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ABSTRACT

We study a multi-unit auction with multiple bidders, each
of whom has a private valuation and a budget. The truth-
ful mechanisms of such an auction are characterized, in the
sense that, under standard assumptions, we prove that it
is impossible to design a non-trivial truthful auction which
allocates all units, while we provide the design of an as-
ymptotically revenue-maximizing truthful mechanism which
may allocate only some of the units. Our asymptotic para-
meter is a budget dominance parameter which measures the
size of the budget of a single agent relative to the maximum
revenue. We discuss the relevance of these results for the
design of Internet ad auctions.

Categories and Subject Descriptors

J.4 [Computer Applications|: Social and Behavioral Sci-
ences— Economics; F.2 [Theory of Computation]: Analy-
sis of Algorithms and Problem Complexity

1. INTRODUCTION

Budget constraints are a central feature of many real auc-
tions. In the context of e-commerce, there is a great deal of
interest in multi-unit auctions of relatively low-value goods,
such as the auction of Internet ads for search terms and
content pages on MSN, Google, Yahoo, etc., to bidders with
budget constraints. Indeed, it is widely believed that adver-
tising will be the principal business model for online activity,
and that budget-constrained auctions will be the primary
means of realizing that revenue stream. Auctions with bud-
get constraints have been considered previously in the con-
text of privatization of high-value public goods, such as FCC
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auctions of telecommunications bands [2, 3, 10, 12]. How-
ever, the theoretical framework of budget-constrained auc-
tions is currently substantially less well-developed than that
of unconstrained auctions — which is unsatisfactory both
from a theoretical viewpoint, and from a practical view-
point, where the absence of an appropriate framework leads
to losses in revenue and efficiency. It is therefore of tremen-
dous interest to design an incentive-compatible allocation
(i.e., truthful) mechanism for budget-constrained auctions,
and indeed, to determine the circumstances under which
such a mechanism even exists.

In this paper, we consider the problem of a multi-unit
auction with multiple bidders, each of whom has a private
valuation for each unit of the good and a budget. We prove
both an impossibility result and a constructive, positive re-
sult. Throughout the paper, we assume the very natural
conditions of enforcement of supply limits, individual ratio-
nality, and incentive compatibility (see Section 2 for defini-
tions of these terms).

Existence of incentive-compatible mechanisms for budget-
constrained bidders is a technically non-trivial problem. We
assume that each bidder has a fixed private valuation and
budget, such that if this budget is exceeded, then the bid-
der’s total utility becomes unbounded below. We sometimes
call this a “hard” budget constraint to distinguish it from
“flexible” budget constraints considered by other authors
[12], where the constraints can be exceeded under certain
circumstances. Somewhat surprisingly, the well-known VCG
mechanism is not truthful in the case with hard budgets —
either with private hard budgets or in the a prior:i easier
case with public hard budgets. This is an easy consequence
of the fact that the utilities are not quasi-linear, and will be
demonstrated explicitly in Section 2.

Section 4 contains the proof of our impossibility result.
We show that, under the assumption that the auction sells
all units, then in the two-unit, two-bidder case, the only
deterministic incentive-compatible mechanism is a bundling
mechanism. In other words, there is no truthful mechanism
that sells the units to distinct buyers. Our proof follows
from a tedious, but elementary analysis of the constraint
equations, and uses characterization results proved in Sec-
tion 3. We note that, while the condition of selling all units
seems quite restrictive, it turns out that in this case, it is
implied by the often assumed condition of “independence of
irrelevant alternatives” (see [11]).

Section 5 contains the proof of our positive result. There
we use randomization and relax the condition of selling all
units allowing us to construct an incentive-compatible mech-



anism which asymptotically achieves revenue maximization.
We introduce the budget dominance parameter, defined to
be the maximum budget of any single bidder divided by the
optimal, omniscient revenue. As in the work of Goldberg
et. al. [7, 8], we define the competitive ratio to be the ra-
tio of the optimal revenue to the revenue of our mechanism.
We then introduce an incentive-compatible mechanism for
the general m-unit, n-bidder auction, and prove that, as the
budget dominance parameter tends to zero, the competitive
ratio tends to one.

Our mechanism is inspired by the work of Goldberg et. al. [7,
8], but is different in several significant respects. First, our
problem is a two-parameter problem, since each bidder spec-
ifies both a private valuation and a private budget. Second,
our utility function is not quasi-linear. To our knowledge,
there are no previously known incentive-compatible revenue-
maximizing mechanisms in either of these cases. Finally,
in the problem considered by [7, 8] at most one unit was
allocated to each agent, whereas our setting has no such
restriction. Due to these differences, our proof is substan-
tially more complicated than that of [7, 8], requiring delicate
martingale arguments to prove the necessary concentration
result.

Let us also contrast our work with the some of previous
work in the economics community which addressed budget
constraints in a Bayesian setting[2, 3, 10, 12]. Che and
Gale [2, 3] studied the single-item, single bidder case. Mo-
tivated by the goal of modelling efficient redistribution of
public goods to the private sector, Maskin [12] studied the
single-item, multiple bidder case with flexible budget con-
straints. The work closest to our context is that of Laffont
and Robert [10], who treated a problem similar in some re-
spects to the one studied here, but appropriate for a different
set of applications. They too considered a two-parameter,
non-quasi-linear, budget constrained problem. But they
treated only single-item auctions with common public bud-
gets. Moreover, whereas they examined the Bayesian equi-
libria, we consider dominant strategy. While their proposed
mechanism, namely an all-pay auction, makes sense in the
Bayesian context, it would not be appropriate as a domi-
nant strategy, nor would it provide a reasonable mechanism
in the case of online ad auctions. Other papers that consider
the setting of auctions with budget constraints include [1, 5,
6, 15].

2. SETTING

We consider a setting in which an auctioneer has sev-
eral indivisible units of a single good which he would like
to auction off to n interested agents. Each agent i has a
private utility u; € R4 per unit of the good and a pri-
vate budget constraint b, € R4+. We denote the vectors
(ul, ey Uj—1,Ui1,y .- - ,un) and (bl, ey bifl, bi+1, ey bn) by
u—; and b_;, respectively. The budget constraint is a hard
constraint, i.e., the agent cannot spend more than his budget
under any circumstances. In other words, the total utility
u;(j,p) that agent 7 derives from an allocation of j units at
a total price of p is:

jui—p if p <V,

ui(j,p) = —00 if p > bt

The value —oo in the above definition means that this agent
prefers receiving nothing and paying nothing to any lottery

with a non-zero risk of going over the budget.

An auction mechanism solicits a two-parameter bid from
each agent. The first parameter is interpreted as that agent’s
announced utility per unit and the second parameter is that
agent’s announced budget. The mechanism then outputs an
allocation and payment for each agent. We consider mech-
anisms that satisfy the following properties:

e observe supply limits — The mechanism never allocates
more units than are available.

e individual rationality — An agent’s utility from partic-
ipating in the mechanism is non-negative.

e incentive compatibility or truthfulness — An agent’s to-
tal utility is maximized by announcing his true utility
and budget to the auction regardless of the strategies
of the other agents.

These properties can be generalized for randomized mech-
anisms by replacing wutility by expected utility. In other
words, we make the assumption that the agents are risk-
neutral." We call an auction mechanism satisfying the above
properties a truthful mechanism. Notice that individual ra-
tionality and the definition of utility functions imply that a
truthful mechanism never charges an agent an amount more
than his budget.

One important distinction of the above setting compared
to other models usually studied in the auction theory is that
in our setting, the agents’ utility functions are not quasi-
linear. A quasi-linear utility function is a utility function
of the form wu(z) — p, where u(z) is a function that only
depends on the allocation and not on the payments, and
p is the amount charged to the agent. The utility func-
tion w;(j, p) defined above cannot be written in this form.
This makes many of the results in the auction theory litera-
ture inapplicable to our setting. In particular, the classical
Vickrey-Clarke-Groves (VCG) mechanisms [14, 4, 9] are not
incentive compatible in our setting. This fact is illustrated
in the following example.

EXAMPLE 2.1. One natural mechanism for auctioning m
units of a good to budget-constrained buyers is to apply the
VCG mechanism assuming that the utility of agent i for j
units of the good is min(b;, ju;). A common mistake is to
assume that since this mechanism is based on VCG, it is
truthful. The following example shows that this is not the
case: assume we have two units of the good to sell to two
agents, and the truthful bids of these agents are given by
(u1,b1) = (10,10) and (uz2,b2) = (1,10). The above mech-
anism assumes that the utility of the first agent for either
one or two units of the good is 10, and therefore allocates
one unit to each agent to mazimize the total utility (which
is 104+ 1). The payment charged to the agents by this mech-
anism is 1 and 0, respectively. Therefore, the utility of the
first agent is 9. Howewver, if the first agent announces the
bid (5,10), then the mechanism will allocate both units to
this agent at a total price of 2. Thus, the first agent would
achieve a utility of 18 by bidding untruthfully. This example

'The only place that we use this assumption in the algo-
rithm given in Section 5 is in reduction from the indivisible
problem to the divisible problem. Therefore, if the units of
the good are divisible, the algorithm of Section 4 is strate-
gyproof even if the agents are not risk-neutral.



shows that the above VCG-based mechanism is not truthful
even if the agents are not allowed to lie about their budget.

It is easy to observe that in our setting, no truthful mecha-
nism can always produce an efficient allocation, i.e., an allo-
cation that maximizes the social welfare, even when there is
only one good. The reason for this is that an efficient mech-
anism should always allocate the good to the bidder with
the highest u;, even if such a bidder has a zero budget and
therefore cannot be charged any positive amount. There-
fore, any agent can bid a high utility and zero budget to get
the item for free. This simple impossibility result shows that
we cannot require efficiency from a truthful mechanism.

3. CHARACTERIZATION

In this section, we give a simple characterization of truth-
ful auctions. It essentially claims that any truthful auction
determines the allocation and price for agent ¢ by comparing
his bid to thresholds computed from the other agents’ bids.
The unconstrained budgets version of this proposition is a
well-known folklore theorem.

PROPOSITION 3.1. For any deterministic truthful auction
selling m units of a good to n agents, there exist mn func-
tions pr,...,p" : §R3_<n*1) — Ry U {oo} such that agent
i receives j units at price pl(u—;,b—;) where j mazimizes
Jui — pl (u—s, b_;) subject to p](u—s;, b_;) < b;.

PROOF. For any (u—;,b_;) € ?Ri(n_l) and j € {1,...,m},
we define p! (u—;,b—;) as the minimum, over the choice of
(ui, b;) such that the auction allocates at least j units to ¢
if agents bid (u, b), of the price that the mechanism charges
to ¢ at these bids. For any set of bids (u,b), let j* be
an index that maximizes j"u; — pg*(u,i,b,i) subject to
pg*(u,i,b,i) < b;. If when agents bid (u,b), the mecha-
nism allocates j units to ¢ at price p, then we must have
Jui—p = j u, —p{* (u—s,b_;), since otherwise agent ¢ would
have an incentive to bid untruthfully to get j* units at price
Pl (i bo). O

By considering all cases for the relationship between the
pl’s, the auction can be expressed as a concise set of inequal-
ities. This is done for the case of two units of good and two
buyers in the following corollary. We will use this corol-
lary in the next section to prove that truthful mechanisms
satisfying certain properties do not exist.

COROLLARY 3.1. For any deterministic truthful auction
selling 2 units of a good to 2 agents, there exist threshold
functions p} : R — Ry U {oo}, 1 < i,j < 2, such that for
i =1,2, the agent i receives

e 2 units at a total price of p?(uz—i,bs—;) if
bi > p; (uz—i, bs—;)

and

wi > p; (us—i, bs—;)—min(p; (us—i, bs—i), p; (us—i, bs—:)/2)

(or if the latter inequality holds with equality, the mech-
anism can choose to allocate 2 units to i);

e clse 1 unit at price p; (us—q,b3—i) if

bi > p;i (uz—i,bs—;)

and
ui > p; (us—i, bs—;)

(or if the latter inequality holds with equality, the mech-
anism can choose to allocate 1 units to i);

e clse 0 units.

Conversely, for any set of threshold function pg (R - RLU
{o0}, 1 < 4,5 < 2, the mechanism defined above satisfies
incentive compatibility and individual rationality.

PROOF. We prove the statement for ¢ = 1 (i = 2 is anal-
ogous). Consider the threshold functions given by Propo-
sition 3.1. Fix any bid (us2,b2) of the second agent. Sup-
pose the true utility and budget of the first agent is w1
and b1, respectively. For simplicity, we use the notation
p1 := pi(uz,b2) and pi := pi(us,b2). Notice that by the de-
finition of p? and p? in the proof of Proposition 3.1, p} < p?.
The first agent’s utility for an allocation of 0 units is 0, 1
unit is w1 — p} assuming b > pi, and 2 units is 2u; — p?
assuming b; > p3. The first agent receives two units if and
only if he has enough budget to pay for it (i.e., by > pi),
and his utility for receiving two units (2u; — p%) is greater
than or equal to his utility for receiving one unit (u; — pi)
and zero units (zero). This can be written as u; > p? — pi
and u1 > pi/2, or equivalently, u1 > pi — min(pi,p3/2).
Otherwise, if the first agent does not receive two units, then
he receives one unit if and only if he has the budget (i.e.,
b1 > p1), and his utility for one unit (u; —p1) is greater than
or equal to his utility for zero units, or equivalently, u; > pi.
If these conditions do not hold, then the agent receives zero
units. The converse follows easily from the definition of the
mechanism. [

4. ANIMPOSSIBILITY RESULT

In this section, we show that there is no deterministic
truthful mechanism satisfying three properties which we de-
fine in this section, even if there are only two buyers and
two units of the good.? This result automatically generalizes
to auctions with more buyers, by considering the situation
where all but two of the buyers bid zero.

The first property is the following. This is similar to a
property with the same name defined by Moulin [13] in the
context of group-strategyproof mechanisms for cost sharing
problems.

e consumer sovereignty — For any agent i and any vector
of bids (u—;, b_;) for other agents, there is a bid (u;, b;)
such that if agents bid according to (u,b), then agent
i receives all units of the good.

Intuitively, consumer sovereignty requires that each agent
must be able to win all units if he bids high enough. This
precludes trivial mechanisms that for example sell at most
one unit to each bidder. In terms of the characterization in
Proposition 3.1 and Corollary 3.1, this property is equivalent
to saying that the threshold functions p! are all finite.

20ur result extends to randomized auctions that are strate-
gyproof in the following stronger sense: no matter what the
outcome of the coin flips are, it is a dominant strategy for
the participants to reveal their true type. The randomized
algorithm given in Section 5 is strategyproof in this sense
only if the good is assumed to be divisible.



The second property, which we call the independence of
wrrelevant alternatives (ITA), is a much weaker version of a
property of the same name in Lavi et al. [11]. This property
is defined as follows.

e independence of irrelevant alternatives (IIA) — For any
agent ¢ and a bid vector (u,b), if i receives no units
at (u,b), then the allocation when every agent bids
according to (u,b) is the same as the allocation when

agent ¢ bids (0, 0) and others bid according to (u—;, b—;).

Intuitively, the above property states that if an agent
who does not win the auction leaves, the allocation to other
agents should not change (Their payment, however, might
change). As we will see in the proof of Theorem 4.1, in the
case of two buyers and two units, ITA is equivalent to the
property that if bids of both agents are large enough (both
the utility and the budget), then both units are allocated.

As we will see at the end of this section, there are truthful
mechanisms not satisfying the IIA. In fact, the following
example shows that even with IIA, there are mechanisms
that are truthful.

EXAMPLE 4.1. Bundling mechanism: Consider the mech-
anism that always bundles the two units, i.e., it allocates

both units to the agent i such that min(2u;, b;) > min(2us—_;, b3—;),

and charges him min(2us—;, bs—;). It is easy to see that this
mechanism is truthful and satisfies the ITA.

However, we conjecture that the bundling mechanism is
essentially the only truthful mechanism satisfying the above
properties. In other words, we would like to show that there
is no truthful mechanism satisfying the above properties and
the following.

e non-bundling — there is a bid vector (u,b) such that
the mechanism allocates one unit of the good to each
buyer.

Unfortunately, we do not know how to prove this con-
jecture. However, we can prove this statement under the
following stronger condition.

e strong non-bundling — for any non-zero bid (u1,b1) of
the first agent, there is a bid (us2,b2) for the second
agent such that if both agents bid according to (u,b),
the mechanism allocates one unit of the good to each
buyer.

The following theorem is the main result of this section.

THEOREM 4.1. There is no deterministic truthful auction
for two buyers and two units of a good that satisfies con-
sumer sovereignty, ITA, and strong non-bundling.

PrOOF. The proof is based on examining functional rela-
tions imposed by our assumptions on the threshold functions
of any truthful auction. We obtain the impossibility result
by showing that this set of functional relations has no solu-
tion.

The fact that our auction observes supply limits implies
that whenever the threshold functions are such that the first
(second) agent gets two units, then the second (first) agent
must get zero units. The consumer sovereignty and ITA as-
sumptions imply that these two situations are in fact equiv-
alent in certain regions of the bid space, i.e., the mechanism
always allocates all the units when the bids are large enough.

By consumer sovereignty, for each agent ¢ = 1,2, there is
a bid (uj, b;) such that if ¢ bids (u;, b;) and the other agent
bids (0,0), then agent ¢ wins both units. Furthermore, by
Corollary 3.1, for every uj; > u; and b} > b, if i bids (u}, b)
and the other agent bids (0, 0), then ¢ wins both units. Let
C = max{uj, b7, u3,b5}.

CrLaM 4.1. For any set of bids (u1,b1) and (uz2,b2) such
that u1,b1,us,b2 > C, the mechanism allocates both units
when agents bid according to (u,b). Furthermore, the pay-
ment of any agent that receives at least one unit in this sit-
uation s non-zero.

PROOF. Assume, for contradiction, that for one such bid
vector the mechanism allocates at most one unit of the good
to the first agent and zero units to the second agent. Now,
by IIA, if the second agent bids (0,0), the first agent must
still receive at most one unit. This, contradicts the definition
of C. Now, assume that an agent, say 1, receives at least
one unit but has to pay 0. This means that if agent 1 bids
(0,0), he still wins at least one unit, and therefore agent 2
does not receive both units. This contradicts the definition

of C. O

Immediate from Corollary 3.1 is the fact that the alloca-
tions and payments given bid («, 3;) holding bid (a3—;, 83—s)
fixed is constant for all 3; > 2«a; and for all a; > 3;. We will
use this observation to make statements about the proper-
ties of the threshold functions as one of the inputs becomes
irrelevant (i.e., sufficiently large). Let
ri(z) = pf (z,2x),

7

si(@) = pi(z,)

for i,j = 1,2. By Corollary 3.1, all of the above functions
are non-decreasing functions. Therefore, they can be dis-
continuous in at most a countable number of points. Let
T denote the set of points greater than C at which all of
the above functions are continuous. Notice that since the
number of discontinuity points of each of these functions is
countable, the set T is dense in (C, c0).

Claim 4.1 together with our characterization, Corollary 3.1,
immediately imply the following functional relations:

LEMMA 4.1. For all A, BeT,
B <r3_i(A) = A > (s] —min(s;,s7/2))(B) (1)

PROOF. Suppose agent i bids (A, 2A) and agent (3 — %)
bids (B,B) and B < r3_;(A). Then agent (3 — i) re-
ceives zero units, so agent ¢ must receive two units. As
agent ¢’s budget is essentially unconstrained, this implies
that his utility is at least the utility threshold, or A >
(52 — min(s!, 52/2))(B). O

Similarly, we can prove the following statements for every
A BeT:

A> (s2 —min(s},s2/2))(B) = B <ri_,(4), (2
B>} ,(A) = A< min(s!,s?/2)(B), (3)
A < min(s}, $2/2)(B) = B > r2_,(A), (4)

B> (r3_, —min(rs_;,r5_1/2))(A)
= A < min(r;,r;/2)(B), (5)



A< min(ril,r?/Z)(B)
= B> (rj_; — min(r3_;,75_1/2))(A), (6)

B>s3 i(A) <= A<s(B). (7

From these functional relations, we can derive the follow-
ing inequalities.

LEMMA 4.2. For all A€ T,
(r3 — min(r},12/2))(A) > (s3 — min(s}, s2/2))(4).  (8)

PrOOF. Choose B € T, B > (r3 — min(r3,r3/2))(A).
Then relation 5 (with ¢ = 1) implies A < min(r{,r7/2)(B) <
r1(B). Take ¢ > 0 and note that relation 1 (with i = 2)
implies B > (s3 — min(s3,53/2))(A — ¢). Taking the limit
as e goes to zero and using the continuity of s3 and s3 at
A, we have that B > (r} — min(r3,r3/2))(A) implies B >
(s3 —min(s},s3/2))(A). Since this statement holds for every

B €T and T is dense, the lemma follows. [

Similarly, we prove the following lemma.
LEMMA 4.3. For all A€ T,
min(r%,r%/Q)(A) > min(s%, 53/2)(14). (9)

PrOOF. Choose B € T, B > min(rs,r3/2)(A). By the
contrapositive of relation 5, A < (rf — min(r1,r7/2))(B).
By Claim 4.1, min(r{,7/2)(B) > 0. Hence, A < ri(B).
This, by the contrapositive of relation 4, implies that B >
min(s3, s3/2)(A). Since this holds for every B € T and T is
dense, the lemma follows. [

Our non-bundling assumption implies that for all Z € T
the interval (r3(Z),r3(Z)) is non-empty. Select a point ¢
in this interval and observe that the contrapositive of rela-
tions 2 (with ¢ = 1) implies

Z < (s — min(s1, 51/2))(). (10)

Let € > 0 and note that ¢ is in the interval (r3(Z —¢),73(Z —
€)) for small enough e by continuity. Thus the contrapositive
of relation 4 with ¢ = 1 implies

Z > Z — € > min(sy, 51/2)(t). (11)
Combining inequalities 10 and 11, we get
(51 — min(st, s7/2))(t) > min(s}, s7/2)(t)
and so
min(s}, 83/2)(t) = s (0). (12)

Equations 11 and 12 imply that for every t € (r3(Z),r3(2)),
Z > s1(t). By Equation 7, this implies that t < s3(Z). Tak-
ing the limit of this equation as ¢ tends to r3(Z), we obtain
r3(Z) < s3(Z). On the other hand, summing Equations 8
and 9 implies that r3(Z) > s3(Z). Therefore, r3(Z) =
s3(Z). Thus, inequalities 8 and 9 must both attain equality
at Z. Ranging over choice of Z € T, we see that inequal-
ities 8 and 9 must attain equality everywhere in 7. Our
contradiction arises from the observation that in fact for
some Z € T, inequality 9 is strict. By Claim 4.1, prices
are always nonzero, and so C < (rf — min(r{,r7/2))(4) <
r7(A) for some A € T. Select such an A and Z € ((r{ —
min(ri, r$/2))(A), r3(A))NT. Notice that since T is a dense
set, this intersection is nonempty. Note that relation 4 with

i = 2 implies that A > min(s3, s3/2)(Z). Therefore, for any
small € > 0, A+ € > min(s3,s3/2)(Z). Similarly, note that
relation 5 with ¢ = 2 implies A + ¢ < min(r,r3/2)(Z) for
e sufficiently small. But this means that, for this partic-
ular Z, min(r3, r3/2)(Z) > min(s3,s3/2)(Z), yielding our
contradiction. []

The following example shows that the IIA assumption in
Theorem 4.1 is necessary, i.e., there are deterministic truth-
ful mechanisms that satisfy consumer sovereignty and non-
bundling, but not ITA.

EXAMPLE 4.2. Consider an auction with 2 units and 2
bidders which uses the following rules for allocation to agent
1 (1=1,2):

° ]f Ui > Qmin(U3,i,b3,i) and b; > %min(U3,i,b3,i),

then agent i gets 2 units and pays gmin(ugﬂ', bs—i);

e clse qui > %min(ugﬂ-, b37~;) and b; > %min(ugﬂ-, bgfi),
then agent i gets 1 unit and pays + min(us—;, bs—;);

e clse agent i receives nothing.

It is not hard to verify that this mechanism satisfies the char-
acterization given in Section 8, and is therefore truthful.
However, if, for example, agent 1 bids (4a,4a) and agent
2 bids (9a,9a) for any a, the mechanism allocates zero units
to agent 1 and one unit to agent 2. Therefore, the mecha-
nism does not allocate both units even if bids are sufficiently
large, and hence it does not satisfy IIA.

5. ANASYMPTOTICALLY OPTIMAL
AUCTION

As we saw in the previous sections, there appears to be
no reasonable mechanism for allocating all units truthfully.
In this section, we consider mechanisms that may allocate
only some of the units, and among them, seek the one that
maximizes the expected revenue. We do this by designing
a mechanism that has revenue comparable to the maximum
that can be achieved by a posted-price auction.

The method that we use for design and analysis of our auc-
tion is inspired by the work of Goldberg et. al. [7, 8]. Asin [7,
8], we take the competitive ratio to be the expected revenue
of our mechanism over the revenue of the optimum posted-
price auction, and attempt to design an auction which min-
imizes this ratio. However, our design analysis differs from
that of [7, 8] in some important aspects. Unlike [7, 8] and
subsequent results, in our setting the mechanism may need
to allocate more than one unit to every agent. Moreover,
the agents can lie about both their bid and their budget,
which introduces significant complications.

5.1 A Truthful Mechanism

Our mechanism is quite natural: similar to the random
sampling optimal threshold auction of [7, 8], we divide bid-
ders into two random subsets, compute the optimal price
for each subset, and offer that price to the other subset.
In order to guarantee that our auction doesn’t oversell the
good, we sell at most half the available units to each subset,
greedily allocating units to interested agents arranged in an
arbitrary order.

Note, although our units are indivisible, we can assume
that fractional allocations are possible by using the proper



randomization: whenever the algorithm asks us to allocate
a fraction ¢ of a unit to an agent, we instead charge the
agent ¢ times the offering price for participation in a lottery
that offers him a full unit with probability ¢. Thus an agent’s
payment is deterministic and his expected utility is constant.
Only his allocation is randomized. For the remainder of this
section, we assume without loss of generality that our units
are divisible.

As before, let n be the number of agents and m be the
number of available units of a good. Each agent i submits
his utility value for one unit u; and his maximum budget b;.

Mechanism

e Partition the agents randomly into two sets A and B
by independently putting each agent into either set
uniformly at random with probability %

e From the set of utility values u; of agents i € A, choose
pa to be the price which maximizes the revenue of
selling at most m/2 units in A. In other words, if the
u;’s are sorted in decreasing order, for

j=1
define pa = u;,—1. Compute pp analogously.

e Consider the agents in A in a random order and allo-

cate at most 7 units to them as follows. In every step,
if the utility of agent i satisfies u; > ppg, allocate ;—;
b ynits

units to ¢, or all remaining units if less than -
remain. Charge i a price of pp per unit. Apply the
same procedure to the set B using the threshold value
pA.

First, we give a simple proof of the truthfulness of the
mechanism.

LEMMA 5.1. The above mechanism is truthful, i.e., for
every agent reporting the correct utility and budget values is
a dominant strategy.

ProOF. Consider an agent ¢ in A. First we argue that
agent ¢ does not have any incentive to misreport his utility
value. We know that agent i receives a unit only if u; > pp,
and that he pays pp for a unit if he receives it. The two key
observations are that (1) the threshold pp is determined
independently of all u; and b;, j € A, including j = 4; and
(2) when the supply of units in A is inadequate to meet the
demands of all agents in A whose utilities exceed pg, then
the allocation of units to those agents is done in an arbitrary
order, again independently of all u; and b;.

Finally, by reporting a budget below b;, agent ¢ would po-
tentially decrease his allocation and hence his total utility.
By reporting a budget above b;, if he was previously satu-
rating his budget, then his allocation might increase caus-
ing him to be charged more than his budget and decreasing
his total utility to negative infinity. Otherwise, if he was
not previously saturating his budget, his allocation will not
change. In either case, he has no incentive to misreport. [

5.2 Revenue guarantee

The truthfulness of this mechanism is straightforward, but
providing a revenue guarantee requires a more careful analy-
sis. An important parameter for the analysis is what we call
the budget dominance parameter, or the ratio of the max-
imum budget of an agent to the revenue of the optimum
posted-price auction. It is not surprising that the revenue
guarantee is a function of the budget dominance parameter;
indeed, it is imposed upon us by the condition of truthful-
ness. In a setting with a large budget-dominance parameter,
the revenue of the optimum posted-price is dominated by a
single agent. In order to extract the full budget of this agent,
the price offered to him must be less than his reported utility
and thus is affected by his bid.

The mechanism we design has the property that its rev-
enue approaches that of the optimum posted-price auction
as the budget dominance parameter tends to 0. In partic-
ular, we will prove that for all 0 < § < 1, the revenue of
our mechanism is at least a (1 — §) fraction of the optimum

posted-price revenue with probability at least 1 — 0(67652/ )
where c is some constant and € is the budget-dominance pa-
rameter. Our proof is fairly natural. We first show that,
using a price which is at least the optimum posted-price and
disregarding supply limits, the revenue extracted from each
random subset of bidders is approximately equal. We will
use this to claim that the revenue extracted by our mecha-
nism from each subset is almost half the optimum.

For notational convenience, without loss of generality, we
assume that u1 > us > --+ > u,. For any price p, we denote
by 7s(p, k) the revenue of allocating at most k units to a set
S of agents at price p:

rs(p, k) = min(kp, b;).
JjES
uj=>p
We will use the notation r(p, k) in the case where we are
allocating the units to the whole set AU B. Finally, we also
define r(p) = r(p,00) = .5, bi.

Given the utility and budget values of the agents, one can
find the optimum price p* at which r(p,m) is maximized,
and allocate the units at this price. We call this mechanism
the optimum posted-price auction OPT = r(p*,m). In our
argument, we will use the following properties of an opti-
mum posted-price auction for allocating at most k units, for
any k.

1. There exists an agent ¢ such that selling the units at

price p = u; results in the optimum revenue.

2. For any k, if p is the optimum price for allocating at

most k units, then r(p,k) < 7(p) < 7(p, k) + bmaz
where bmae = max; b;. In particular,

OPT < r(p*) < OPT + bmas.

Let € denote the budget dominance parameter, that is the
ratio of the maximum budget of all agents, by,q4, to the value
of the optimum solution OPT. As we will show, the proba-
bility of success of our algorithm is asymptotically controlled
by €. The next lemma shows that the revenue extracted
from each subset at or above the optimum price is approx-
imately equal, disregarding supply limits, with probability
approaching 1 as e approaches 0.

LEMMA 5.2. Let 6 > 0. Then the probability that

ra(w) —re(w) <SOPT forall | with u >p”



is at least 1 — 2@*52/(46).

PRrROOF. Define «a; to be a random variable indicating
whether agent ¢ is in A, with o; = 1 wheni € Aand a; = —1
when i € B. Let Si =, a;b;. Then [ra(w) —rps(w)| =
|S;|. Thus we need to bound the probability that the random
variable S; deviates by more than JOPT from its expecta-
tion 0.

Let 7(0) = min{i : |S;| > 0OPT}. We define the following
martingale:

s S if + < 7(0)
Sr)  otherwise

i =

Let k be such that ur = p*. Then we have

1—Pr |ra(ui) —re(u)| < 6OPT, Vi <k
= 1—Pr |Si| <déOPT, Vi <k
= Pr 3i<k : |S;| >60PT
= Pr 7(6) <k
= Pr |Sy| >s0PT

Now since S; is a martingale, by the Azuma-Hoeffding
inequality we have:

762OPT2)
2 < b
Bounding the sum i<k b? by bmazr(p*) < eOPTr(p") and

using that r(p*) < OPT(1 + ¢) < 20PT, we obtain the
lemma. [J

Pr(|Sk| > 6OPT) < 2exp(

From now on, we will say that an event happens with
high probability if its probability is at least 1 — 2e=8%/(4€),
From the previous lemma, it is clear that the revenue of each
subset at the optimum price is almost half the optimum
revenue with high probability, disregarding supply limits.
In fact, it is not hard to see that this statement holds even
observing supply limits.

COROLLARY 5.1. With high probability, we have

0

. m 1-—
—_) > — R
TA(p,2)7 3 OPT

PRrROOF. First note OPT = r(p*,m) = min{p*m,r(p*)},
implying mp* > OPT and r(p*) > OPT. From Lemma 5.2,
we have with high probability, 7a(p*) > r(p*) — 2OPT >
12;50PT. Furthermore, %p* > 1;‘SOPT by definition of
OPT, so ra(p*, ) = min(Zp*,ra(p*)) > F20PT. O

At this point we would be done if our mechanism com-
puted the offering price p*. Unfortunately, we can not com-
pute this price. Instead we compute prices pa and pg, the
optimal prices for subsets A and B, and offer these prices to
the opposing set. Thus we need to a prove statement similar
to that of Lemma 5.2 for all offering prices. The following
corollary states that for any offering price, the revenue of
one subset is either close to the revenue of the other subset
or close to half the optimum revenue, disregarding supply
limits.

COROLLARY 5.2. With high probability, we have that

rg(ug) > min{ra(ux) — SOPT, 1%‘sopT} for all k.

ProOOF. By Lemma 5.2, we have that with high probabil-
ity,
re(ux) > ra(ux) — 6OPT for all k with uy, > p*. (13)

Recalling that r4(p*)+75(p*) = r(p*) > OPT, we conclude
that with high probability, both (13) and

r(p”) > 1%‘SOPT

hold simultaneously. By monotonicity, this implies the state-

ment of the lemma. Indeed, either uy > p* so that rp(ug) >

ra(ur)—6OPT, or ux < p* and rp(ux) > re(p*) > 5°0PT,
which gives the lemma. [

Finally, we have developed all the necessary machinery to
prove the main theorem.

THEOREM 5.1. The mechanism described in the previous
section is truthful. Furthermore, for all 0 < 6 < 1, the
algorithm has revenue at least (1 — 6)OPT with probability

1-— 0(6—652/6) for some constant ¢ and € = bpqes /OPT.

ProoOF. Recall that pa is the price which maximizes the

revenue of selling at most % units in A. Thus, for all p, we

have 74(p, ) < 7a(pa, %), so in particular ra(pa, §) >
ra(p”, % ). Combined with Corollary 5.1, we conclude that
with high probability, 7a(pa, 5) > 1;2‘SOPT, which in turn
implies that

1-46

m
—_ > PT 14
pay 2—5—0 (14)
and
1-4
ra(pa) > 70PT. (15)
Combined with Corollary 5.2, inequality 15 gives
1—-30
r(pa) >~ N OPT, (16)

again with high probability. Inequalities 14 and 16 together
with the definition of rg(pa, %) imply that with high prob-
ability,

m 1—

my s
re(pa, 5) 2 —5

Exchanging the roles of A and B, we get the same result for
ra(ps, % ). Since re(pa,§) + ra(ps, %) is the revenue of
the algorithm, this establishes the theorem. []

P orr.
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