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ABSTRACTA 
entral problem in personal 
ommuni
ation systems is tooptimize bandwidth usage, while providing Quality of Ser-vi
e (QoS) guarantees to mobile users. Network mobilitymanagement, and in parti
ular, lo
ation management, 
on-sumes a signi�
ant portion of bandwidth, whi
h is a ne
-essary overhead for supporting mobile users. We fo
us oure�orts on minimizing this overhead. Unlike previous works,we 
on
entrate on optimizing existing s
hemes, and so thealgorithms we present are easily in
orporated into 
urrentnetworks. We present the �rst polynomial time approxima-tion algorithms for minimum bandwidth lo
ation manage-ment. In planar graphs, our algorithm provably generatesa solution that uses no more than a 
onstant fa
tor morebandwidth than the optimal solution. In general graphs,our algorithm provably generates a solution that uses justa fa
tor O(log n) more bandwidth than optimal where n isthe number of base stations in the network. We show that,in pra
ti
e, our algorithm produ
es near-optimal results andoutperforms other s
hemes that are des
ribed in the litera-ture. For the important 
ase of the line graph, we presenta polynomial-time optimal algorithm. Finally, we illustratethat our algorithm 
an also be used for optimizing the hand-o� me
hanism.
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1. INTRODUCTIONPersonal Communi
ation Servi
e (PCS) networks enablepeople to 
ommuni
ate independently of their lo
ation andwhile they are moving. To provide this 
apability, ea
h PCSnetwork is equipped with a mobility management me
ha-nism that 
onsists of two major 
omponents. The lo
ationmanagement 
omponent maps subs
riber numbers to the
urrent lo
ations of the 
orresponding users when 
alls ar-rive. The hando� management 
omponent maintains ongo-ing 
alls with ensured quality of servi
e (QoS) while theirend-users 
hange their atta
hment points. The 
urrent stan-dards for lo
ation management in present PCS networkssu
h as GSM [1℄, IS-41 [2℄ and UMTS [3℄ use similar s
hemesfor mobility management. The basi
 idea for these s
hemesis as follows. The 
overage area of the system is divided intolo
ation areas (LAs), where ea
h LA 
onsists of a group of
ells that forms a 
ontinuous geographi
 area. The 
ells ofone or few LAs are asso
iated with a single mobile swit
hing
enter (MSC) that 
onne
ts them to a �xed infrastru
ture.The system keeps the LA identi�er of the lo
ation for ea
huser. When a mobile user 
rosses an LA boundary, the userupdates the system with its new lo
ation. In this way, thesystem is able to maintain the 
urrent lo
ation of ea
h user.When a 
all 
omes in for a parti
ular user, the system si-multaneously pages the mobile user in all the 
ells of theuser's re
orded 
urrent LA. The 
alled user replies to thispaging message and the system establishes a 
onne
tion be-tween the originator of the 
all and the 
alled user. In 
ur-rent systems, LAs are determined in advan
e based on stati
movement probabilities and, in general, remain un
hanged.In re
ent years, PCS networks have fa
ed rapid in
rease inthe number of mobile users. The main solution for support-ing the growing population is to redu
e the 
ell sizes andto in
rease bandwidth reuse [4, 5℄. These 
hanges 
ause thenumber of 
all deliveries, lo
ation update operations, andhando� operations to in
rease dramati
ally and result inhigh loads on mobility management me
hanisms. Moreover,frequent hando� operations a�e
t the user's QoS per
ep-tion, espe
ially when moving from one MSC-area to another



where inter-MSC hando� operations are performed. Thismotivates extensive resear
h e�orts for redu
ing the over-head of the mobility management me
hanisms from boththe network resour
es and wireless bandwidth perspe
tives.These e�orts have lead to the development of numerous newmobility management s
hemes on one hand and new 
lus-tering algorithms for optimizing the LA planning (LAP) onthe other hand.
1.1 Related WorkThere are a variety of new lo
ation management s
hemesin the literature. Several proposals introdu
e in
rementalimprovements to the 
urrent LA approa
h. For instan
e,overlapping LA systems were introdu
ed to redu
e the num-ber of update operations that result from users moving nearthe LA boundaries [6℄,[7℄. Sequential paging methods weresuggested to redu
e the amount of paging indu
ed by an in-
oming 
all. In sequential paging, the system sequentiallypages subareas of the 
urrent LA of a 
alled-user based on itslo
ation probability [8℄,[9℄, [10℄. Both updating and paging
osts 
an be redu
ed by using a system of moving LAs. Thisapproa
h 
an be useful in the 
ase of tra
king fast movingusers on highways [11℄.Other work in this area 
onsists of dynami
 mobility man-agement s
hemes that are based on users' pro�le informa-tion. Sin
e the latter are 
ustomized for the individual mo-bility patterns of ea
h user, they are more eÆ
ient thangeneralized s
hemes for all users. In this 
ategory we �ndproposals like the personal LA approa
h, in whi
h the LAsizes are de�ned on a per-user basis for redu
ing the signal-ing overhead of ea
h individual user [12℄,[13℄, [14℄,[15℄. In[16℄, [17℄, [18℄,[19℄, the users are allowed to skip some updateoperations when they 
ross the LAs' boundaries. When a
all 
omes in, the system uses the user pro�le informationto estimate the probability for ea
h LA that it is the 
urrentLA of the user. The system then pages the LAs in order ofde
reasing probability. In other s
hemes, there is no notionof lo
ation areas, and the mobile users perform update op-erations based on either the elapsed time [20℄, [21℄, numberof 
rossed 
ells [20℄, [22℄ or the traveled distan
e sin
e theprevious update operation [20℄, [23℄. The sele
ted thresholdsfor performing update operations are adapted to the individ-ual mobile user mobility patterns and 
ommuni
ation traf-�
. Other s
hemes [24℄, [25℄, [26℄, [14℄, also 
onsider the userspeed and the traje
tory during its last update for predi
tingits lo
ation when needed. Comprehensive surveys of lo
a-tion management s
hemes 
an be found in [2℄,[27℄. Whilethe new s
hemes, espe
ially the pro�le-based methods, of-fer better utilization of wireless network resour
es than thestandard LA-approa
h, they su�er from some inherent de-�
ien
ies. They tend to add signi�
ant 
omplexity to themanagement of the networks. The network is required tokeep tra
k of signi�
antly more information per user andea
h mobile user needs to keep tra
k of its mobility pat-terns. Moreover, they require modi�
ation of the 
urrentstandards and so require 
hanges of the wireless network in-frastru
tures as well as updating all the handsets. This 
om-pli
ates the in
orporation of re
ent s
hemes into the 
urrentinfrastru
tures.Other resear
h dire
tions in
lude developing new parti-tioning algorithms that 
ompute eÆ
ient LA plans. TheseLA plans are evaluated by their total signaling 
osts, i.e., the


ost of all the indu
ed paging and update operations in thesystem. Sin
e the paging 
ost depends on the number of
ells that are paged when 
alls 
ome in, while the update
ost results from LA boundary 
rossings, there is a 
leartrade-o� between the two 
osts. By sele
ting large LAs, thenumber of LA boundary 
rossings and hen
e the system up-date 
ost is redu
ed, while sele
ting small LAs produ
es lowpaging 
ost. The LA planning methods 
an be 
lassi�edinto two 
ategories. The papers in the �rst 
ategory [28℄,[29℄, [30℄,[31℄ assume uniform user distribution and inter-
ell movement rate, and with these strong assumptions theyderive an optimal LA planning. However, these results arenot appli
able to most pra
ti
al 
ases where the networkusage is heterogeneous [30, 32℄. In the se
ond 
ategory,the network is modeled as a graph where ea
h node rep-resents a 
ell, its weight spe
i�es the 
ell population andthere is an edge between every pair of adja
ent nodes thatde�nes the user movement rate between the 
orresponding
ells. The LA planning is mapped to a graph partitioningproblem. Sin
e this partitioning problem is NP-hard, di�er-ent heuristi
s are proposed for obtaining eÆ
ient solutions.Most of the proposed s
hemes limit the LA size in order tobound the LA paging 
ost and seek heuristi
s for LA plan-ning that minimize the system overall update 
ost. Theseheuristi
s employ di�erent algorithmi
 tools like geneti
 al-gorithms [33℄,[34℄, taboo sear
h [34℄ and simulated annealing[34℄,[32℄, [35℄. In [35℄ the authors provide a 
omprehensiveproblem formulation that also 
onsider size and 
onne
tivity
onstraints, enabling network designers to represent somepra
ti
al 
onstraints of a 
ellular network. Other papers[36℄,[37℄, [38℄ address the LA planning problem from a graphtheoreti
 approa
h. In [36℄ the author presents an algorithmthat 
ontains two phases. A merge phase in whi
h the 
ellsare merged for 
onstru
ting a 
olle
tion of LAs, and an ex-
hange phase in whi
h 
ells are ex
hanged between the LAsfor redu
ing the update 
ost. The algorithm in [37℄ usesplanar graph bise
tion (partitioning into two equal parts),and in [38℄ the partitioning algorithm is based on the 
on-strained maximal spanning tree algorithm. In all the papersmentioned, simulations 
onstitute the main tool for evaluat-ing the quality of the solutions produ
ed by the algorithms,and no worst-
ase guarantees are presented (e.g., as 
om-pared to an optimal solution). In [39℄ the authors addressthe one-dimensional LA planning problem for 
overing high-ways and railroads. Sin
e highways and railroads 
arry amajor portion of user traÆ
, an LA planning that eÆ
iently
overs them 
an signi�
antly redu
e the signaling overheadof the entire system. This work presents a heuristi
 whi
h
onstru
ts the optimal LA planning in the 
ase of homoge-neous traÆ
 and user density, but yields suboptimal resultsin general.
1.2 Our ResultsWe 
on
entrate our e�orts on optimizing existing mobilitymanagement s
hemes and we present a novel algorithm forlo
ation area planning (LAP). Su
h planning 
an be usedfor both eÆ
ient lo
ation management as well as hando�management. Sin
e the se
ond 
an be viewed as the spe
ial
ase of the �rst, throughout the paper we mainly 
onsidereÆ
ient LAP for lo
ation management. Then, we presenta pra
ti
al design for optimizing both the lo
ation and thehando� me
hanisms.We 
ast the LAP problem in graph-theoreti
 terms and



then de�ne several algorithms that attempt to minimize theupdate and paging 
osts subje
t to a variety of system-imposed 
onstraints like maximum LA size. In the 
ase ofone-dimensional networks su
h as highways and railroads,we present a polynomial time algorithm that �nds the op-timal LA planning even for general traÆ
 and user densitypatterns. In general networks, we show that it is 
ompu-tationally diÆ
ult to �nd the LA planning with the lowestupdate and paging 
osts. We formulate the problem in gen-eral graphs as a linear program and use an optimal (fra
-tional) solution to this linear program as a lower bound onthe optimal (integral) solution to the LA planning problem.Our approximation algorithms round an optimal fra
tionalsolution to the linear program into an approximate integralsolution. Spe
i�
ally, we provide a polynomial time algo-rithm that 
omputes an LA planning whose 
ost is no morethan O(log n) times the optimal 
ost (where n is the num-ber of base stations). In the spe
ial 
ase of planar networks(i.e., networks in whi
h users only move between adja
entbase stations), a highly pra
ti
al instan
e, we 
an �nd inpolynomial time an LA planning with 
ost at most a 
on-stant times the optimal 
ost. Unlike existing heuristi
-baseds
hemes, our algorithms have the advantage that (i) theyprovide a worst-
ase guarantee on the performan
e; (ii) we
an use the optimal fra
tional solution to bound the a
tualperforman
e of the algorithms on any problem instan
e.We use the results of the approximation algorithm as thebasis for a simple heuristi
 that further improves the LAplanning solution. When we run our algorithms on a realis-ti
 network, we observe that their solutions 
ost just 6% to71% more than the optimal fra
tional solution of the linearprogram, a lower bound on the optimal integral solution.Note that this lower bound may be signi�
antly lower thanthe a
tual optimal solution for the LA planning problem.Consequently, we 
on
lude that, in pra
ti
e, our algorithm�nds solutions that are very 
lose to the optimum. More-over, by simulations we show that the proposed algorithmoutperforms other LAP s
hemes des
ribed in the literature.This work is organized as follows. Se
tion 2 presents thenetwork model and provides a formal de�nition of the LAplanning problem. Se
tion 3 introdu
es a s
heme for �ndingthe optimal LA planning for linear graphs, and Se
tion 4presents approximation algorithms for general graphs andfor planar graphs. Se
tion 5 introdu
es an eÆ
ient heuristi
for improving the performan
e of the proposed approxima-tion s
heme, and we address the optimization of the hand-o� me
hanism in Se
tion 6. Se
tion 7 evaluates the per-forman
e of our algorithms by simulations and 
on
ludingremarks are given in Se
tion 8.
2. MODEL AND PROBLEM STATEMENTIn this se
tion we present the network model and providea formal de�nition of the Lo
ation Area Planning (LAP)problem. We also address the question whether a given in-stan
e of the problem has a feasible solution at all and weprove that �nding an optimal one is NP-hard even when thegiven graph topology is planar or a star.
2.1 Network ModelWe represent a 
ellular network by a graphG(V;E), wherejV j = n and jEj = m. Ea
h 
ell in the 
ellular network isrepresented by a node with a unique identi�
ation numberi 2 [1::n℄ and a weight, wi, that re
e
ts the 
ell user pop-

ulation1. The edges denote 
ell adja
en
y, and every edge(i; j) 2 E has a weight fij that spe
i�es the user traÆ
(
ow) between its end-points (in both dire
tions) during atime unit. For 
ompleteness, let fij = 0 for every pair ofnodes i; j 2 V su
h that (i; j) 62 E.
2.2 The Problem StatementFor lo
ation management, the nodes are 
lustered intodisjoint sets 
alled lo
ations areas (LAs), L = fS1; � � �Skg,whi
h 
ontain all the graph nodes. The LA 
ontaining nodei is denoted by LA(i). For ea
h mobile user, the systemkeeps a re
ord of the 
urrent LA where it resides. Ea
h timea user 
rosses an LA boundary, it updates the system withits new lo
ation. When an in
oming 
all arrives, the systemsimultaneously pages the user in all the 
ells of its 
urrentLA. After re
eiving the user reply, the system establishes a
onne
tion between the 
all originator and the 
alled user.Thus, the lo
ation management s
heme produ
es two typesof signaling 
osts, where the 
osts are 
onsidered from boththe wireless and wired network perspe
tive. An update 
ostthat re
e
ts the 
ost of all the update operations performedby the users during a time unit, and a paging 
ost that resultsfrom all the paging operations during a time unit. To de�nethese 
osts, we use the following notation. Consider an LAplanning L = fS1; � � �Skg. Let � be a user in
oming 
allrate and Cp be the 
ost of paging a single 
ell. The paging
ost of a single LA, S 2 L, with jSj 
ells, is the produ
t ofthe in
oming 
all rate � �Pi2S wi, times the 
ost of pagingall the LA 
ells Cp � jSj. Consequently, Page Cost(S) =� � Cp � jSj �Pi2S wi, and the overall paging 
ost is,Page Cost(L) = � � Cp �XS2L jSj �Xi2S wiSimilarly, we de�ne the update 
ost. Re
all that a userindu
es an update operation whenever it moves from a 
ell iin one LA to a 
ell j in a another LA. The amount of traÆ
per time unit between the two 
ells is fij , so the update 
ost
aused by traÆ
 between the 
ells i and j is Cu �fij where Cuis the 
ost of a single update operation. In our 
al
ulationswe 
harge ea
h of the nodes j and i for half of this update
ost. Therefore, the 
ost of update operations in the systemas a whole is simply the amount of traÆ
 between the LAstimes Cu. The total update 
ost is,Update Cost(L) = 12 � Cu �Xi2V Xj 62LA(i) fij :Sin
e the eÆ
ien
y of a given LA planning, L, is determinedby its overall signaling 
ost, an optimal LA planning, LOPT ,is a graph partition with the minimal signaling 
ost amongall the feasible LA plans, i.e., ,Cost(LOPT ) = minL fUpdate Cost(L) + Page Cost(L)g:We note that in a
tual 
ellular systems, not every LAplanning is feasible. Geographi
al 
onsiderations and net-work infrastru
ture may impose 
ertain size and 
onne
tiv-ity 
onstraints on the system. For instan
e, as all the 
ellsof an LA are 
onne
ted to a single mobile swit
hing 
enter(MSC), neither an LA size nor its total population shouldex
eed the MSC 
apa
ities. We enfor
e these size 
onstraints1Pra
ti
ally, the node's weight represents the average userpopulation during the rush hours.



by introdu
ing two bounds Kmax and Wmax on the maximal
ell number and maximal population size of an LA, respe
-tively, i.e., for every S 2 L we require that jSj � Kmax andPi2S wi �Wmax. In fa
t, our s
hemes 
an easily deal withmore general 
onstraints that bound, for ea
h vertex i 2 V ,the size and weight of the LA 
ontaining i, i.e., jLA(i)j � Kiand Pj2LA(i) wj �Wi, as we show later.As a result of topologi
al 
onsiderations, it is also possiblethat 
ertain 
ells must reside in the same LA or other 
ellsmust reside in separate LAs. These 
onne
tivity 
onstraintsare de�ne by 
onstants bij for every pair of 
ells i; j 2 V ,su
h thatbij = 8<: 1 If i and j must be in di�erent LAs:�1 If i and j must be in the same LAs:0 Otherwise:These 
onstants 
an be represented by a 
onne
tivity ma-trix B = fbijg. Any LA planning L that satis�es both thesize and the 
onne
tivity 
onstraints is 
alled a feasible LAplanning and the LAP problem is de�ned as follows.Definition 1 (Lo
ation Area Planning Problem).Given a graph G(V;E) with weights wi and fij for everynode i 2 V and edge (i; j) 2 E, LA size bounds Kmax, Wmaxand 
onne
tivity matrix B, �nd an LA planning L su
h that,Cost(L) = min� 12 �Pi2V Pj 62LA(i) fij +� � Cp �PS2L(jSj �Pi2S wi) �subje
t to: 8S1; S2 2 L : S1TS2 = ;8i 2 V : 1 � jLA(i)j � Kmax8i 2 V : Pj2LA(i) wj �Wmax8i; j 2 V; bij = 1 : LA(i) 6= LA(j)8i; j 2 V; bij = �1 : LA(i) = LA(j)Note that the proposed problem seeks an LA planningthat simultaneously minimizes both the update and sear
h
osts. Unlike standard partitioning problems, our minimiza-tion obje
tive does not in
lude just the 
ost of the 
ut sep-arating the LAs, but also in
ludes a 
ost dependent on thesize and the weight of the 
omponents. Thus, our problemis fundamentally di�erent from standard partitioning prob-lems, and requires new algorithms to solve it.
2.3 Hardness of the LAP ProblemTheorem 1. The LAP Problem is NP-hard, even whenthe given instan
e G(V;E) is a star.Proof. We prove this theorem by presenting a polyno-mial redu
tion from the partition problem [40℄ to the LAPproblem. Consider a set A of m > 2 elements where ea
helement ai 2 A has size si 2 Z+, and let X = Pai2A si=2.The partition problem looks for a subset A0 � A su
h thatPai2A0 si = Pai2A�A0 si = X. Our redu
tion 
onstru
tsa star graph G(V; E) that 
ontains the following nodes andedges. A hub node h whose weight is wh = 0. For everyelement ai 2 A, we de�ne a node i adja
ent to the hubnode that satis�es wi = si and fih = si. Let Cu = 2mXand let Cp � � = 1. We impose a 
onstraint Wmax = X on

the maximal weight of an LA. Intuitively, due to the highupdate 
ost, the optimal LA planning of this graph is ob-tained when the LA that 
ontains node h, LA(h), 
ontainsas many other nodes as possible without violating the weight
onstraints.We 
laim that there is a subset A0 � A withPai2A0 si =X if and only if there is an LA planning L with 
ost less then2mX(X+1). Re
all that the paging 
ost of the system is atmost 2mX, whi
h happens when all the nodes are in
ludedin a single LA. Suppose that there is su
h a partition A0.Then we 
onstru
t an LA planning L with two LAs. The�rst LA, denoted by S1, 
ontains node h and all the nodesi, i 2 A0, while the se
ond LA, denoted by S2 
ontainsall other nodes. Sin
e Pai2A0 si = Pai2A�A0 si = X, thetwo LAs satisfy the weight 
onstraints. The update 
ost ofthis LA planning 
omes only from the separation of nodeh from the nodes in S2. Thus, the update 
ost is 2mX �Pai2A�A0 si = 2mX2, and therefore the 
ost of this LAplanning is no more than 2mX(X + 1) as 
laimed.We assume now that there is a feasible LA planning Lsu
h that its 
ost is at most 2mX(X +1). Sin
e the update
ost must be an integer multiple of 2mX, the update 
ost ofL is at most 2mX2. Thus, the total weight of all the nodesthat are not in
luded in LA(h) is at most X. Sin
e the totalweight of every LA is at most X, the total weight of all thenodes in LA(h) must be X, yielding that the total size ofall the elements in the set A0 = faiji 2 LA(h)g is X. This
ompletes the proof.Sin
e the LAP problem is NP-hard, rather than �ndingoptimal solutions, we 
onstru
t a polynomial-time approxi-mation algorithm. Su
h an algorithm has an approximationfa
tor � if, for every instan
e of the LA problem, it �nds asolution whose 
ost is at most � time the 
ost of an optimalsolution.
3. OPTIMAL SOLUTION FOR A LINEIn the following, we present an eÆ
ient algorithm basedon dynami
 programming for �nding an optimal LA plan-ning when the given LAP instan
e, G(V;E), is a line. Thisalgorithm 
an be used, for instan
e, in the LA planning ofhighways. Sin
e highways 
arry a large portion of the usertraÆ
, in some 
ases it is more e
onomi
 to treat them sep-arately. Cost-e�e
tive solutions for highway LA planningredu
e the overall LA planning 
ost. For 
larity of presen-tation, we �rst ignore 
onne
tivity and size 
onstraints.A line is formally de�ned as a graph where exa
tly twonodes have degree 1 and the remaining nodes have degree2. Consider a line G(V;E), 
onne
tivity matrix B and sizebounds Kmax andWmax. We assume that the line nodes areindexed adja
ently in in
reasing order from 1 to n, i.e., forevery i; j, fij > 0 and bij 6= 0 only if ji� jj = 1. We denoteby Cost(i) the 
ost of the optimal LA planning on the linegraph Gi indu
ed by the �rst i nodes, [1::i℄ 2 V , whereCost(0) = 0 is the 
ost of the empty line.We note that Cost(i) (and the a
tual LA planning itself)
an be 
omputed re
ursively. Suppose the optimal LA plan-ning in the graph Gi is fS1; : : : ; Skg for some k. Let q be theindex of the left border node in Sk (i.e., the node with thelowest index in Sk). Then the optimal plan for Gq�1 musthave the same 
ost as fS1; : : : ; Sk�1g or else fS1; : : : ; Skgwould not be optimal for Gi. Thus Cost(i) is the sum ofCost(q � 1) and the 
ost in
urred by Sk:



Cost(i) = iminq=1 � � � Cp � ji� q + 1j �Pij=q wj+ Cu � fq�1;q + Cost(q � 1) � (1)where we take f01 = 0. Using dynami
 programming, we
an �nd the optimal LA planning for a line graph in timeO(n2) where n is the number of nodes in the line. We sim-ply 
al
ulate Cost(i) for i from 1 to n and store the resultof ea
h iteration in a table so it may be used in the nextiteration. As a te
hni
al detail, we must also store the sumof weights to avoid an extra fa
tor of n in the running time(see Figure 1).Finally, we address the 
onne
tivity and size 
onstraints.Conne
tivity 
onstraints bij = 1 split the line graph intomultiple line graphs, and we 
an solve the problem opti-mally on ea
h instan
e separately. In the presentation ofour algorithm we assume su
h prepro
essing has been doneand bij = 0 or �1 for all i; j. Conne
tivity 
onstraints oftype bij = �1 are handled by the Line algorithm and anynode q that is asso
iated with a 
onstraint bq�1;q = �1 is dis-quali�ed to serve as a left border node. The size 
onstraintsare easily a

ommodated as well. We will dis
uss only themaximal LA size 
onstraint, Kmax, as the weight 
onstraintWmax is analogous. Let x = maxf1; i � Kmax + 1g. Thenthe size 
onstraint for
es the border node q to be amongstnodes x; : : : ; i, and so the minimization in Equation (1) isjust taken over this range.A formal des
ription of our dynami
 programming s
hemeis given in Figure 1. In this des
ription, L and C are twoarrays that store the optimal LA planning and its 
ost forthe segment [1::i℄, respe
tively. The variable WLA re
ordsthe total weight of the nodes q; : : : ; i. It is initialized byWLA =Pij=xwj , and it is de
reased by wq before in
reasingthe border node index, q.Theorem 2. Given a line G(V;E), 
onne
tivity matrixB and maximal LA size Kmax, the Line algorithm returnsan optimal LA planning of G(V;E) and its 
ost.Proof. We prove the 
orre
tness of the Line algorithmby indu
tion on the number of nodes in the 
onsidered line.For an empty line without nodes there are no paging orupdate 
osts and its total 
ost is Cost[0℄ = 0. Let us assumethat the theorem is valid for lines with i � 1 nodes and
onsider a line with i nodes. The algorithm 
al
ulates the
ost of di�erent solutions when 
he
king ea
h one of thefeasible border nodes q of LA(i) (the last maxf1; i�Kmax+1g nodes of the line), by using the equation,� � Cp � (i� q + 1) �WLA + Cu � fq�1;q + C[q � 1℄:By indu
tive assumption, C[q℄, q < i, is the 
ost of theoptimal LA planning for the line graph indu
ed by nodes[1::q℄. Therefore, the algorithm �nds the 
ost of the optimalLA planning when a given node q is for
ed to be the bordernode of LA(i). As it takes the minimum of these valuesover all feasible border nodes q, the algorithm �nds boththe optimal LA planning and its 
ost.
4. APPROXIMATION ALGORITHMSIn this se
tion we present approximation algorithms forLAP in both general graphs and planar graphs. We startby providing an integer programming formulation. Then,

Algorithm Line(G(V;E); B;Kmax)// Variable Initialization.C[0℄ = 0L[0℄ = ;f0;1 = 0// Main loop from 1 to n.for i = 1 to n doC[i℄ =1// Updating the max weight of LA LA(i).x = maxf1; i�Kmax + 1gWLA =Pij=x wj// Loop for 
he
king all border nodes.for q = x to i do// Che
king if q 
an be a border node.if bq�1;q = 0 thentmp = � � Cp � (i� q + 1) �WLA++Cu � fq�1;q + C[q � 1℄if tmp < C[i℄ then// A 
heaper LA planning was found.C[i℄ = tmpL[i℄ = L[q � 1℄Sffq::iggend-ifend-ifWLA =WLA � wqend-forend-forreturn C[n℄;L[n℄endFigure 1: A formal des
ription of the Line Algo-rithmwe relax the integrality 
onstraints and obtain a linear pro-gram. We solve the linear program and obtain an optimalfra
tional solution for the problem, i.e., a solution wherethe variables 
an assume non-integral values. This solutionserves as our lower bound on the value of an optimal solu-tion. Finally, we round the fra
tional solution and obtain anear-optimal integral solution. We provide an upper boundon the ratio between the value of the near-optimal integralsolution 
omputed and the value of an optimal fra
tionalsolution. This bound is our approximation fa
tor. For gen-eral graphs, this bound turns out to be logarithmi
 and forplanar graphs it is a 
onstant.
4.1 The Integer Program FormulationRe
all that LAP is de�ned as a 
lustering problem witha non-linear obje
tive fun
tion. In order to formulate LAPas a linear integer problem, we take a di�erent approa
h. Apair (V; d), where V is a set and d is a non-negative fun
tiond : V � V ! R, is 
alled a semi-metri
 [41℄ if and onlyif d satis�es the following three 
onditions. (i) dij = djifor all i; j 2 V (symmetry). (ii) dii = 0 for all i 2 V .(iii) dij � dik + djk for all i; j; k 2 V (triangle inequality).Consider a partition of the graph into LAs. De�ne for everypair of nodes i; j 2 V a variable dij 2 f0; 1g su
h that,dij = � 1 If i and j belong to di�erent LAs:0 If i and j belong to the same LA:We 
laim that the variables dij indu
e a semi-metri
. Condi-tions (i) and (ii) above are obviously satis�ed. The triangle



inequality is also satis�ed, as 
an be seen by a simple 
aseanalysis.Consider an assignment to the variables dij that indu
esa semi-metri
. This assignment de�nes a partition of thegraph into LAs in a natural way. For every node i 2 V ,the LA 
ontaining it, LA(i), is de�ned by, LA(i) = fjjj 2V ^ dij = 0g, i.e., all nodes that are in zero distan
e fromnode i. We refer to edges (i; j) 2 E for whi
h dij = 1as 
ut edges. Denote by L the partition into LAs indu
edby variables dij . Our integer program will have variablesdij 2 f0; 1g, where d is required to be a semi-metri
.Re
all the 
onne
tivity matrix B de�ned in Se
tion 2. Forevery pair i; j 2 V we add the 
onstraints, bij � dij � bij+1.If nodes i; j should be in the same LA then bij = �1, and thenon-negativity 
onstraint on dij yields that dij = bij+1 = 0.Similarity, if nodes i; j are required to be in di�erent LAsthen bij = 1, and sin
e dij � 1, it follows that dij = bij = 1.If nodes i; j are not 
onstrained then bij = 0, and dij 2f0; 1g.We now state the obje
tive fun
tion, as well as the size and
onne
tivity 
onstraints, in terms of the variables dij . We�rst address the paging 
ost. A node i pages whenever thereis an in
oming 
all to a user belonging to its LA, LA(i), andhen
e it performs � �Pj2V (1 � dij) � wj paging operationsin a time unit. Thus, the paging 
ost of the entire system isPage Cost(L) = � � Cp � Xi;j2V (1� dij) � wj :The update 
ost is simply the 
ost of the 
ut edges timesthe 
ost of a single update operation, yieldingUpdate Cost(L) = 12 � Cu � Xi;j2V dij � fij :Hen
e, our obje
tive fun
tion is,min � � Cp � Xi;j2V (1� dij) � wj + 12 � Cu � Xi;j2V dijfij :We now address the size 
onstraints. Re
all the boundsKmax and Wmax de�ned in Se
tion 2. Sin
e, for ea
h nodei 2 V , LA(i) = fjjj 2 V ^dij = 0g, jLA(i)j =Pj2V (1�dij)(number of nodes in LA(i)), and w(LA(i)) =Pj2V (1�dij)�wj (weight of nodes in LA(i)). Thus, we 
an enfor
e the size
onstraints on ea
h LA by adding for ea
h node i 2 V the
onstraints, jLA(i)j � Kmax and w(LA(i)) �Wmax.We are now ready to present the integer programmingformulation.min � � Cp � Xi;j2V (1� dij) � wj + 12 � Cu � Xi;j2V dijfijsubje
t to:8i; j; k 2 V : dij + djk � dik8i; j 2 V : bij � dij � bij + 18i 2 V : Pj2V (1� dij) � Kmax8i 2 V : Pj2V (1� dij)wi �Wmax8i; j 2 V : dij 2 f0; 1gLemma 1. An optimal solution to the above integer pro-gram de�nes an optimal solution to LAP.

Proof. It follows from the pre
eding dis
ussion that apartitioning into LAs de�nes a feasible assignment to thevariables dij and vi
e versa. The dis
ussion also shows thatsize 
onstraints are maintained by the 
onstraints of the in-teger program.Sin
e solving integer programs is an NP-hard problem, werelax the integrality 
onstraints, i.e., we only require thatfor all i; j 2 V , dij 2 [0; 1℄. The linear program we obtain
ontains only O(n2) variables and O(n3) 
onstraints, andtherefore an optimal fra
tional solution 
an be 
omputed inpolynomial time. Clearly, the value of an optimal fra
tionalsolution is a lower bound on the value of an optimal integralsolution.
4.2 Rounding Algorithm for General GraphsIn this se
tion we present our rounding algorithm. Weassume that an optimal fra
tional solution to the above lin-ear program has been 
omputed. We now show how toround the fra
tional solution to a near-optimal integral so-lution, while ensuring an O(log n)-approximation fa
tor inthe worst 
ase. Furthermore, we observed that, in pra
ti
e,the fra
tional solution is very 
lose to an integral solution.In other words, most of the dij parameters have values of0 and 1 also in the fra
tional solution. Our rounding al-gorithm preserves these integral values and guarantees thatevery pair of nodes i; j 2 V su
h that dij = 0 are assignedto the same LA, while pairs with dij = 1 are assigned totwo di�erent LAs. This property enables us to �nd near op-timal solution in most 
ases, as we illustrate by simulationsin Se
tion 7.
4.2.1 The AlgorithmOur rounding algorithm uses a te
hnique known as regiongrowing (or ball growing) [42℄. We iteratively grow balls ofat most some �xed radius around nodes of the graph withrespe
t to the semi-metri
 de�ned by the variables dij . Theballs are grown until all nodes are in
luded in some ball,and these balls de�ne the LAs in the �nal solution. Theintuition is that large dij values indi
ate that i and j shouldbe in separate LAs, and small dij values indi
ate that they
an be in the same LA. The importan
e of the �xed radius is:(i) it guarantees that size bounds are \almost" satis�ed; and(ii) it yields an approximation fa
tor bound on the paging
omponent of the obje
tive fun
tion. The region growingte
hnique itself enfor
es an approximation fa
tor bound onthe update 
omponent of the obje
tive fun
tion.First, we present some notation that we will need in orderto de�ne the algorithm. A ball b(i; r) of radius r around nodei is the subgraph that 
onsists of all nodes j su
h that dij <r, their 
onne
ting edges and the fra
tion (r�dij)=(dik�dij)of any edge (j; k) with only one endpoint, say j, belongingto the ball, i.e., dij � r (note that dij is de�ned for allnodes i; j). Thus, the ball b(i; 0) around node i 
ontainsnode i and all the nodes j 2 V su
h that dij = 0. The
ut of a ball b is the set of edges with pre
isely one end-point in b and its weight, denoted by 
utweight(b), is de-�ned to be Pjfi;jg\bj=1 fij . Finally, the volume of a ballb(i; r), vol(b(i; r)), is de�ned to be the weighted distan
e ofthe edges belonging to the ball. Ea
h internal edge (j; k)
ontributes fjk � djk to the ball volume and every 
ut edge(j; k), with dij < r, 
ontributes fjk �djk � (r�dij)=(dik�dij)to vol(b(i; r)). For te
hni
al reasons, we also in
lude an ini-



Algorithm Round(G(V; E); fdijg)// Variable Initialization.H  GL  ;// Main loopwhile 9 a node i 2 HS  ;r 0// Grow ballrepeatS  S [ b(i; r)r r +�until 
utweight(b(i; r)) � 
 ln(n+ 1) � vol(b(i; r))L  L [ SendFigure 2: A formal des
ription of the ball growingalgorithmtial volume (seed) I to the volume of every ball (i.e. ballb(i; 0) has volume I).We are now ready to present the algorithm for roundinga fra
tional solution to an integral solution. The input tothe algorithm is a 
omplete graph G(V;E), jV j = n, witha fra
tional assignment to the variables dij obtained fromthe linear program. Suppose the volume of the entire graphis F � 12Pi;j2V dijfij . Note that the update 
ost of thefra
tional solution is CuF . Let the initial volume of the ballsde�ned in the algorithm be F=n. The algorithm iterativelygrows balls around arbitrary nodes of the graph until it �ndsa ball su
h that the weight of the 
ut de�ned by the ball isat most 
 ln(n + 1) times the volume of the ball. It then
reates a lo
ation area 
onsisting of the nodes belonging tothis ball and removes these nodes from the graph. Thisalgorithm terminates when all nodes are removed from thegraph. The pseudo-
ode for this algorithm 
an be foundin Figure 2. Note that the order in whi
h the algorithm
onsiders nodes is indeed arbitrary, and thus the followinganalysis applies to any node sele
tion heuristi
.
4.2.2 The Approximation Factor AnalysisIn this algorithm, 
 is some 
onstant whi
h we will deter-mine later, and � = minf(dij�r) : j 62 b(i; r); (dij�r) > 0gis the remaining distan
e to the nearest vertex (among thosewith distan
e greater than zero) outside the 
urrent ball.This algorithm 
learly runs in polynomial time. We mustshow it terminates with a solution L that satis�es the 
on-straints, and has a 
ost whi
h is not mu
h more than thefra
tional volume F .Noti
e the region-growing pro
edure's termination 
ondi-tion guarantees an O(log n) approximation to the update
omponent of the obje
tive fun
tion. Let � = 
 ln(n+ 1).Update Cost(L) = 12Cu Xballs b 
utweight(b)� 12Cu� Xballs b vol(b)� 12Cu�0�12 Xi;j2V dijfij + Xballs b Fn1A� 12Cu�(2F )� Cu�F

where the se
ond line follows from the fa
t that the ballsfound by the algorithm are disjoint. Note that CuF is pre-
isely the update 
ost of the fra
tional solution.The rest of our analysis hinges on the fa
t that the ballsreturned by this algorithm have radius at most 1=
. Thisfa
t follows from the following known lemma [43, 42℄.Lemma 2. For any vertex i and family of balls b(i; r),the 
ondition 
utweight(b(i; r)) � 
 ln(n + 1) � vol(b(i; r)) isa
hieved for some r � 1=
.Proof. We pro
eed by 
ontradi
tion. Set � = 
 ln(n+1).Consider growing the ball 
ontinuously from r = 0 to r =1=
 and suppose throughout this pro
ess, 
utweight(b(i; r)) >� � vol(b(i; r)). Noti
e that due to this assumption, the in-
remental 
hange in the volume isd(vol(b(i; r))) = d(Xj;k2b fjkdjk +Xj2b;k 62b fjk djk (r � dij)=(dik � dij))= Xj2b;k 62b d (fjk djk (r � dij)=(dik � dij))= Xj2b;k 62b d(fjk djk r=(dik � dij))� Xj2b;k 62b fjk dr= 
utweight(b(i; r)) dr> �vol(b(i; r)) drThe step d(vol(b(i; r))) �Pj2b;k 62b fjkdr results from thefa
t that djk � (dik�dij) and therefore, djk=(dik�dij) � 1.The initial volume of a ball is, by de�nition, F=n, and the�nal volume is at most F +F=n if the ball 
overs the entiregraph. ThereforeZ F+F=nF=n 1vol(b(i; r))d(vol(b(i; r))) > Z 1=
0 �drand so ln(n+ 1) > 1
� = ln(n+ 1).We now bound the paging 
ost of our rounding.Page Cost(L) = �Cp Xballs b Xi;j2bwj= 

� 2 � �Cp Xballs b Xi;j2b(1� 2=
)wjNote that �CpPbPi;j2b(1 � 2=
)wj is a lower bound onthe paging 
ost of the fra
tional solution. This is true sin
ethe radius of the balls is at most 1=
 and therefore by thetriangle inequality 1 � dij � 1 � 2=
 for any nodes i and jthat belong to the same ball. This implies that our solutiongives a 

�2 -approximation to the paging 
ost.The �nal approximation fa
tor of our algorithm is themaximum between the approximation fa
tors of the two
omponents. Thus,Theorem 3. The approximation fa
tor of our algorithmis max(
 ln(n+ 1); 

�2 ) = O(log n).



We note that the integral solution that our approximationalgorithm 
omputes preserves all the integral 
omponentsof the fra
tional solution. Consider a variable dij with anintegral value in the fra
tional solution. Suppose that dij =1. Sin
e the diameter of a ball is at most 2=
 < 1, thetwo nodes belong to separate LAs in the integral solution.Now, suppose that dij = 0. From the triangle inequality itfollows that dik = djk for every node k 2 V . Thus, everyball b(k; r), either 
ontains both nodes i and j, or none ofthem.
4.2.3 Satisfying Connectivity and Size ConstraintsWe turn to prove that the algorithm returns a solutionwhi
h satis�es the 
onstraints. It easy to see that the round-ing algorithm ful�lls the 
onne
tivity 
onstraints. For the
ase when a 
onne
tivity 
onstraint bij = 1 is given, thefra
tional solution enfor
es dij = 1 (distan
e between i andj). Sin
e the diameter of a ball is at most 2=
 < 1, thetwo nodes are in two separate LAs. When 
onne
tivity 
on-straint bij = �1 is given, the fra
tional solution enfor
esdij = 0. As des
ribed above, the rounding algorithm keepsnodes with zero distan
e in the same ball and 
onsequentlyin the same LA. We now handle the size 
onstraints. A
-tually, we will prove something slightly weaker. We willshow our algorithm is a pseudo-approximation algorithm. Apseudo-approximation algorithm gives an approximate so-lution to a problem with slightly di�erent parameters. Inour 
ase, we must perturb the size bound parameters, Kmaxand Wmax, slightly. Spe
i�
ally, our algorithm �nds a setof LAs su
h that ea
h LA has size at most 

�1Kmax andweight at most 

�1Wmax. We prove the �rst of these state-ments. The proof of the se
ond is similar. We know that8i 2 V : Pj2V (1 � dij) � Kmax. Fix i. Sin
e the maxi-mal radius of a ball r � 1
 , follows that distan
e dij � 1
 .Therefore, for ea
h i,Kmax � Xj2V (1� dij)� Xj2LA(i)(1� dij)� Xj2LA(i)�1� 1
�= 
� 1
 Xj2LA(i) 1 = 
� 1
 LA(i)Thus, the maximal LA size is at most 

�1Kmax. We notethat 
 is an arbitrary 
onstant. The larger we take 
, the
loser our solution will be to the true size bounds. However,our approximation fa
tor grows like 
 ln(n+ 1), and so ouroverall 
osts may get worse. This parameter is a tradeo�that the user 
an spe
ify. We also note that if the boundsKmax and Wmax are not spe
i�ed (i.e. 
an be arbitrarilylarge), then the algorithms we present are exa
t approxima-tion algorithms in the standard sense of the term.Finally, we show that our s
heme 
an a
tually deal withmore general 
onstraints on the size and weight of LAs. Forexample, we 
an adjust our s
heme to a

ommodate a 
on-straint for ea
h vertex i 2 V on the size and weight of theLA 
ontaining i, i.e., jLA(i)j � Ki and Pj2LA(i) wj � Wi.without in
reasing the total number of 
onstraints. The lat-ter is obtained by repla
ing the two size 
onstraints of ea
hnode i 2 V with the following 
onstraints, Pj2V (1� dij) �

Ki andPj2V (1� dij)wi �Wi. However, as a result of thismodi�
ation, it 
an be shown that the LA size or weightmay be as high as 

�2 times the required size, Ki, or weightWi.
4.3 Rounding Algorithm for Planar GraphsIn this se
tion we prove that for planar graphs we 
an
hange the region growing algorithm and obtain a 
onstantfa
tor approximation. We use the following te
hnique de-veloped by Klein, Plotkin, and Rao [44℄ (see also [45℄). Theweak diameter of a subset S of nodes is r if every pair ofnodes in S is at distan
e at most r in the original graph(and not ne
essarily in the graph indu
ed by S).Theorem 4 (KPR). Given a planar graph with 
apa
-ities u on its edges and parameter p, one 
an �nd, in polyno-mial time, an edge separator of total 
apa
ity O(U=p) whoseremoval yields 
omponents of weak diameter at most O(p)where U is the sum of all 
apa
ities.We will use this theorem to �nd an LA design with 
om-ponents of radius at most 1=
 and with update 
ost just a
onstant fa
tor more than the optimal fra
tional solution.The other results required, i.e. the 
onstant fa
tor approx-imation for the paging 
ost and the 
onstraint-satisfa
tionargument, follow from the 1=
 radius guarantee.The next Corollary follows from Theorem 4 by 
reatingfrom G another planar graph G0, mapping edge (i; j) to a
hain of length dBdi;je, where ea
h link in the 
hain is anedge of weight fij , for some appropriate large B. We 
anthen �nd the required 
ut by applying Theorem 4 to G0 ands
aling down the result.Corollary 1. Given a planar graph G with distan
es dijand weights fij on its edges, one 
an �nd, in polynomialtime, a 
ut of weight O(vol(G)=p) whi
h yields 
omponentsof radius at most O(p), where vol(G) =Pi;j dijfij .Given an optimal fra
tional solution, we 
an use Corol-lary 1 with an appropriate setting of 
onstants to obtain anLA design L, where 
omponents have radius at most 1=
 forany 
onstant 
 (note p will be 
onstant too). As the update
ost of the fra
tional solution is vol(G) and the update 
ostof L is the 
ost of the 
ut, Corollary 1 gives a 
onstant-fa
torapproximation guarantee for L. We note that this 
onstantmay be very large. Due to the 1=
 radius guarantee, allprevious results in the dis
ussion on general graphs follow,yielding a 
onstant fa
tor approximation for the LA designproblem in planar graphs.
5. HEURISTICSThe region growing algorithm presented in Se
tion 4.2provides an LA planning with bounded 
ost and LA sizes.Spe
i�
ally, for any LAP instan
e and maximal region ra-dius 1=
, for a given 
 > 2, the algorithm guarantees a solu-tion su
h that its update 
ost is at most 
�ln(n+1)�OPT andits paging 
ost is at most 

�2 �OPT , where OPT is the 
ostof the optimal solution. Thus, for 
 = 3 the s
heme ensures(3 � ln(n+1); 3=2)-approximation fa
tor. In other words, the
al
ulated solution will be within a fa
tor of 3�ln(n+1) fromthe optimal solution and the sizes and weights of its LAs areat most 1:5Kmax and 1:5Wmax, respe
tively. These boundsare ensured by prudently balan
ing between the update andthe paging 
osts with respe
t to the fra
tional solution.



Algorithm Ex
hange(L)madeChange = truewhile(madeChange)madeChange = falseforea
h LA S 2 Lforea
h 
ut edge (u; v) s.t. u 2 S; v 2 S0if (size(S0) + 1 � Kmax andweight(S0) + weight(u) �Wmax)oldCost = 
ost(S) + 
ost(S0)newCost = 
ost(S0 [ u) + 
ost(S n u)if (newCost < oldCost)madeChange = trueS = S n uS0 = S0 [ uend-ifend-ifend-forea
hend-forea
hend-whileFigure 3: A formal des
ription of the 
ell ex
hangingheuristi
We develop a simple heuristi
 that improves the overall
ost of the LAP solution produ
ed by the region growingalgorithm. The heuristi
 uses a greedy strategy, and is alsoan extension of the s
heme presented in [36℄. The pseudo-
ode for the heuristi
 is shown in Figure 3. The Ex
hangeheuristi
 takes the initial LA planning solution produ
ed bythe region growing algorithm and tries to improve the 
ostby ex
hanging 
ells between neighboring LAs. The idea ofthe heuristi
 is to move nodes between neighboring LAs,where the move results in a de
rease in overall 
ost without
ausing any 
onstraint violation. We 
ontinue this pro
essuntil there is no more 
ost improvements. It is 
lear thatthe pro
ess will terminate be
ause a lo
al minima will berea
hed after whi
h the ex
hange pro
ess will give no furtherimprovement in 
ost.Depending on how tight the size and weight 
onstraintsare for the PCS network, a violation of these 
onstraintsmay not be a

eptable. We have two proposals to �x thisproblem. The �rst is to set the 
onstraints in the LP for-mulation so that the real 
onstraints are not violated in the�nal solution. The se
ond is to do a 
ell ex
hange similarto the ex
hange heuristi
 above. For ea
h LA S whi
h is inviolation of the size or weight 
onstraints, look at its neigh-boring LAs and see whi
h neighbor S0 
an take a 
ell fromS without violating the 
onstraints and 
ausing the minimalin
rease in overall 
ost. The pro
ess is repeated until S isno longer in violation of the size and/or weight 
onstraints.The �rst heuristi
 guarantees a feasible solution, while these
ond one may give better results in pra
ti
e, but does notguarantee feasibility.
6. HANDOFF MANAGEMENTSo far we have addressed lo
ation management. How-ever, our algorithms 
an also be used for the planning ofMSC-domains for 
onstru
ting eÆ
ient hando� me
hanisms.Hando�s that o

ur between 
ells in di�erent MSCs tendto 
ause degradation in the quality of the provided servi
e,in the forms of higher delays, in
reased data lost and 
on-

ne
tion drop-o�s, while the hando�s are happening. Thus,to improve the quality of servi
e provided to the users, wewould like to partition the network 
ells into disjoint MSC-domains that redu
e the number of inter-MSC hando� oper-ations. It is 
lear that inter-MSC hando�s are eliminated ifall the 
ells are asso
iated with a single MSC. However, dueto physi
al and performan
e 
onstraints, ea
h MSC 
an be
onne
ted only to a limited number of base stations (
ells)and it 
an support a bounded number of 
onne
tions simul-taneously. Consequently, we de�ne an eÆ
ientMSC-domainplanning to be a partition of the networks 
ells into a smallnumber of 
lusters, so 
alled MSC-domains, that minimizethe total number of inter-MSC hando�s, while the size andthe user population of ea
h MSC-domain are bounded byKmax and Wmax, respe
tively. Re
all that MSC-domainplanning 
an be viewed as a spe
ial 
ase of the LA-planningproblem, des
ribed in De�nition 1, where the 
ost of a singlepaging operation Cp = 0 and the 
ost of an update opera-tion Cu = 1. This implies that our LA-planning algorithm
an be used for the determining MSC-domains.We now des
ribe a 
ombined approa
h for planning boththe MSC-domains for eÆ
ient hando� management and theLAs for 
ost-e�e
tive lo
ation management. Our approa
his based on the following two observations; Sin
e, ea
h LAand ea
h MSC-domain is asso
iated with a single MSC, itfollows that both LAs and MSC-domains have to satisfy thesame size 
onstraints. Moreover, as LA-planning 
onsid-ers also the paging 
ost, LAs are in general smaller than theMSC-domains. Consequently, we view the LA-planning as are�nement of the MSC-domain partition. We start with 
al-
ulating an eÆ
ient MSC-domain planning. Then, we fur-ther divide ea
h MSC-domains to several LAs, by employingLA-planning. This approa
h optimizes the two 
omponentsof the mobility management me
hanism.
7. SIMULATION RESULTSIn this se
tion we present the results of our experimentsto evaluate how well our algorithm works in pra
ti
e. Westart by des
ribing the experimental set up.
7.1 MethodologyThe region growing algorithm des
ribed in Se
tion 4.2grows regions 
ontinuously around an initial node (seed). Toimplement the algorithm, we grow regions in dis
rete steps.The dis
rete algorithm is based on the pro
ess des
ribedin [42℄. The O(log n) approximation bound also holds forthis method. The dis
rete algorithm builds shortest pathtrees from the seeds and grows regions by adding nodes inin
reasing distan
e from the seeds. At ea
h iteration, nodeswith the same distan
e from the 
urrent seed are added to-gether.For our simulations we use data that was 
olle
ted froma big wireless servi
e provider in the United States. Thedata 
overs several MSCs and is for a region in New Jersey.We had two sets of data to work with. One set is a hand-o� matrix giving the number of hando�s between 
ells fora parti
ular day. The other set of data gives a measure ofthe number of in
oming 
alls for ea
h 
ell during the busyperiod. The data we worked with is not 
omplete in that itdoes not have information for all the 
ells of the MSCs rep-resented, and the set of 
ells 
overed by the hando� matrixdoes not interse
t fully with the set of data 
ontaining themeasure of the number of in
oming 
alls.



The number of 
ells for whi
h we have both hando� in-formation and in
oming 
all data is only 39, and we presentsimulation results for this set of 
ells. However, this is quitesmall and may not be representative of a full network. Sin
ewe use the hando� data to determine 
ell 
onne
tivity, wewanted to use the 
ells for whi
h we have hando� informa-tion. For the 
ells in this set that we had in
oming 
all datafor, we use that data. To generate in
oming 
all data forthe rest of 
ells of this set, we used non-parametri
 bootstrapre-sampling [46℄. This is a standard statisti
al te
hnique for�lling in missing data and gives good results in pra
ti
e. Us-ing this method, we generate two other networks, one with76 
ells and the other with 128 
ells.Sin
e paging and update 
osts are not typi
ally measuredin 
omparable units, having an obje
tive fun
tion that sumsthese two 
osts 
an be problemati
. The standard solutionused in lo
ation area planning resear
h is to make an as-sumption on the relative 
ost of the these units. For exam-ple, in [31℄ the authors use a 17:1 ratio for update to paging
ost. For our experiments we make a similar assumption,but we present a range of values for this ratio. We use arange from 10:1 to 30:1 in in
rements of 5. The other pa-rameters we need to 
onsider for our experiments are sizeand weight restri
tions. In the following we only present re-sults where there are size 
onstraints. For our experimentswe use a size 
onstraint of about 20% of the total numberof 
ells in the network.To show the e�e
tiveness of our region growing algorithm(RG), we 
ompare our results to the optimal fra
tional so-lution of the LP formulation of the problem as well as othermethods des
ribed in the literature. As summarized in Se
-tion 1.1, there is a large body of work on the issue of LA-planning. In this body, some papers [28℄, [29℄, [30℄,[31℄assume uniform user distribution and inter-
ell movementrate, and with these strong assumptions they derive opti-mal LA plans. However, these results are not appli
ableto pra
ti
al 
ases where the network usage is heterogeneousand therefore they are not suitable for 
omparison with ourmethod. Other papers utilize sophisti
ated variants of ex-haustive sear
h and employ di�erent algorithmi
 tools su
has geneti
 algorithms [33℄,[34℄, taboo sear
h [34℄ and sim-ulated annealing [34℄,[32℄, [35℄. These algorithms do nothave polynomial running time and the quality of the foundsolutions depend on the duration of the exe
ution. For our
omparisons, we would like to 
onsider only algorithms withpolynomial running time. However, in the literature, only afew polynomial time LAP algorithms are presented. Most ofthem 
onsider relaxed versions of the LAP where the numberof LAs is �xed [37℄ or the 
ost of the paging is ignored [38℄,[36℄. Thus, to the best of our knowledge, there is not anypolynomial time algorithm that 
onsiders the 
omprehensiveLAP problem that we address in this work. Moreover, noneof the above papers 
ompared its results with the optimalsolutions.Consequently, we 
ompare our region growing algorithm(RG) to the optimal fra
tional solution, denoted by LP, aswell as to two polynomial time greedy heuristi
s, des
ribedin the literature. The �rst heuristi
, greedy1 (Gr1), is a sim-ple an intuitive greedy algorithms similar to the one usedin [35℄ as a ben
hmark, while the se
ond heuristi
, greedy2(Gr2), is based on the s
heme proposed in [36℄. Both greedyheuristi
s �rst perform a merge-phase and then an ex
hange-phase. The ex
hange-phase for both algorithms is the same

Figure 4: 39 
ells: Cost 
omparisons of region grow-ing to other methods.as des
ribed in Se
tion 5, but the algorithms di�er in the ini-tial merge-phase. In the �rst algorithm, greedy1, the merge-phase of this s
heme is done as follows:Initially, ea
h 
ell indu
es a separate LA. Thealgorithm 
onsiders every pair of LAs and 
al-
ulates the 
ost redu
tion obtained by mergingthem, then it sele
ts the pair that yields the max-imal 
ost redu
tion without violating the size orweight 
onstrains and merges them. The pro
ess
ontinues as long as there are pairs of LAs wheremerger redu
es the system 
ost.The se
ond greedy algorithm, greedy2 , employs the followingmerge-phase:Ea
h 
ell is initially a separate LA. A pro�t met-ri
 is de�ned based on the update and paging
osts of 
ells in the system. In ea
h round of themerge-phase, ea
h pair of LAs is tested to seewhi
h pair maximizes the pro�t metri
 and doesnot violate the size or weight 
onstraints. Thispair is merged, and then the pro
ess is repeated.The pro
ess 
ontinues until no more merges 
anbe made.
7.2 ResultsThe results of our simulations are presented in the his-tograms and tables below. The histograms and tables showthe overall system 
ost when the networks are partitionedusing the di�erent algorithms. The tables also show therelative 
osts of the di�erent methods.For the 39 
ells 
ase (Figure 4 and Table 1) the RG al-gorithm was on average 63% from the optimal fra
tionalsolution, whereas the greedy methods were more than twi
eas bad as the LP solution on average. For this 
ase, theRG algorithm was on average better than Gr1 and Gr2 by31% and 34% respe
tively. For the 76 
ells network(Figure 5and Table 2) all the algorithms were 
loser to the optimalsolution than for the 39 
ells network. However, the RGalgorithm was mu
h 
loser that the greedy methods. Onaverage our method was 20% from the optimal solution, andfor the 
ase where the update to paging ratio was 25, it was



Ratio LP RG Gr1 Gr2 RG/LP Gr1/LP Gr2/LP Gr1/RG Gr2/RG10 39029 59975 76831 79187 1.54 1.97 2.03 1.28 1.3215 52353 85173 109137 111247 1.63 2.08 2.12 1.28 1.3120 65259 109905 141253 143307 1.68 2.16 2.20 1.28 1.3025 78022 126923 173363 175367 1.63 2.22 2.25 1.37 1.3830 90665 150493 205473 207427 1.66 2.27 2.29 1.37 1.38Table 1: Results: 39 
ells with maximum LA size 8Ratio LP RG Gr1 Gr2 RG/LP Gr1/LP Gr2/LP Gr1/RG Gr2/RG10 123069 141309 190925 190925 1.15 1.55 1.55 1.35 1.3515 155151 185357 250875 250875 1.19 1.62 1.62 1.35 1.3520 183738 232607 319168 310825 1.27 1.73 1.69 1.37 1.3425 210705 222392 395536 370775 1.06 1.88 1.76 1.78 1.6730 237001 315870 460326 430725 1.33 1.94 1.81 1.46 1.36Table 2: Results: 76 
ells with maximum LA size 16

Figure 5: 76 
ells: Cost 
omparisons of region grow-ing to other methods.only 6% from the optimal fra
tional solution. For this net-work the Region Growing algorithm was on average 46% and41% better than Gr1 and Gr2 respe
tively. Finally, for the128 
ells network (Figure 6 and Table 3) the performan
eof the RG growing algorithm was on average 51% from theLP solution, and better that Gr1 and Gr2 by 42% and 31%respe
tively.Over all our experiments, the RG algorithm 
ame as 
loseas 6% to the optimal fra
tional solution of the LAP problem,and was never more than 71% from this optimal solution.The RG algorithm was also 
onsistently and signi�
antlybetter than both greedy heuristi
s. Our experiments demon-strates that our method gives very good results, whi
h inpra
ti
e are mu
h better than the O(lg n) worst-
ase bound.
8. CONCLUDING REMARKSIn this work, we des
ribed new 
lustering algorithms forLA planning that minimize both the update and paging
osts from the wireless and wired network perspe
tive. Wepresented a polynomial-time algorithm that �nds an optimalLA planning for one-dimensional networks su
h as highways

Figure 6: 128 
ells: Cost 
omparisons of regiongrowing to other methods.and railroads. In general networks, we have formulated theproblem as an integer program. Our formulation is very
exible and it allows the in
orporation of 
onstraints that
an 
apture a variety of system-imposed 
onstraints, su
has maximum LA size. Due to the NP-hardness of the prob-lem, we resorted to polynomial time approximation algo-rithms that 
ompute an LA planning whose 
ost is no morethan O(log n) times the optimal 
ost (for planar graphs thealgorithm a
hieves a 
onstant approximation fa
tor). Wealso simulated the rounding algorithm and 
oupled it witha heuristi
. The results of our experiments on a realisti
network indi
ate that our algorithms give results that are
lose to the the optimal solution and superior to the exist-ing greedy heuristi
s to whi
h we 
ompare them. We alsodes
ribed how our algorithms 
an be used for MSC-domainplanning, whi
h is essential for improving the user per
eivedQoS.The main theoreti
al 
ontribution of this work| a methodto balan
e between some property of the 
lusters and theweight of the 
ut | is appli
able in other settings as well.Re
ent work [47, 48, 49℄ uses similar te
hniques to give an



Ratio LP RG Gr1 Gr2 RG/LP Gr1/LP Gr2/LP Gr1/RG Gr2/RG10 240868 357439 402660 432341 1.48 1.67 1.79 1.13 1.2115 302595 382487 536027 577102 1.26 1.77 1.91 1.40 1.5120 357798 525951 818519 710212 1.47 2.29 1.98 1.56 1.3525 409998 676806 1019530 843322 1.65 2.49 2.06 1.51 1.2530 460908 787941 1196650 976432 1.71 2.60 2.12 1.52 1.24Table 3: Results: 128 
ells with maximum LA size 26O(log n) approximation for another 
lustering problem, 
or-relation 
lustering [50℄. It is 
on
eivable that there are otherproblems with similar LP formulations that 
an bene�t fromour te
hniques, and applying our te
hniques to these prob-lems is an interesting extension of this work.Another remaining open question is the existen
e of a bet-ter, say 
onstant-fa
tor, approximation algorithm for theLAP problem in general graphs. In fa
t, due to the appar-ent similarity of the LAP problem and known hard problemssu
h as minimum multi
ut [42℄, we believe it is unlikely thata o(log n) approximation algorithm exists. However, we donot know of a redu
tion or an 
(log n) LP-gap to supportthis 
laim. In a similar vein, it would be interesting to �ndexamples for whi
h the existing greedy heuristi
s performpoorly, returning a solution that is !(log n) more 
ostly thanthe optimal one.
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