receives and forwards man-
agement traffic from/to the routers within the domain.
Typically, the MGR does not originate or carry data
packets, and it is only a source or destination for man-
agement traffic. Fig. 1 depicts these entities of the
management domains. In connection oriented net-
works (e.g. ATM, MPLS etc.) management and data
traffic flows over connections (e.g. Virtual Circuits
(VC), Label Switch Paths (LSP) etc.) whose paths are
computed using a shortest path algorithm (e.g. Con-
strained Shortest Path First (CSPF)) and for which
resources (e.g. bandwidth) are reserved on the links
along the path. However, unlike connections for data
traffic which may be provided strict QoS guarantees,
very little (or no) bandwidth and resources are allo-
cated for management connections and also no traffic
policing and shaping is performed. Thus, typically

these connections are routed over shortest paths, re-
gardless of the resource limitations of the links on the
shortest paths, and irrespective of the actual amount
of management traffic flowing over them. No QoS
guarantees are provided to these connections and flow
control is done by dropping packets at intermediate
routers or switches. The management traffic flows
are thus prone to congestion and losses which has an
adverse impact on the normal operations of service
providers networks.

The collection of paths for the management con-
nections, in a management domain, form a shortest
path rooted tree (SPRT), rooted at the management
gateway router of the domain. We will refer to this as
a “confluent” (tree [6, 5]). Ideally, the management
traffic load on a link on this SPRT must not exceed
a certain percentage of the links bandwidth. Beyond
this increase in percentage, congestion is likely to oc-
cur. Even if a mix of data and management traffic is
routed on the link, the management traffic is the first
to be dropped since it has lower priority (QoS) than
a customer’s data traffic. By its very nature the links
closer to the root in the SPRT carry more load and
are more prone to congestion. A common and intu-
itive way of alleviating the congestion is then to cre-
ate Layer2 tunnels between a nodev down in the tree
and the root. These Layer2 tunnels are typically cre-
ated as bandwidth guaranteed connections over a sep-
arate part of the network (many times using explicit
routing to prevent the tunnel from taking resources
away from the already congested links in the SPRT).
Such a tunnel can be used to route all the data com-
ing into a nodev directly off to the root thus alle-
viating the congestion on all the upstream nodes on
the path fromv to the root in the SPRT. These Layer2 tunnels can be thought of as virtual links between
nodes of the SPRT and the root and are treated as any
other physical link for the purpose of route compu-
tation. Once added, these links are assigned weights
and affect the SPRT of the new network. By choosing
low weights for these virtual links and by changing
weights on some of the links in the SPRT of the orig-
inal network the new SPRT can be made to include
all the new links and to eliminate a given set of previ-
ously congested links in the SPRT. Typically in these
connection oriented networks (unless the connections
are explicitly routed), paths for connections are con-
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stantly re-balanced so that they eventually settle onto
the new SPRT. Thus in these networks the goal of traf-
fic engineering is to determine the “minimal” set of
Layer2 tunnels that can be used to alleviate conges-
tion for management flows.

ATM networks - an example: We now present
some more details of this traffic engineering prob-
lem for ATM networks. Typically in these networks
there are3 types of links that carry management traf-
fic. These can be low bandwidth (e.g. T1) “manage-
ment links” that are designated to allow only man-
agement connections over them. The Connection Ad-
mission Control (CAC) rejects any requests for data
connections over these links. Typically a portion of
all other links’ bandwidth (0 � 5%, almost equiva-
lent to a T1) is also reserved for carrying manage-
ment traffic (again implemented using CAC). Finally
Virtual Links which are created as Virtual Paths (VP)
may also be used for carrying management traffic.
Typically the management Permanent Virtual Circuits
(PVC) are provisioned with no QoS guarantees by
setting them up as best effort Unspecified Bit Rate
(UBR) class circuits. Thus little or no bandwidth is
reserved for these circuits. Since no policing and shap-
ing is done for them and since these circuits have
the lowest priority, they are the first to suffer packet
losses under link congestion. The ATM networks typ-
ically use CSPF algorithm to compute paths for the
PVCs and since the CAC reserves no or very little
bandwidth for the management PVCs they tend to get
routed on a shortest path regardless of the resource
limitations of the links of the shortest path and irre-
spective of the actual amount of management traffic
flowing over it. In these networks, service providers
typically alleviate congestion of management flows
by creating Virtual Paths (VP) of specified bandwidth
and QoS guarantees that are then advertised as new
management links in the control plane. These Virtual
Paths usually provide a shortcut to a node so it can
send its management traffic directly to the Manage-
ment Gateway Router in its domain.

The goal of traffic engineering is to enhance the
performance of the network, while expending network
resources economically. An efficient scheme for alle-
viating congestion for management traffic by virtual
link augmentation must carefully balance the result-
ing increase in the node adjacencies and the band-

width resources dedicated for management traffic with
the eventual gain in terms of enhanced performance
of the service providers management systems. This
is what we attempt to study in this paper. The traffic
engineering problem as defined above is very hard to
solve in its full generality (in general network topolo-
gies). Just the problem of determining whether the
existing network can have a congestion-free SPRT for
any link weight modifications is NP hard [6]. We
show that this remains the case if the underlying net-
work is a tree and new virtual links (each with its own
specified capacity) may be added between “any” pair
of nodes of the network. However, when the underly-
ing network is a tree, and new links can only be added
between the MGR and the other routers, we design an
efficient algorithm for the problem based on dynamic
programming (DP). Our simulation of this algorithm
shows that in most cases congestion can be eliminated
by adding very few links at low bandwidth. Motivated
by these results, for general network topologies we
propose a heuristic that runs our DP algorithm on the
SPRT of the network and uses the computed virtual
links for lowering congestion in the original network.
Note that although the augmentation of the network
with these new links is not guaranteed to alleviate all
the congestion our simulation results show that it in-
deed lowers the congestion considerably.

Our dynamic programming (DP) algorithm for tree
based networks are designed to support many natural
constraints such as the bandwidth and cost of the po-
tential new links. We note that link costs are used to
model service provider priorities, monetary costs, etc.
In addition, budget constraints can be used to trade off
the number of new links added against the traffic en-
gineering gains, etc. We are able to show that all these
algorithms have very good worst case performance as
well.

Tree-based networks arise naturally in other con-
texts, including Content Distribution Networks (CDN).
For many applications ranging from distributing rich-
media content to collecting billing data, CDNs often
organize their deployment of servers in the form of a
tree rooted typically at the NOC with each node for-
warding data from its children to its parent and vice
versa [6]. Our techniques are equally applicable for
alleviating congestion in these networks as well.
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Figure 1: A NOC controlled management domains

1.1 Related work
To the best of our knowledge the problem formula-
tion and solutions presented in this paper are unique
when compared to the prior work done in this area of
congestion control for management traffic. The work
that comes closest to our work is that of [16]. They
study a problem of selecting the minimum number
of nodes to be used for monitoring in a management
domain, such that when management traffic flows on
pre-determined routes from the monitored nodes to
the monitoring nodes the links stay congestion free.
They present an Integer LP formulation and present
heuristics without any worst case guarantees for the
problem. Their work differs from ours since we do
not know the routes a-priori, we reduce congestion
by network augmentations and since they assume a
distributed monitoring system. The work of [13] con-
siders a similar problem of placement of measurement
instrumentation but with additional distance constraints
between the monitoring nodes and their monitored
nodes. They use graph theoretic results to design heuris-
tics for their problems. Both of these works allow for
a distributed monitoring setting where management
traffic can flow to a number of monitoring agents in a
given domain. However ( [4, 2]) the more commonly
implemented monitoring schemes in service provider
networks depend on a single point in the network (the
MGR connected to the NOC) for actively gathering
management information of a given domain. This is
done for simplicity and cost effectiveness since re-
quiring the distribution of specialized instrumentation
software and/or hardware can be cumbersome and ex-
pensive to deploy and manage inside the production
network. Thus [4] presents under this constraint a
problem of computing the minimum number of nodes
where measurement of link bandwidth information is

sufficient to get a network wide view. The same is
also done for measuring link latencies. The work of [4]
extends it to the case when links may suffer failures.

There is a large body of work on the traffic engi-
neering of networks for data traffic. We briefly touch
on this work in this section. The work of [10, 8, 9]
deals with intra-domain traffic engineering with ap-
plicability to interior gateway protocols such as OSPF
and IS-IS etc. They show how routing can be im-
proved by adjusting link weights based on a network-
wide view of the data traffic and topology within a
routing domain. A method to alleviate link load in IP
backbone using deflection routing is proposed in [12].
The work of [1, 3] is for online routing schemes which
achieve nearly optimal utilization on ISP networks
even with a fairly limited knowledge of traffic de-
mands.

Problems related to congestion for Confluent flows
(another name for single source or destination short-
est path routing flows) have been considered before
in the literature. In [17] these problems are studied in
the context of IP routing. In this context they compare
the traditional source invariant IP routing with routing
that considers both source and destination and they
design source invariant routing schemes with better
performance guarantees. Also, in [18], this problem
is considered for the purpose of traffic engineering for
quality-of-service routing. Confluent flows are also
studied in [15] for the purpose of minimizing the total
cost of installed capacities on the links of the network
under thehosemodel.

Recently, [6] and [5] studied the relation between
confluent flow and the well-studied general splittable
flow and unsplittable flow problems ([7, 14]). They
[6] and [5] present approximation algorithms for the
minimum congestion confluent flow problem and the
maximum throughput confluent flow problem. In par-
ticular, [5] shows a tight�(log n)-approximation for
the minimum node-congestion confluent flow prob-
lem and a constant factor approximation for the max-
imum throughput confluent flow problem in general
graphs in the special case that the capacity of all nodes
is the same. Our problem is different in that we are
interested in augmenting the network to get a desired
congestion and we are not restricted to uniform capac-
ities. Network augmentation has been considered in
different settings, especially in the context of connec-
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tivity augmentation. See [11] for a survey. To the best
of our knowledge, our work is the first attempt to find
a set of minimum cost links to augment a confluent
flow with a guaranteed approximation factor.

1.2 Our Results
In Sections 2 we present hardness results in terms of
the in-approximability of the problem for general net-
work topologies and for the tree topology when aug-
menting links are allowed between any pair of routers.
We complement these results with fast approximation
schemes (FPTAS) for the problem when the underly-
ing network is a rooted tree and augmenting links can
only connect to the root. Specifically in Section 3 we
design a dynamic programming based FPTAS for the
problem of minimizing the total cost (e.g. number of
links etc.) of the augmenting links needed to trans-
form a given tree into a congestion-free tree. In the
case where the augmenting links have uniform cost
(e.g. when minimizing number of links), our algo-
rithm finds an optimal solution in polynomial time.
In Section 4 we allow for a budget constraint used to
trade off the number of new links added against the
traffic engineering gains. For this budget-constrained
problem we also design a dynamic programming based
FPTAS. In Section 5 we design a heuristic for our
problem that is applicable to general network topolo-
gies. In Section A.1 we show that this heuristic for the
general network topologies works very well on ser-
vice provider networks.

2 Preliminaries and Hardness results

We model our network as a graphG = (V;E). Each
vertexv 2 V represents a router withsv units of man-
agement data that must be routed between it and the
management gateway. We say thatv is a source ofsv units of flow. The management gateway is repre-
sented by a specialroot vertexr 2 V . The edge setE
represents links in the network. Each link, or edgee,
has a hard capacity constrainte; that is, edgee can-
not carry more thane units of traffic, in a congestion
free routing. A flow function from several sources
to a single sink is said to beconfluentif all the flow
reaching a vertex leaves on the same edge. The edges
carrying non-zero flow in a confluent flow function
induce a tree in the graph.

In networks that use hop-by-hop shortest path rout-
ing, edges have weights and for each vertexv, thesv
units of flow for vertexv is routed along the short-
est path fromv to r. These paths form a tree at ver-
tex r, and the flows on the resulting tree isconflu-
ent. For the given set of weight assignments to the
edges the routed flows may violate the edge capaci-
ties. Therefore, the traffic engineering goal is to in-
stall additional edges of minimum cost together with
their weight assignment so that a shortest path rout-
ing can carry the flows from all the nodes to the root.
As mentioned earlier typically it is desirable for these
augmenting edges to extend from a node directly to
the root. We note however that the unrestricted prob-
lem (where we can add edges between nodes as well
as from nodes to the root), is in-approximable even
for trees if P6=NP. Our reduction is from the NP-hard
confluent flowproblem, defined as follows.

Definition 1 Given a graphG = (V;E) with rootr 2 V , capacitiese on the edges, and in which each
vertexv is a source ofsv units of flow, decide whether
all the sources can be routed to the root confluently
(i.e., the edges with non-zero flow form a tree).

Theorem 1 For trees there is no approximation al-
gorithm for the unrestricted version of our problem
unless P=NP.

Proof: Suppose we are given an instance of the con-
fluent flow problem on a (connected) graphG = (V;E),
and letT = (V;E0) be a spanning tree ofG. Consider
an instance of the unrestricted version of our problem
for treeT where the cost of adding any edge inEnE0
is zero, and any other possible external edges have
cost infinity. ThenG has a confluent flow if and only
if there is a set of augmenting edgesA of cost zero
and an assignment of weights toE0 [A such that the
routing is feasible. Thus, an approximation algorithm
for our problem would yield a solution to the conflu-
ent flow problem instance.

In the rest of the paper we will restrict ourselves
to the case where only edges going from the nodes
directly to the root can be added. This allows us to
define thenetwork augmentation problem.

Definition 2 We are given a graphG = (V;E) with
root r 2 V , capacitiese together with weightswe >0 on the edges, and in which each vertexv is a source
of sv units of flow. Furthermore, for each nodev, for
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price/costpv, we can routev units of flow directly
fromv to the rootr. The network augmentation prob-
lem is to find a set of edgesA of minimum total cost
from nodes directly to the root, and a weight assign-
ment for edgesE [ A, such that the routing on the
shortest paths tree is feasible.

A proof similar to that of Theorem 1 shows that
the problem is in-approximable in general graphs. There-
fore, we further restrict ourselves and study our prob-
lem on trees, giving us a heuristic for the problem
in general graphs by applying our algorithms to the
shortest paths tree of the original network.

When we restrict our algorithms to trees, we have
the advantage that we may not need to change the
weights of the edges belonging to the original net-
work. Consider the following procedure for choos-
ing weights for the edges in the augmentation set. We
can proceed sequentially as follows. At each step we
add an edge from a node to the root and delete an
edge from the original tree. Suppose that edge(v; r)
is added and edge(x; y) is deleted, where the weight
of the (unique) path fromv to x isW1 and the weight
of the (unique) path fromy to r is W2. Then, the
weight of edge(v; r) should satisfy:

For vertexx: W1 + w(v; r) < w(x; y) +W2;
For vertexy: W2 < w(x; y) +W1 + w(v; r):

That is,W2 �W1 � w(x; y) < w(v; r) < W2 �W1 + w(x; y);
and there is a feasible choice forw(v; r). Note that if
all the edge weights computed by this procedure are
non-negative then with this choice of weight setting
for the augmenting edges we do not need to change
any edge weights in the original network. Even when
some weights turn out to be negative we can use the
standard edge weight modification procedure to make
all weights non-negative, since it can be shown that all
cycles in the graph remain non-negative by our choice
for w(v; r). However this would also require chang-
ing some edge weights in the original graph. For the
above reasons, from now on until Section 5, we ignore
the assignment of edge weights and thus our problem
becomes equivalent to the following confluent flow
problem.

Definition 3 We are given a graphG = (V;E) with
root r 2 V , capacitiese on the edges, and in which
each vertexv is a source ofsv units of flow. Further-
more, for each nodev, for price pv, we can routev
units of flow directly fromv to the rootr. The net-
work augmentation problem is to find a set of edges
of minimum cost from nodes (directly) to the root, and
a confluent flow satisfying all the sourcessv.

We also define a natural variation of this problem
which we call thebudget constrained network aug-
mentation problem. Here the service provider has a
budgetB and the goal is to find a set of edges of total
cost at mostB joining the nodes directly to the root,
such that using these edges the maximum amount of
management traffic can be routed congestion free on
the augmented graph. Note that here we allow a source
to send fractional amount of itssv units of traffic.

Both of our augmentation problems are at least
as hard as the weakly NP-hard knapsack problem. In
the knapsack problem, we are given a finite capacity
knapsack, and a set of items, where each item has a
weight and a value. The goal is to find a maximum
value subset of the items, such that its weight does
not exceed the capacity of the knapsack.

Theorem 2 The network augmentation problem is weaklyNP -hard.

Proof: Given an instance of the knapsack problem,
let C denote the capacity of the knapsack, and sup-
pose we are givenn items, where each itemv has
weight sv and valuepv. Construct a treeT with n
leaves, where leafv is a source ofsv units of flow.
These leaves all stem from a single vertexu which is
a source of0 units of flow. The edge from a leafv to
vertexu has capacity(v;u) = sv. Vertexu is adja-
cent to the rootr through an edge of capacityC. We
can buy an edge from any leafv to the root at costpv and this edge has capacityv = sv. We prevent
the solution from buying an edge fromu to the root
by assigning this edge infinite cost and zero capacity.
It is not hard to see that the optimal solution of this
instance of the network augmentation problem yields
an optimal solution to the knapsack instance.

Theorem 3 The budget-constrained network augmen-
tation problem is weakly NP-hard.

Proof: Given an instance of the knapsack problem
with capacityC andn items of weightspv and values
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sv, construct a treeT with zero-capacity edges andn
leaves, where leafv is a source ofsv units of flow.
For each vertexv, we can add an edge of costpv with
capacitysv at v. The budget constraintB in the net-
work augmentation problem is equal to the knapsack
sizeC. It is easy to see that an optimal solution of the
knapsack instance can be obtained from an optimal
solution of the budget-constrained network augmen-
tation instance.

Thus, we consider approximation algorithms for
our augmentation problems. The best approximation
we can hope for is afully polynomial-time approxima-
tion scheme(FPTAS). An approximation algorithm is
an FPTAS for a minimization (maximization) prob-
lem if it finds a(1+�)-approximation ((1��)-approximation)
solution in time which is polynomial in the input size
and1=�. We present an FPTAS for several versions
of our problem, and optimal algorithms for some re-
stricted instances.

In the rest of this paper, we consider the network
augmentation problem on trees only. Thus, we are
given an initial treeT which we must augment and
change into a new treeT 0 on which flow is routed.
For ease of discourse, we consider vertices and edges
to be oriented with respect to the original treeT . We
say that the root of the input treeT is at thetop, and
that a vertexv (edgee) is below vertexv0 (edgee0)
if it is farther away from the root thanv0 (e0). For
an edge(x; y) in the tree we assume that vertexx is
below vertexy. We will write V (G) to indicate the
vertex set of graphG andE(G) to indicate the edge
set of graphG.

3 Routing flow at minimum cost

In this section we present a dynamic-programming-
based FPTAS for the network augmentation problem
on trees. We describe the dynamic programming for
the case of a binary tree only. The general case can
be reduced to this case with only a constant factor in-
crease in the size of the table maintained in the dy-
namic programming and with only a constant factor
increase in the running time. For simplicity we omit
the details of this construction. (We note that the gen-
eral case cannot be handled by simply adding “dummy”
nodes to make the tree binary, since a confluent flow
in the resulting binary tree may not necessarily trans-

late to a confluent flow in the original tree.)
For each edgee = (v; u) 2 E(T ) (with, say,u

abovev) and each possible cost�, we find the smallest
possible flowf(e; �) on edgee in while spending at
most� in the subtreeTv rooted atv. That is, we want
to satisfy the maximum possible flow from sources inTv, including v, and route as little flow as possible
through e, or even reverse the flow one and carry
flow from sources outsideTv throughe into Tv and
eventually to the root through purchased edges.

Note that in our setting, a flowf is a function from
a subset of edgesE0 (exactly those edges on which
flow is routed) to the real numbers which describes
how flow is routed on edgesE0. A positive flow off(e; �) on edgee indicates that there aref(e; �) units
of flow from sources inTv unsatisfied by flowf . We
need to route thesef(e; �) units to the root throughu, so edgee will carry flow f(e; �) toward the root.
A negative flow of magnitudejf(e; �)j on e indicates
that all the flow from sources inTv is satisfied by pur-
chased edges to the root from vertices belowe, and
we can push additional flow throughu into Tv while
maintaining feasibility of the solution. Edgee will
carry up tojf(e; �)j units of flow in the downward
direction, fromu to v.

To formalize this, we first define the “flow lim-
iting” function L(; f) for a positive capacity and
flow f as follows. Iff > , L(; f) = 1. Other-
wise,L(; f) = max(�; f). We wish to solve the
recurrencef((v; u); �) = minfL((v;u); sv � Zv � v + �f)g�f = Z(x;v) � f((x; v); �x) + Z(y;v) � f((y; v); �y)
where the minimum is over�x; �y; Z(x;v); Z(y;v); Zv 2f0; 1g andf((v; u); �) denotes the minimum flow fromv to its parentu given that cost� is paid to buy edges
to the root from vertexv and vertices in the subtrees
rooted at the childrenx and y of v, Zv denotes a
binary decision variable indicating whether the edge
from v to r is purchased, andZ(x;v) andZ(y;v) denote
binary decision variables indicating whether flow may
be carried on edges(x; v) and (y; v), respectively,
subject to the following constraints:� � � �x + �y + Zv � pv;
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� if f((x; v); �x) > 0 (resp. f((y; v); �y) > 0)
thenZ(x;v) = 1 (resp.Z(y;v) = 1);� at most one off((v; u); �),�Z(x;v)�f((x; v); �x),�Z(y;v) � f((y; v); �y), andZv is positive.

The first two constraints ensure that the flow intov
(in whichever direction) can be routed as necessary
at a total cost of� or less, and the third ensures that
the resulting solution forms a tree. The flow limiting
function L ensures that the flow on(v; u) (in either
direction) does not violate the capacity(v;u). In the
case of a violation of an edge’s capacity in the original
direction toward the root, there is no solution of cost�. The flow value of infinity will propagate to an edge
incident on the rootr. If f((v; r); �) = 1 for a childv of r and all values of�, there is no feasible solution
at any cost.

Note that as a degenerate case, it is possible ifsv = 0 (and only in this case) that all of the flows
out of v are non-positive (a negative would indicate
capacity that is available but unused) andv is an iso-
lated vertex in the final solution.

First, we show how to solve the problem opti-
mally when the costspv are polynomially bounded
and have polynomially many distinct values (i.e.,pv 2f0; : : : ; ng for some constant) and the tree is bi-
nary. Note the maximum total cost isn+1 We build a
dynamic programming table that indicates the amount
of flow that must be sent on edge(v; u) given that� is spent in the subtree rooted atv, for each cost� � n+1 for all e 2 E.

Algorithm. For each edgee = (v; u) 2 T with u
abovev, let Tv be the subtree rooted atv. We com-
pute the minimum flow fromv to u, or the maximum
amount of flowf(e; �) that we can feasibly pushintoTv, for cost�. Note that if we can push flow intoTv
(and eventually to the root through edges inTv and
some purchased edge), then the flow one will be neg-
ative. If we must carry some flow from sources inTv through e in the original direction fromv to u,
then the flow one will be positive. Thus, we want
to minimizef(e; �) subject to the cost and feasibility
constraints.

We begin with the leaves and compute the pos-
sible flows for each edge for each cost in bottom-up
fashion. For an edgee incident to a leafv, if e � sv,
then edgee can carry flowsv for each� < pv. If v �

sv, then edgee can carry flow�min(e; (v�sv)) for
each� � pv.

Now we would like to compute the set of possi-
ble flows for each cost on an edge(v; u) given the
costs and corresponding flows on the edges(x; v) and(y; v) immediately below(v; u) in T . Let �x and�y
be a pair of costs from the tables for(x; v) and(y; v)
respectively. Letf((x; v); �x) and f((y; v); �y) be
the corresponding flows on(x; v) and(y; v).

There are three cases to consider:� If f((x; v); �x) > 0 and f((y; v); �y) > 0,
then, if we can do so without violating capaci-
ties,

– we can route all leftover flow belowe up
throughe at no additional cost:� = �x +�y, f(e; �) = f((x; v); �x)+f((y; v); �y)+sv.

– we can route all leftover flow belowe and
possibly some flow from sources abovee
on edge(v; r) at additional costpv: � =�x + �y + pv, f(e; �) = �min(e; v �(f((x; v); �x) + f((y; v); �y) + sv)).� If f((x; v); �x) > 0 andf((y; v); �y) � 0 (the

casef((x; v); �x) � 0 andf((y; v); �y) > 0 is
analogous), then, if we can do so without vio-
lating capacities,

– we can route all leftover flow belowe and
possibly some flow from sources abovee
on edge(y; v) at no additional cost:� =�x+�y, f(e; �) = �min(e; jf((y; v); �y)j�(f((x; v); �x) + sv)).

– we can route all leftover flow below(x; v),sv, and possibly some flow from sources
abovee on edge(v; r) at additional costpv (in this case, edge(y; v) will have zero
flow): � = �x+�y+pv, f(e; �) = �min(e; v�(f((x; v); �x) + sv)).

– we can route all leftover flow below(x; v)
andsv up edgee at no additional cost (in
this case, edge(y; v) will have zero flow):� = �x+�y, f(e; �) = f((x; v); �x)+sv.� If f((x; v); �x) � 0 and f((y; v); �y) � 0,

then, if we can do so without violating capaci-
ties,
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– we can route flowsv and possibly some
flow from sources abovee on edge(x; v)
at no additional cost (in this case, edge(y; v) will have zero flow):� = �x + �y,f(e; �) = �min(e; jf((x; v); �x)j�sv).

– we can route flowsv and possibly some
flow from sources abovee on edge(y; v)
at no additional cost (in this case, edge(x; v) will have zero flow):� = �x + �y,f(e; �) = �min(e; jf((y; v); �y)j�sv).

– we can route flowsv on edge(v; r) at ad-
ditional costpv (in this case, edges(x; v)
and(y; v) will have zero flow):� = �x +�y+pv andf(e; �) = �min(e; v�sv).

– we can route flowsv on edgee at no addi-
tional cost (in this case, edges(x; v) and(y; v) will have zero flow):� = �x + �y,f(e; �) = sv.

After performing all such computations, for each re-
sulting cost�, we add an entry to our tableFe. The
value of the entry is the flowf achieved at cost� for
whichf(e; �) is minimized.

For the final step, supposex andy are children of
the rootr. The algorithm reports the value�x + �y
where�x and �y are the minimum costs for whichjf((x; r); �x)j � (x;r) and jf((y; r); �y)j � (y;r),
respectively.

The standard mechanism of recording pointers be-
tween entries in the dynamic programming tables and
backtracking through them yields an algorithm to find
an optimal flow as well as its cost. 2
Theorem 4 The above procedure finds an optimal so-
lution in polynomial time if all edge costs are integers
bounded by a polynomial.

Proof: For the running time, suppose for allv, pv 2f0; : : : ; ng. Then there are onlyn+1 distinct values
for the cost of flows on an edge and all edges below it.
Thus we must find for each vertex a table of at mostn+1 values. Each of these is found by considering at
mostn+1 combinations of flows on the edges below
it as specified by the recurrence relation.

By construction, every flow considered for each
edge is constructed from feasible flows for the sub-
trees below it in such a way that the resulting flow is

confluent and doesn’t violate capacities. Furthermore,
it routes all flow from sources in the subtree below the
edge either to the root through purchased edges below
it, up through the edge in question, or by purchasing a
new edge, to eventually reach the root. Therefore, ev-
ery flow considered in the final step of the algorithm
is a feasible flow.

It remains to show that the flow computed is opti-
mal. Fix an optimal solution. Let��e be the cost paid
by the optimal solution in the subtree belowe, and letf�e be the flow one. (Recall thatf�e may be negative.)
We claim that the value off(e; ��e) computed for the
flow on edgee for cost��e is at mostf�e . We prove the
claim by induction.

For an edgee = (v; u) immediately above a leafv, suppose the optimal solution does not buy the edge(v; r) from v to the root. The algorithm computesf(e; 0) = sv as needed. Suppose the optimal solu-
tion buys(v; r) incurring costpv. Then it routes at
mostv through this edge and the flow one is at leastmax(sv � v;�e). (Again, this may be negative.)
This is the valuef(e; pv) specified in the recurrence
and computed by the algorithm.

Consider an edgee = (v; u) with edgesex =(x; v) andey = (y; v) immediately belowe. Let Tv,Tx, andTy be the subtrees rooted atv, x, andy respec-
tively, let��v, etc., denote the costs paid by the optimal
solution in these subtrees, and letf�(v;u), etc., denote
the flows in the optimal solution. LetZ�v , Z�(x;v), andZ�(y;v), respectively, indicate whether the optimal so-
lution places flow on edges(v; u), (x; v), and(y; v).
By the induction hypothesis,f((x; v); ��x) � f�(x;v)
and f((y; v); ��y) � f�(y;v). Thus the value for the
flow on e at cost�� computed using these settings
of the decision variablesZv, Z(x;v), andZ(y;v) is at
mostf�e , and the minimumf((v; u); ��v) specified in
the recurrence and computed by the algorithm is at
most this value as well.

Consider a uniform instance, in which all costs
are the same (and thus the objective is to minimize the
number of augmentations). Note that the above pro-
cedures finds an optimal solution in polynomial time
for such an instance.

Consider an arbitrary instance. We can round the
prices of that instance and use the dynamic program to
find an approximately optimal solution. The rounding
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works by “guessing” the maximum price of an edge
bought in an optimal solution, which is a lower bound
on the overall cost of an optimal solution.

Algorithm.
Input:� An instance of the network augmentation prob-

lem.� Positive0 < � � 1 (We will find a 1 � �-
approximation for the problem).

1. If the given instance is feasible as is, terminate.

2. For eachP 2 fpvg, letSP = fvjpv � Pg.

(a) LetKP = �Pn .

(b) For eachv 2 SP , let pPv = d pvKP e.
(c) For eachv 62 SP , letpPv =1 (i.e., set the

decision variableZv = 0 in the dynamic
program).

(d) Solve the instance optimally for pricespPv ;
denote this solution byOP .

3. Output the solutionOP with minimum cost ac-
cording to the original (unrounded) prices.2

Theorem 5 The above algorithm is an FPTAS for the
network augmentation problem with arbitrary costs.

Proof: First notice that the algorithm runs in time
polynomial inn and1=� as we solven dynamic pro-
grams and the prices in each dynamic program are
bounded bydn=�e.

Let C(S) be the cost of solutionS in the orig-
inal instance andCP (S) be the cost in the rounded
instance with rounding/cutoff parameterP . For any
price pu feasible given the cutoff,KP pPu � KP �pu � KP pPu . Therefore,KPCP (S)� nKP � C(S) � KPCP (S)
providedS does not use edges of cost more thanP .

Let OP be the solution output by our algorithm,P � be the maximum price of an edge in an optimal
solution,OP � be the solution considered by our algo-
rithm for P = P � (optimal for the rounded instance

with rounding/cutoff parameterP �), andO be the op-
timal solution to the original instance. Then,C(OP ) � C(OP �)� KP �CP �(OP �)� KP �CP �(O)� C(O) + nKP �= C(O) + �P �� (1 + �)C(O):
4 Maximizing throughput with bud-

get constraint

Next we consider the budget-constrained network aug-
mentation problem. In this problem, we can add edges
of total cost no more than a given budgetB, and we
seek to maximize the amount of flow routed subject to
this budget constraint. Again, we require that flow is
routed confluently. However, we permit solutions to
route only part of the flow sourced at a node. Again,
the best we can hope for is to find a fully polynomial
approximation scheme (see hardness result in Sec-
tion 2). In the following we omit some proofs for lack
of space.

We now describe a natural dynamic program to
solve this problem when the source values and ca-
pacities are polynomially bounded. We will use this
dynamic program to design an FPTAS for the case
in which we have a lower bound on the capacity of
each edge in terms of the size of the maximum source.
Then we generalize this FPTAS to an FPTAS for the
general budget-constrained network augmentation prob-
lem. As before we describe the dynamic program-
ming for the case of a binary tree only and note that
the general case can be reduced to this case as well.

Assuming sources and capacities are polynomi-
ally bounded, a variation on the algorithm in Section 3
solves the problem optimally in polynomial time. As
before, our algorithm constructs a table for each edge.
However, the table is now indexed by the form of the
solution – the flows on the edges and flows satisfied
by added edges – and the entries of the table are the
costs. More specifically, for an edgee, for each pos-
sible flow one, and for each amount of flow already
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satisfied by added edges belowe, we store the cost of
such a solution.

We begin with the leaves and compute the costs
in bottom-up fashion. For an edgee incident to a leafv, edgee can carry any flowfe � min(sv; e) for
cost� = 0 without satisfying any flow sourced atv
through(v; r). If v � sv, then edgee can carry any
flow 0 � fe � �min(e; (v � sv)) for cost� = pv
while satisfyingmin(sv; v) flow sourced atv. Of
course, we only need to remember the best solution
for a given cost entry, and so the table for a leaf will
have up to two entries: flowmin(sv; e) and satisfied
flow 0 at cost0; flow �min(e;max(v � sv; 0)) and
satisfied flowmin(sv; v) at costpv.

The inductive step for an edgee that is not inci-
dent to a leaf is the same as before, only now we must
also record the amount of flow satisfied belowe as
well as the flow throughe and the cost. We simply
add the amounts of flow satisfied below each of the
children’s edges. As in the case of an edge incident to
a leaf above, we must cap the flows through the given
edge and the purchased edge to the root, if used, by
their capacities.

For the final step, we combine the tables of the
edges incident to the root as described in the inductive
step. We discard all solutions whose costs are greater
than the budgetB, and return the remaining solution
with the maximum amount of satisfied flow.

It is not hard to see that this algorithm computes
the optimal solution in polynomial time when the ca-
pacities and sources are polynomially bounded. We
can use this algorithm to get an FPTAS for an instance
with arbitrary capacities and sources.

First, we present an FPTAS for the case in which
capacities are not too small compared to sources; that
is, the ratio between the minimum capacity and maxi-
mum satisfiable flow from a single source is bounded
from below. Let us introduce some definitions and
notation first.

Definition 4 LetD be the largest amount of flow from
a single node which can be routed to the root by spend-
ing at mostB (D is a lower bound on OPT). NoteD
can be just a fraction of the flow sourced at the node.

By the above definition ofD, it is straightforward
to see thatD � OPT � nD where OPT is the value
of the optimal solution.

Definition 5 Let min be the smallest capacitye of
an edgee or v of an added edgev, i.e.,min = min(mine2E e;minv2V v):
LetR be the minimum ratio between any capacity andD, i.e.,R = minD . Let p be the maximum of 1 andlognR, i.e.,p = max(1; lognR). Note thateD � 1np
for all edges.

The AlgorithmBCNA1 for the budget-constrained
network augmentation problem is as follows:

Algorithm.
Input:� InstanceI of the budget-constrained network

augmentation problem.� Positive0 < � � 1 (We will find an 1 � �-
approximation for the problem).

1. Given�, let �0 = �00 = �2 .

2. Cap all sources atD and capacities atnD (this
does not change OPT, so from now on we will
assume our instance originally satisfied this con-
dition and thusD = dmax).

3. LetK = �0Dnp .

4. For each sourcesv, let s0v = d svK e.
5. For each capacitye, let 0e = d eK e.
6. Solve the instance optimally for sourcess0v and

capacities0e to get solutionO0.
7. Scale downO0 by a factor of(1 � �00) and out-

put the corresponding (“unrounded”) solutionS. That is, ifO0 routes�s0v fraction of the flow
sourced at nodev along edgee, thenO routes�(1� �00)sv flow sourced at nodev along edgee. 2

We omit the proof of the following theorem for
lack of space.
Theorem 6 The AlgorithmBCNA1 is an FPTAS for
the budget-constrained problem whenDmin is bounded
above by any polynomial inn.
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The flaw of Algorithm BCNA1 is that its run-
ning time depends on the ratioDmin for an arbitrary
instance. In the following, we overcome this prob-
lem by removing a set of edges with small capacities
and proving that removing this set of edges does not
change the value of the optimal solution. Then, using
the AlgorithmBCNA1 in the new instance, we design
an FPTAS for the general budget constrained network
augmentation problem.

The AlgorithmBCNA2 is as follows:

Algorithm.
Input:� InstanceI of the budget constrained network

augmentation problem.� Positive0 < � � 1 (We will find a (1 � �)-
approximation for the problem).

1. �1 = �2 = �2
2. Consider the setE1 of all edges of the capacity

less than Dnq+1 whereq = logn 1�1 . Remove all
edges inE1 from the graph. Let the resulting
instance after removing these edges beI 0.

3. Call Algorithm BCNA on instanceI 0 and pa-
rameter�2. Let the output beO0.

4. OutputO0. 2
Theorem 7 The AlgorithmBCNA2 4 is an FPTAS
for the budget-constrained network augmentation prob-
lem.

Proof: In the instanceI 0, minD � 1nq+1 , thus from
Theorem 6, the running of AlgorithmBCNA1 is a
polynomial innmax(1;q+1) and 1�2 , thus it is a polyno-

mial in n1+logn 1�1 = n�1 = 2n� and 1� .

Let OPT0 be the value of the optimal solution of
instanceI 0. From Theorem 6, we know thatF (O0) �(1 � �2)OPT0. Let OPT be the value of the optimal
solution of instanceI. Since each removed edge can
carry at most Dnq+1 flow and there are at mostn sepa-
rate edges (or paths) to the root, OPT� OPT0 + Dnq .
Therefore,

OPT0 � OPT� Dnq � OPT(1� 1nq )
By the definition ofq, nq = 1�1 , thus, 1nq = �1,

thus OPT0 � OPT(1 � �1). From this inequality, we
have F (O0) � (1� �2)OPT0� (1� �2)(1� �1)OPT� (1� �)OPT (1)

as desired. This completes the proof of the FP-
TAS.

5 Heuristics for general network topolo-
gies

In this section we present our heuristic for alleviating
congestion in more complex non-tree service provider
network topologies. Here we consider only the basic
network augmentation problem. The heuristic works
by computing the SPRT of the given network. It then
computes the optimal congestion-free augmentation
treeT of this SPRT using the DP presented in Sec-
tion 3. In other words if the management flows were
to use the paths inT then the links are guaranteed
to be congestion-free. The heuristic then attempts to
“force” the management flows onto the paths inT by
setting the costs of the new links to0 and by setting
the costs of the links that are not inT but were in the
original SPRT to a large value. Note that as implied
by our hardness results this heuristic is not guaranteed
to eliminate all the congestion. However our simu-
lation results show that this is an effective heuristic
for reducing congestion in service provider networks.
The pseudo-code for the heuristic is presented below:

Algorithm.

1. Compute the shortest path rooted tree (SPRT)T
(based on the provisioned link weights) rooted
at the management gateway router (MGR).

2. Use the tree algorithm (DP in Section 3 to mod-
ify the SPRT, using new links of minimum total
cost, to obtain a congestion free rooted treeT 0.
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3. AugmentG with the links inT 0�T and set the
weights of these links to0, so they are likely to
be in the new SPRT.

4. Set the weights of the links inT � T 0 to a large
value so that they are no longer in the new SPRT.2

6 Conclusion and open problems

In this paper we designed efficient heuristic for traffic
engineering of management traffic in data networks.
We showed both analytically and by simulation that
these heuristics have good performance in service provider
networks. Our work raises several open questions.
For the budget constrained problem, it is still open
to find an algorithm that would satisfy all or none of
the demand at each node (i.e., when the demand at
a node is not splittable). It is desirable to develop a
PTAS for this problem, however, it is not clear how
to do this with hard budget and capacity constraints.
We conjecture that our algorithm probably solves this
problem with at most a1+ � violation of the capacity
constraints.
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A Appendix
A.1 Simulations
In this section we present our simulation results on
our algorithms for the basic network augmentation
problem. Our main goal is to understand the per-
formance of the tree based algorithm when used as
a heuristic for alleviating congestion of management
traffic in general network topologies (as presented in
Section 5).

The metrics that we use to measure the perfor-
mance of the heuristics is the improvement in the con-
gestion of the network and the cost of the new links
needed for the network augmentation. We measure
these metrics for different network topologies and as
a function of the bandwidths of the links available for
the augmentation. For the SPRT of these networks
we are interested in the minimum cost of the links
needed to alleviate its congestion, as function of the
bandwidths of the links available for the augmenta-
tion.

The data for our simulations comprises of five in-
dependent management domains in a service providers
ATM network. We call these domainsA;B;C;D;E.
Each domain consists of one management gateway
(MGR) which forms the root of the SPRT for that
domain to which all the management traffic of the
domain is destined. Management PVCs are set up
between the switches in a domain and the MGR of
the domain. Some of the links in these domains have100% of their bandwidth designated to carry only man-
agement traffic and have bandwidth equivalent to aT1 (1:5Mpbs). Other links which range fromDS1
to OC12 have a fixed proportion of their bandwidth
designated for management traffic (approximately0�5%). A link is considered congested for management
traffic if the amount of management traffic flowing
on the link exceeds the bandwidth designated on the
link for management traffic. We define the amount of
congestion as the maximum ratio of the management
traffic load of a link to the bandwidth of the link des-
ignated for management traffic. There are between50
to 100 switches in each domain each of whose man-
agement requirement varies from50Kbps to 2Mbps.
The amount of congestion in the five domains before
augmentation is96; 5; 218; 414; 91 respectively.

Our first set of results are for the case when all
the links used for augmentation have the same band-

width. These results are shown in Fig. 2 and Fig. 3
as a function of the common bandwidth of the links
used for augmentation (on theX axis) in terms of the
minimum number of links needed for augmentation
of the SPRT to a congestion-free rooted tree. These
results for the DP are shown in Fig. 3. Here the com-
mon bandwidth of the links used for augmentation
is plotted on theX axis and the minimum number
of links needed for augmentation (cost) is on theY
axis. As shown in Fig. 3, starting at a link bandwidth
of approximately1000Kbps, congestion-free rooted
tree is possible in some domains. At approximately2000Kbps, congestion-free rooted trees are possible
in all domains. Note also that except for one domain,
where7 new links are needed, all domains can be
made to have a congestion-free rooted tree by adding
at most3 links.

Next the congestion-free rooted tree computed by
the DP algorithm for a domain is used to modify the
topology of the domain (using the heuristic in Section
5). The congestion of the new rooted SPRT after this
augmentation is shown in Fig. 2. Here the conges-
tion value for the links of the augmented network (the
new SPRT) is shown on theY axis which is plotted as
a function of the common bandwidth of the links used
for augmentation (X axis). Note that the heuristic ex-
hibits somewhat erratic behavior at small bandwidths
(between1000�3000Kbps), which can be attributed
to the possibility that at small bandwidths these new
links are prone to higher congestion, since they are at
distance0 from the root. However, at higher band-
widths (7000Kbps and above) the DP based heuristic
is able to alleviate congestion in all the domains.

The next set of results are for the case when the
bandwidth and the cost of the links used for augmen-
tation varies with the node on which they are inci-
dent. The bandwidth of these links vary uniformly
within a factor16 of the least bandwidth value, and
the link costs vary from1 to 4, with higher band-
width links costing more. Here we plot the mini-
mum bandwidth of the links used for augmentation
on theX axis. Fig. 5 depicts the minimum total cost
of the links (on theY axis) needed for guaranteeing
congestion-free rooted trees for the DP. Fig. 4 shows
the performance of the heuristic (defined in Section
5). in terms of the impact on the congestion in the new
network. Here the congestion value for the links of
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Figure 2: Dynamic Programming (DP) based Heuris-
tic
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Figure 3: Number of links added as a function of their
common bandwidth by the DP

the augmented network (the new SPRT) is shown on
theY axis which is plotted as a function of the com-
mon bandwidth of the links used for augmentation (X
axis). Note that in this case the heuristic shows some-
what erratic behavior. A possible reason is that a so-
lution of minimum cost (which the DP is guaranteed
to find) may use a large number of links each of small
cost and the more the number of links that are mod-
ified in the original network, the more the variability
in the resulting congestion.

Our results show that in almost all cases the con-
gestion for the management flows can be brought down
significantly by using the heuristics defined in Sec-
tion 5 based on the DP algorithm. In addition only a
small number of augmenting links of low bandwidth
are needed for this purpose.
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Figure 4: DP based heuristic with non-uniform link
bandwidths and costs
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Figure 5: Cost of new links added by DP Algorithm
to the SPRT
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