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ABSTRACTA entral problem in personal ommuniation systems is tooptimize bandwidth usage, while providing Quality of Ser-vie (QoS) guarantees to mobile users. Network mobilitymanagement, and in partiular, loation management, on-sumes a signi�ant portion of bandwidth, whih is a ne-essary overhead for supporting mobile users. We fous oure�orts on minimizing this overhead. Unlike previous works,we onentrate on optimizing existing shemes, and so thealgorithms we present are easily inorporated into urrentnetworks. We present the �rst polynomial time approxima-tion algorithms for minimum bandwidth loation manage-ment. In planar graphs, our algorithm provably generatesa solution that uses no more than a onstant fator morebandwidth than the optimal solution. In general graphs,our algorithm provably generates a solution that uses justa fator O(log n) more bandwidth than optimal where n isthe number of base stations in the network. We show that,in pratie, our algorithm produes near-optimal results andoutperforms other shemes that are desribed in the litera-ture. For the important ase of the line graph, we presenta polynomial-time optimal algorithm. Finally, we illustratethat our algorithm an also be used for optimizing the hand-o� mehanism.
Categories and Subject DescriptorsC.2.3 [Computer-Communiation Networks℄: NetworkOperations |Network management; G.2.2 [Disrete Math-ematis℄: Graph Theory | Graph algorithms�Y. Bejerano and M. Smith are with Bell Labs, Luent Teh-nologies, 600 Mountain Ave., Murray Hill, NJ 07974.yN. Immorlia is with the Laboratory for Computer Siene,MIT, NE43-334, 200 Tehnology Square, Cambridge, MA02139. Part of this work was done while visiting Bell Labs.zJ. Naor is with the Computer Siene Department, Teh-nion - Israel Institute of Tehnology, Haifa 32000, Israel.Part of this work was done while visiting Bell Labs.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’03, September 14–19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-753-2/03/0009 ...$5.00.

General TermsAlgorithms, Design, Management, Performane, Theory
KeywordsPersonal Communiation System, Cellular Systems, Mobil-ity Management, Loation Area Planning, ApproximationAlgorithms.
1. INTRODUCTIONPersonal Communiation Servie (PCS) networks enablepeople to ommuniate independently of their loation andwhile they are moving. To provide this apability, eah PCSnetwork is equipped with a mobility management meha-nism that onsists of two major omponents. The loationmanagement omponent maps subsriber numbers to theurrent loations of the orresponding users when alls ar-rive. The hando� management omponent maintains ongo-ing alls with ensured quality of servie (QoS) while theirend-users hange their attahment points. The urrent stan-dards for loation management in present PCS networkssuh as GSM [1℄, IS-41 [2℄ and UMTS [3℄ use similar shemesfor mobility management. The basi idea for these shemesis as follows. The overage area of the system is divided intoloation areas (LAs), where eah LA onsists of a group ofells that forms a ontinuous geographi area. The ells ofone or few LAs are assoiated with a single mobile swithingenter (MSC) that onnets them to a �xed infrastruture.The system keeps the LA identi�er of the loation for eahuser. When a mobile user rosses an LA boundary, the userupdates the system with its new loation. In this way, thesystem is able to maintain the urrent loation of eah user.When a all omes in for a partiular user, the system si-multaneously pages the mobile user in all the ells of theuser's reorded urrent LA. The alled user replies to thispaging message and the system establishes a onnetion be-tween the originator of the all and the alled user. In ur-rent systems, LAs are determined in advane based on statimovement probabilities and, in general, remain unhanged.In reent years, PCS networks have faed rapid inrease inthe number of mobile users. The main solution for support-ing the growing population is to redue the ell sizes andto inrease bandwidth reuse [4, 5℄. These hanges ause thenumber of all deliveries, loation update operations, andhando� operations to inrease dramatially and result inhigh loads on mobility management mehanisms. Moreover,frequent hando� operations a�et the user's QoS perep-tion, espeially when moving from one MSC-area to another



where inter-MSC hando� operations are performed. Thismotivates extensive researh e�orts for reduing the over-head of the mobility management mehanisms from boththe network resoures and wireless bandwidth perspetives.These e�orts have lead to the development of numerous newmobility management shemes on one hand and new lus-tering algorithms for optimizing the LA planning (LAP) onthe other hand.
1.1 Related WorkThere are a variety of new loation management shemesin the literature. Several proposals introdue inrementalimprovements to the urrent LA approah. For instane,overlapping LA systems were introdued to redue the num-ber of update operations that result from users moving nearthe LA boundaries [6℄,[7℄. Sequential paging methods weresuggested to redue the amount of paging indued by an in-oming all. In sequential paging, the system sequentiallypages subareas of the urrent LA of a alled-user based on itsloation probability [8℄,[9℄, [10℄. Both updating and pagingosts an be redued by using a system of moving LAs. Thisapproah an be useful in the ase of traking fast movingusers on highways [11℄.Other work in this area onsists of dynami mobility man-agement shemes that are based on users' pro�le informa-tion. Sine the latter are ustomized for the individual mo-bility patterns of eah user, they are more eÆient thangeneralized shemes for all users. In this ategory we �ndproposals like the personal LA approah, in whih the LAsizes are de�ned on a per-user basis for reduing the signal-ing overhead of eah individual user [12℄,[13℄, [14℄,[15℄. In[16℄, [17℄, [18℄,[19℄, the users are allowed to skip some updateoperations when they ross the LAs' boundaries. When aall omes in, the system uses the user pro�le informationto estimate the probability for eah LA that it is the urrentLA of the user. The system then pages the LAs in order ofdereasing probability. In other shemes, there is no notionof loation areas, and the mobile users perform update op-erations based on either the elapsed time [20℄, [21℄, numberof rossed ells [20℄, [22℄ or the traveled distane sine theprevious update operation [20℄, [23℄. The seleted thresholdsfor performing update operations are adapted to the individ-ual mobile user mobility patterns and ommuniation traf-�. Other shemes [24℄, [25℄, [26℄, [14℄, also onsider the userspeed and the trajetory during its last update for preditingits loation when needed. Comprehensive surveys of loa-tion management shemes an be found in [2℄,[27℄. Whilethe new shemes, espeially the pro�le-based methods, of-fer better utilization of wireless network resoures than thestandard LA-approah, they su�er from some inherent de-�ienies. They tend to add signi�ant omplexity to themanagement of the networks. The network is required tokeep trak of signi�antly more information per user andeah mobile user needs to keep trak of its mobility pat-terns. Moreover, they require modi�ation of the urrentstandards and so require hanges of the wireless network in-frastrutures as well as updating all the handsets. This om-pliates the inorporation of reent shemes into the urrentinfrastrutures.Other researh diretions inlude developing new parti-tioning algorithms that ompute eÆient LA plans. TheseLA plans are evaluated by their total signaling osts, i.e., the

ost of all the indued paging and update operations in thesystem. Sine the paging ost depends on the number ofells that are paged when alls ome in, while the updateost results from LA boundary rossings, there is a leartrade-o� between the two osts. By seleting large LAs, thenumber of LA boundary rossings and hene the system up-date ost is redued, while seleting small LAs produes lowpaging ost. The LA planning methods an be lassi�edinto two ategories. The papers in the �rst ategory [28℄,[29℄, [30℄,[31℄ assume uniform user distribution and inter-ell movement rate, and with these strong assumptions theyderive an optimal LA planning. However, these results arenot appliable to most pratial ases where the networkusage is heterogeneous [30, 32℄. In the seond ategory,the network is modeled as a graph where eah node rep-resents a ell, its weight spei�es the ell population andthere is an edge between every pair of adjaent nodes thatde�nes the user movement rate between the orrespondingells. The LA planning is mapped to a graph partitioningproblem. Sine this partitioning problem is NP-hard, di�er-ent heuristis are proposed for obtaining eÆient solutions.Most of the proposed shemes limit the LA size in order tobound the LA paging ost and seek heuristis for LA plan-ning that minimize the system overall update ost. Theseheuristis employ di�erent algorithmi tools like geneti al-gorithms [33℄,[34℄, taboo searh [34℄ and simulated annealing[34℄,[32℄, [35℄. In [35℄ the authors provide a omprehensiveproblem formulation that also onsider size and onnetivityonstraints, enabling network designers to represent somepratial onstraints of a ellular network. Other papers[36℄,[37℄, [38℄ address the LA planning problem from a graphtheoreti approah. In [36℄ the author presents an algorithmthat ontains two phases. A merge phase in whih the ellsare merged for onstruting a olletion of LAs, and an ex-hange phase in whih ells are exhanged between the LAsfor reduing the update ost. The algorithm in [37℄ usesplanar graph bisetion (partitioning into two equal parts),and in [38℄ the partitioning algorithm is based on the on-strained maximal spanning tree algorithm. In all the papersmentioned, simulations onstitute the main tool for evaluat-ing the quality of the solutions produed by the algorithms,and no worst-ase guarantees are presented (e.g., as om-pared to an optimal solution). In [39℄ the authors addressthe one-dimensional LA planning problem for overing high-ways and railroads. Sine highways and railroads arry amajor portion of user traÆ, an LA planning that eÆientlyovers them an signi�antly redue the signaling overheadof the entire system. This work presents a heuristi whihonstruts the optimal LA planning in the ase of homoge-neous traÆ and user density, but yields suboptimal resultsin general.
1.2 Our ResultsWe onentrate our e�orts on optimizing existing mobilitymanagement shemes and we present a novel algorithm forloation area planning (LAP). Suh planning an be usedfor both eÆient loation management as well as hando�management. Sine the seond an be viewed as the speialase of the �rst, throughout the paper we mainly onsidereÆient LAP for loation management. Then, we presenta pratial design for optimizing both the loation and thehando� mehanisms.We ast the LAP problem in graph-theoreti terms and



then de�ne several algorithms that attempt to minimize theupdate and paging osts subjet to a variety of system-imposed onstraints like maximum LA size. In the ase ofone-dimensional networks suh as highways and railroads,we present a polynomial time algorithm that �nds the op-timal LA planning even for general traÆ and user densitypatterns. In general networks, we show that it is ompu-tationally diÆult to �nd the LA planning with the lowestupdate and paging osts. We formulate the problem in gen-eral graphs as a linear program and use an optimal (fra-tional) solution to this linear program as a lower bound onthe optimal (integral) solution to the LA planning problem.Our approximation algorithms round an optimal frationalsolution to the linear program into an approximate integralsolution. Spei�ally, we provide a polynomial time algo-rithm that omputes an LA planning whose ost is no morethan O(log n) times the optimal ost (where n is the num-ber of base stations). In the speial ase of planar networks(i.e., networks in whih users only move between adjaentbase stations), a highly pratial instane, we an �nd inpolynomial time an LA planning with ost at most a on-stant times the optimal ost. Unlike existing heuristi-basedshemes, our algorithms have the advantage that (i) theyprovide a worst-ase guarantee on the performane; (ii) wean use the optimal frational solution to bound the atualperformane of the algorithms on any problem instane.We use the results of the approximation algorithm as thebasis for a simple heuristi that further improves the LAplanning solution. When we run our algorithms on a realis-ti network, we observe that their solutions ost just 6% to71% more than the optimal frational solution of the linearprogram, a lower bound on the optimal integral solution.Note that this lower bound may be signi�antly lower thanthe atual optimal solution for the LA planning problem.Consequently, we onlude that, in pratie, our algorithm�nds solutions that are very lose to the optimum. More-over, by simulations we show that the proposed algorithmoutperforms other LAP shemes desribed in the literature.This work is organized as follows. Setion 2 presents thenetwork model and provides a formal de�nition of the LAplanning problem. Setion 3 introdues a sheme for �ndingthe optimal LA planning for linear graphs, and Setion 4presents approximation algorithms for general graphs andfor planar graphs. Setion 5 introdues an eÆient heuristifor improving the performane of the proposed approxima-tion sheme, and we address the optimization of the hand-o� mehanism in Setion 6. Setion 7 evaluates the per-formane of our algorithms by simulations and onludingremarks are given in Setion 8.
2. MODEL AND PROBLEM STATEMENTIn this setion we present the network model and providea formal de�nition of the Loation Area Planning (LAP)problem. We also address the question whether a given in-stane of the problem has a feasible solution at all and weprove that �nding an optimal one is NP-hard even when thegiven graph topology is planar or a star.
2.1 Network ModelWe represent a ellular network by a graphG(V;E), wherejV j = n and jEj = m. Eah ell in the ellular network isrepresented by a node with a unique identi�ation numberi 2 [1::n℄ and a weight, wi, that reets the ell user pop-

ulation1. The edges denote ell adjaeny, and every edge(i; j) 2 E has a weight fij that spei�es the user traÆ(ow) between its end-points (in both diretions) during atime unit. For ompleteness, let fij = 0 for every pair ofnodes i; j 2 V suh that (i; j) 62 E.
2.2 The Problem StatementFor loation management, the nodes are lustered intodisjoint sets alled loations areas (LAs), L = fS1; � � �Skg,whih ontain all the graph nodes. The LA ontaining nodei is denoted by LA(i). For eah mobile user, the systemkeeps a reord of the urrent LA where it resides. Eah timea user rosses an LA boundary, it updates the system withits new loation. When an inoming all arrives, the systemsimultaneously pages the user in all the ells of its urrentLA. After reeiving the user reply, the system establishes aonnetion between the all originator and the alled user.Thus, the loation management sheme produes two typesof signaling osts, where the osts are onsidered from boththe wireless and wired network perspetive. An update ostthat reets the ost of all the update operations performedby the users during a time unit, and a paging ost that resultsfrom all the paging operations during a time unit. To de�nethese osts, we use the following notation. Consider an LAplanning L = fS1; � � �Skg. Let � be a user inoming allrate and Cp be the ost of paging a single ell. The pagingost of a single LA, S 2 L, with jSj ells, is the produt ofthe inoming all rate � �Pi2S wi, times the ost of pagingall the LA ells Cp � jSj. Consequently, Page Cost(S) =� � Cp � jSj �Pi2S wi, and the overall paging ost is,Page Cost(L) = � � Cp �XS2L jSj �Xi2S wiSimilarly, we de�ne the update ost. Reall that a userindues an update operation whenever it moves from a ell iin one LA to a ell j in a another LA. The amount of traÆper time unit between the two ells is fij , so the update ostaused by traÆ between the ells i and j is Cu �fij where Cuis the ost of a single update operation. In our alulationswe harge eah of the nodes j and i for half of this updateost. Therefore, the ost of update operations in the systemas a whole is simply the amount of traÆ between the LAstimes Cu. The total update ost is,Update Cost(L) = 12 � Cu �Xi2V Xj 62LA(i) fij :Sine the eÆieny of a given LA planning, L, is determinedby its overall signaling ost, an optimal LA planning, LOPT ,is a graph partition with the minimal signaling ost amongall the feasible LA plans, i.e., ,Cost(LOPT ) = minL fUpdate Cost(L) + Page Cost(L)g:We note that in atual ellular systems, not every LAplanning is feasible. Geographial onsiderations and net-work infrastruture may impose ertain size and onnetiv-ity onstraints on the system. For instane, as all the ellsof an LA are onneted to a single mobile swithing enter(MSC), neither an LA size nor its total population shouldexeed the MSC apaities. We enfore these size onstraints1Pratially, the node's weight represents the average userpopulation during the rush hours.



by introduing two bounds Kmax and Wmax on the maximalell number and maximal population size of an LA, respe-tively, i.e., for every S 2 L we require that jSj � Kmax andPi2S wi �Wmax. In fat, our shemes an easily deal withmore general onstraints that bound, for eah vertex i 2 V ,the size and weight of the LA ontaining i, i.e., jLA(i)j � Kiand Pj2LA(i) wj �Wi, as we show later.As a result of topologial onsiderations, it is also possiblethat ertain ells must reside in the same LA or other ellsmust reside in separate LAs. These onnetivity onstraintsare de�ne by onstants bij for every pair of ells i; j 2 V ,suh thatbij = 8<: 1 If i and j must be in di�erent LAs:�1 If i and j must be in the same LAs:0 Otherwise:These onstants an be represented by a onnetivity ma-trix B = fbijg. Any LA planning L that satis�es both thesize and the onnetivity onstraints is alled a feasible LAplanning and the LAP problem is de�ned as follows.Definition 1 (Loation Area Planning Problem).Given a graph G(V;E) with weights wi and fij for everynode i 2 V and edge (i; j) 2 E, LA size bounds Kmax, Wmaxand onnetivity matrix B, �nd an LA planning L suh that,Cost(L) = min� 12 �Pi2V Pj 62LA(i) fij +� � Cp �PS2L(jSj �Pi2S wi) �subjet to: 8S1; S2 2 L : S1TS2 = ;8i 2 V : 1 � jLA(i)j � Kmax8i 2 V : Pj2LA(i) wj �Wmax8i; j 2 V; bij = 1 : LA(i) 6= LA(j)8i; j 2 V; bij = �1 : LA(i) = LA(j)Note that the proposed problem seeks an LA planningthat simultaneously minimizes both the update and searhosts. Unlike standard partitioning problems, our minimiza-tion objetive does not inlude just the ost of the ut sep-arating the LAs, but also inludes a ost dependent on thesize and the weight of the omponents. Thus, our problemis fundamentally di�erent from standard partitioning prob-lems, and requires new algorithms to solve it.
2.3 Hardness of the LAP ProblemTheorem 1. The LAP Problem is NP-hard, even whenthe given instane G(V;E) is a star.Proof. We prove this theorem by presenting a polyno-mial redution from the partition problem [40℄ to the LAPproblem. Consider a set A of m > 2 elements where eahelement ai 2 A has size si 2 Z+, and let X = Pai2A si=2.The partition problem looks for a subset A0 � A suh thatPai2A0 si = Pai2A�A0 si = X. Our redution onstrutsa star graph G(V; E) that ontains the following nodes andedges. A hub node h whose weight is wh = 0. For everyelement ai 2 A, we de�ne a node i adjaent to the hubnode that satis�es wi = si and fih = si. Let Cu = 2mXand let Cp � � = 1. We impose a onstraint Wmax = X on

the maximal weight of an LA. Intuitively, due to the highupdate ost, the optimal LA planning of this graph is ob-tained when the LA that ontains node h, LA(h), ontainsas many other nodes as possible without violating the weightonstraints.We laim that there is a subset A0 � A withPai2A0 si =X if and only if there is an LA planning L with ost less then2mX(X+1). Reall that the paging ost of the system is atmost 2mX, whih happens when all the nodes are inludedin a single LA. Suppose that there is suh a partition A0.Then we onstrut an LA planning L with two LAs. The�rst LA, denoted by S1, ontains node h and all the nodesi, i 2 A0, while the seond LA, denoted by S2 ontainsall other nodes. Sine Pai2A0 si = Pai2A�A0 si = X, thetwo LAs satisfy the weight onstraints. The update ost ofthis LA planning omes only from the separation of nodeh from the nodes in S2. Thus, the update ost is 2mX �Pai2A�A0 si = 2mX2, and therefore the ost of this LAplanning is no more than 2mX(X + 1) as laimed.We assume now that there is a feasible LA planning Lsuh that its ost is at most 2mX(X +1). Sine the updateost must be an integer multiple of 2mX, the update ost ofL is at most 2mX2. Thus, the total weight of all the nodesthat are not inluded in LA(h) is at most X. Sine the totalweight of every LA is at most X, the total weight of all thenodes in LA(h) must be X, yielding that the total size ofall the elements in the set A0 = faiji 2 LA(h)g is X. Thisompletes the proof.Sine the LAP problem is NP-hard, rather than �ndingoptimal solutions, we onstrut a polynomial-time approxi-mation algorithm. Suh an algorithm has an approximationfator � if, for every instane of the LA problem, it �nds asolution whose ost is at most � time the ost of an optimalsolution.
3. OPTIMAL SOLUTION FOR A LINEIn the following, we present an eÆient algorithm basedon dynami programming for �nding an optimal LA plan-ning when the given LAP instane, G(V;E), is a line. Thisalgorithm an be used, for instane, in the LA planning ofhighways. Sine highways arry a large portion of the usertraÆ, in some ases it is more eonomi to treat them sep-arately. Cost-e�etive solutions for highway LA planningredue the overall LA planning ost. For larity of presen-tation, we �rst ignore onnetivity and size onstraints.A line is formally de�ned as a graph where exatly twonodes have degree 1 and the remaining nodes have degree2. Consider a line G(V;E), onnetivity matrix B and sizebounds Kmax andWmax. We assume that the line nodes areindexed adjaently in inreasing order from 1 to n, i.e., forevery i; j, fij > 0 and bij 6= 0 only if ji� jj = 1. We denoteby Cost(i) the ost of the optimal LA planning on the linegraph Gi indued by the �rst i nodes, [1::i℄ 2 V , whereCost(0) = 0 is the ost of the empty line.We note that Cost(i) (and the atual LA planning itself)an be omputed reursively. Suppose the optimal LA plan-ning in the graph Gi is fS1; : : : ; Skg for some k. Let q be theindex of the left border node in Sk (i.e., the node with thelowest index in Sk). Then the optimal plan for Gq�1 musthave the same ost as fS1; : : : ; Sk�1g or else fS1; : : : ; Skgwould not be optimal for Gi. Thus Cost(i) is the sum ofCost(q � 1) and the ost inurred by Sk:



Cost(i) = iminq=1 � � � Cp � ji� q + 1j �Pij=q wj+ Cu � fq�1;q + Cost(q � 1) � (1)where we take f01 = 0. Using dynami programming, wean �nd the optimal LA planning for a line graph in timeO(n2) where n is the number of nodes in the line. We sim-ply alulate Cost(i) for i from 1 to n and store the resultof eah iteration in a table so it may be used in the nextiteration. As a tehnial detail, we must also store the sumof weights to avoid an extra fator of n in the running time(see Figure 1).Finally, we address the onnetivity and size onstraints.Connetivity onstraints bij = 1 split the line graph intomultiple line graphs, and we an solve the problem opti-mally on eah instane separately. In the presentation ofour algorithm we assume suh preproessing has been doneand bij = 0 or �1 for all i; j. Connetivity onstraints oftype bij = �1 are handled by the Line algorithm and anynode q that is assoiated with a onstraint bq�1;q = �1 is dis-quali�ed to serve as a left border node. The size onstraintsare easily aommodated as well. We will disuss only themaximal LA size onstraint, Kmax, as the weight onstraintWmax is analogous. Let x = maxf1; i � Kmax + 1g. Thenthe size onstraint fores the border node q to be amongstnodes x; : : : ; i, and so the minimization in Equation (1) isjust taken over this range.A formal desription of our dynami programming shemeis given in Figure 1. In this desription, L and C are twoarrays that store the optimal LA planning and its ost forthe segment [1::i℄, respetively. The variable WLA reordsthe total weight of the nodes q; : : : ; i. It is initialized byWLA =Pij=xwj , and it is dereased by wq before inreasingthe border node index, q.Theorem 2. Given a line G(V;E), onnetivity matrixB and maximal LA size Kmax, the Line algorithm returnsan optimal LA planning of G(V;E) and its ost.Proof. We prove the orretness of the Line algorithmby indution on the number of nodes in the onsidered line.For an empty line without nodes there are no paging orupdate osts and its total ost is Cost[0℄ = 0. Let us assumethat the theorem is valid for lines with i � 1 nodes andonsider a line with i nodes. The algorithm alulates theost of di�erent solutions when heking eah one of thefeasible border nodes q of LA(i) (the last maxf1; i�Kmax+1g nodes of the line), by using the equation,� � Cp � (i� q + 1) �WLA + Cu � fq�1;q + C[q � 1℄:By indutive assumption, C[q℄, q < i, is the ost of theoptimal LA planning for the line graph indued by nodes[1::q℄. Therefore, the algorithm �nds the ost of the optimalLA planning when a given node q is fored to be the bordernode of LA(i). As it takes the minimum of these valuesover all feasible border nodes q, the algorithm �nds boththe optimal LA planning and its ost.
4. APPROXIMATION ALGORITHMSIn this setion we present approximation algorithms forLAP in both general graphs and planar graphs. We startby providing an integer programming formulation. Then,

Algorithm Line(G(V;E); B;Kmax)// Variable Initialization.C[0℄ = 0L[0℄ = ;f0;1 = 0// Main loop from 1 to n.for i = 1 to n doC[i℄ =1// Updating the max weight of LA LA(i).x = maxf1; i�Kmax + 1gWLA =Pij=x wj// Loop for heking all border nodes.for q = x to i do// Cheking if q an be a border node.if bq�1;q = 0 thentmp = � � Cp � (i� q + 1) �WLA++Cu � fq�1;q + C[q � 1℄if tmp < C[i℄ then// A heaper LA planning was found.C[i℄ = tmpL[i℄ = L[q � 1℄Sffq::iggend-ifend-ifWLA =WLA � wqend-forend-forreturn C[n℄;L[n℄endFigure 1: A formal desription of the Line Algo-rithmwe relax the integrality onstraints and obtain a linear pro-gram. We solve the linear program and obtain an optimalfrational solution for the problem, i.e., a solution wherethe variables an assume non-integral values. This solutionserves as our lower bound on the value of an optimal solu-tion. Finally, we round the frational solution and obtain anear-optimal integral solution. We provide an upper boundon the ratio between the value of the near-optimal integralsolution omputed and the value of an optimal frationalsolution. This bound is our approximation fator. For gen-eral graphs, this bound turns out to be logarithmi and forplanar graphs it is a onstant.
4.1 The Integer Program FormulationReall that LAP is de�ned as a lustering problem witha non-linear objetive funtion. In order to formulate LAPas a linear integer problem, we take a di�erent approah. Apair (V; d), where V is a set and d is a non-negative funtiond : V � V ! R, is alled a semi-metri [41℄ if and onlyif d satis�es the following three onditions. (i) dij = djifor all i; j 2 V (symmetry). (ii) dii = 0 for all i 2 V .(iii) dij � dik + djk for all i; j; k 2 V (triangle inequality).Consider a partition of the graph into LAs. De�ne for everypair of nodes i; j 2 V a variable dij 2 f0; 1g suh that,dij = � 1 If i and j belong to di�erent LAs:0 If i and j belong to the same LA:We laim that the variables dij indue a semi-metri. Condi-tions (i) and (ii) above are obviously satis�ed. The triangle



inequality is also satis�ed, as an be seen by a simple aseanalysis.Consider an assignment to the variables dij that induesa semi-metri. This assignment de�nes a partition of thegraph into LAs in a natural way. For every node i 2 V ,the LA ontaining it, LA(i), is de�ned by, LA(i) = fjjj 2V ^ dij = 0g, i.e., all nodes that are in zero distane fromnode i. We refer to edges (i; j) 2 E for whih dij = 1as ut edges. Denote by L the partition into LAs induedby variables dij . Our integer program will have variablesdij 2 f0; 1g, where d is required to be a semi-metri.Reall the onnetivity matrix B de�ned in Setion 2. Forevery pair i; j 2 V we add the onstraints, bij � dij � bij+1.If nodes i; j should be in the same LA then bij = �1, and thenon-negativity onstraint on dij yields that dij = bij+1 = 0.Similarity, if nodes i; j are required to be in di�erent LAsthen bij = 1, and sine dij � 1, it follows that dij = bij = 1.If nodes i; j are not onstrained then bij = 0, and dij 2f0; 1g.We now state the objetive funtion, as well as the size andonnetivity onstraints, in terms of the variables dij . We�rst address the paging ost. A node i pages whenever thereis an inoming all to a user belonging to its LA, LA(i), andhene it performs � �Pj2V (1 � dij) � wj paging operationsin a time unit. Thus, the paging ost of the entire system isPage Cost(L) = � � Cp � Xi;j2V (1� dij) � wj :The update ost is simply the ost of the ut edges timesthe ost of a single update operation, yieldingUpdate Cost(L) = 12 � Cu � Xi;j2V dij � fij :Hene, our objetive funtion is,min � � Cp � Xi;j2V (1� dij) � wj + 12 � Cu � Xi;j2V dijfij :We now address the size onstraints. Reall the boundsKmax and Wmax de�ned in Setion 2. Sine, for eah nodei 2 V , LA(i) = fjjj 2 V ^dij = 0g, jLA(i)j =Pj2V (1�dij)(number of nodes in LA(i)), and w(LA(i)) =Pj2V (1�dij)�wj (weight of nodes in LA(i)). Thus, we an enfore the sizeonstraints on eah LA by adding for eah node i 2 V theonstraints, jLA(i)j � Kmax and w(LA(i)) �Wmax.We are now ready to present the integer programmingformulation.min � � Cp � Xi;j2V (1� dij) � wj + 12 � Cu � Xi;j2V dijfijsubjet to:8i; j; k 2 V : dij + djk � dik8i; j 2 V : bij � dij � bij + 18i 2 V : Pj2V (1� dij) � Kmax8i 2 V : Pj2V (1� dij)wi �Wmax8i; j 2 V : dij 2 f0; 1gLemma 1. An optimal solution to the above integer pro-gram de�nes an optimal solution to LAP.

Proof. It follows from the preeding disussion that apartitioning into LAs de�nes a feasible assignment to thevariables dij and vie versa. The disussion also shows thatsize onstraints are maintained by the onstraints of the in-teger program.Sine solving integer programs is an NP-hard problem, werelax the integrality onstraints, i.e., we only require thatfor all i; j 2 V , dij 2 [0; 1℄. The linear program we obtainontains only O(n2) variables and O(n3) onstraints, andtherefore an optimal frational solution an be omputed inpolynomial time. Clearly, the value of an optimal frationalsolution is a lower bound on the value of an optimal integralsolution.
4.2 Rounding Algorithm for General GraphsIn this setion we present our rounding algorithm. Weassume that an optimal frational solution to the above lin-ear program has been omputed. We now show how toround the frational solution to a near-optimal integral so-lution, while ensuring an O(log n)-approximation fator inthe worst ase. Furthermore, we observed that, in pratie,the frational solution is very lose to an integral solution.In other words, most of the dij parameters have values of0 and 1 also in the frational solution. Our rounding al-gorithm preserves these integral values and guarantees thatevery pair of nodes i; j 2 V suh that dij = 0 are assignedto the same LA, while pairs with dij = 1 are assigned totwo di�erent LAs. This property enables us to �nd near op-timal solution in most ases, as we illustrate by simulationsin Setion 7.
4.2.1 The AlgorithmOur rounding algorithm uses a tehnique known as regiongrowing (or ball growing) [42℄. We iteratively grow balls ofat most some �xed radius around nodes of the graph withrespet to the semi-metri de�ned by the variables dij . Theballs are grown until all nodes are inluded in some ball,and these balls de�ne the LAs in the �nal solution. Theintuition is that large dij values indiate that i and j shouldbe in separate LAs, and small dij values indiate that theyan be in the same LA. The importane of the �xed radius is:(i) it guarantees that size bounds are \almost" satis�ed; and(ii) it yields an approximation fator bound on the pagingomponent of the objetive funtion. The region growingtehnique itself enfores an approximation fator bound onthe update omponent of the objetive funtion.First, we present some notation that we will need in orderto de�ne the algorithm. A ball b(i; r) of radius r around nodei is the subgraph that onsists of all nodes j suh that dij <r, their onneting edges and the fration (r�dij)=(dik�dij)of any edge (j; k) with only one endpoint, say j, belongingto the ball, i.e., dij � r (note that dij is de�ned for allnodes i; j). Thus, the ball b(i; 0) around node i ontainsnode i and all the nodes j 2 V suh that dij = 0. Theut of a ball b is the set of edges with preisely one end-point in b and its weight, denoted by utweight(b), is de-�ned to be Pjfi;jg\bj=1 fij . Finally, the volume of a ballb(i; r), vol(b(i; r)), is de�ned to be the weighted distane ofthe edges belonging to the ball. Eah internal edge (j; k)ontributes fjk � djk to the ball volume and every ut edge(j; k), with dij < r, ontributes fjk �djk � (r�dij)=(dik�dij)to vol(b(i; r)). For tehnial reasons, we also inlude an ini-



Algorithm Round(G(V; E); fdijg)// Variable Initialization.H  GL  ;// Main loopwhile 9 a node i 2 HS  ;r 0// Grow ballrepeatS  S [ b(i; r)r r +�until utweight(b(i; r)) �  ln(n+ 1) � vol(b(i; r))L  L [ SendFigure 2: A formal desription of the ball growingalgorithmtial volume (seed) I to the volume of every ball (i.e. ballb(i; 0) has volume I).We are now ready to present the algorithm for roundinga frational solution to an integral solution. The input tothe algorithm is a omplete graph G(V;E), jV j = n, witha frational assignment to the variables dij obtained fromthe linear program. Suppose the volume of the entire graphis F � 12Pi;j2V dijfij . Note that the update ost of thefrational solution is CuF . Let the initial volume of the ballsde�ned in the algorithm be F=n. The algorithm iterativelygrows balls around arbitrary nodes of the graph until it �ndsa ball suh that the weight of the ut de�ned by the ball isat most  ln(n + 1) times the volume of the ball. It thenreates a loation area onsisting of the nodes belonging tothis ball and removes these nodes from the graph. Thisalgorithm terminates when all nodes are removed from thegraph. The pseudo-ode for this algorithm an be foundin Figure 2. Note that the order in whih the algorithmonsiders nodes is indeed arbitrary, and thus the followinganalysis applies to any node seletion heuristi.
4.2.2 The Approximation Factor AnalysisIn this algorithm,  is some onstant whih we will deter-mine later, and � = minf(dij�r) : j 62 b(i; r); (dij�r) > 0gis the remaining distane to the nearest vertex (among thosewith distane greater than zero) outside the urrent ball.This algorithm learly runs in polynomial time. We mustshow it terminates with a solution L that satis�es the on-straints, and has a ost whih is not muh more than thefrational volume F .Notie the region-growing proedure's termination ondi-tion guarantees an O(log n) approximation to the updateomponent of the objetive funtion. Let � =  ln(n+ 1).Update Cost(L) = 12Cu Xballs b utweight(b)� 12Cu� Xballs b vol(b)� 12Cu�0�12 Xi;j2V dijfij + Xballs b Fn1A� 12Cu�(2F )� Cu�F

where the seond line follows from the fat that the ballsfound by the algorithm are disjoint. Note that CuF is pre-isely the update ost of the frational solution.The rest of our analysis hinges on the fat that the ballsreturned by this algorithm have radius at most 1=. Thisfat follows from the following known lemma [43, 42℄.Lemma 2. For any vertex i and family of balls b(i; r),the ondition utweight(b(i; r)) �  ln(n + 1) � vol(b(i; r)) isahieved for some r � 1=.Proof. We proeed by ontradition. Set � =  ln(n+1).Consider growing the ball ontinuously from r = 0 to r =1= and suppose throughout this proess, utweight(b(i; r)) >� � vol(b(i; r)). Notie that due to this assumption, the in-remental hange in the volume isd(vol(b(i; r))) = d(Xj;k2b fjkdjk +Xj2b;k 62b fjk djk (r � dij)=(dik � dij))= Xj2b;k 62b d (fjk djk (r � dij)=(dik � dij))= Xj2b;k 62b d(fjk djk r=(dik � dij))� Xj2b;k 62b fjk dr= utweight(b(i; r)) dr> �vol(b(i; r)) drThe step d(vol(b(i; r))) �Pj2b;k 62b fjkdr results from thefat that djk � (dik�dij) and therefore, djk=(dik�dij) � 1.The initial volume of a ball is, by de�nition, F=n, and the�nal volume is at most F +F=n if the ball overs the entiregraph. ThereforeZ F+F=nF=n 1vol(b(i; r))d(vol(b(i; r))) > Z 1=0 �drand so ln(n+ 1) > 1� = ln(n+ 1).We now bound the paging ost of our rounding.Page Cost(L) = �Cp Xballs b Xi;j2bwj= � 2 � �Cp Xballs b Xi;j2b(1� 2=)wjNote that �CpPbPi;j2b(1 � 2=)wj is a lower bound onthe paging ost of the frational solution. This is true sinethe radius of the balls is at most 1= and therefore by thetriangle inequality 1 � dij � 1 � 2= for any nodes i and jthat belong to the same ball. This implies that our solutiongives a �2 -approximation to the paging ost.The �nal approximation fator of our algorithm is themaximum between the approximation fators of the twoomponents. Thus,Theorem 3. The approximation fator of our algorithmis max( ln(n+ 1); �2 ) = O(log n).



We note that the integral solution that our approximationalgorithm omputes preserves all the integral omponentsof the frational solution. Consider a variable dij with anintegral value in the frational solution. Suppose that dij =1. Sine the diameter of a ball is at most 2= < 1, thetwo nodes belong to separate LAs in the integral solution.Now, suppose that dij = 0. From the triangle inequality itfollows that dik = djk for every node k 2 V . Thus, everyball b(k; r), either ontains both nodes i and j, or none ofthem.
4.2.3 Satisfying Connectivity and Size ConstraintsWe turn to prove that the algorithm returns a solutionwhih satis�es the onstraints. It easy to see that the round-ing algorithm ful�lls the onnetivity onstraints. For thease when a onnetivity onstraint bij = 1 is given, thefrational solution enfores dij = 1 (distane between i andj). Sine the diameter of a ball is at most 2= < 1, thetwo nodes are in two separate LAs. When onnetivity on-straint bij = �1 is given, the frational solution enforesdij = 0. As desribed above, the rounding algorithm keepsnodes with zero distane in the same ball and onsequentlyin the same LA. We now handle the size onstraints. A-tually, we will prove something slightly weaker. We willshow our algorithm is a pseudo-approximation algorithm. Apseudo-approximation algorithm gives an approximate so-lution to a problem with slightly di�erent parameters. Inour ase, we must perturb the size bound parameters, Kmaxand Wmax, slightly. Spei�ally, our algorithm �nds a setof LAs suh that eah LA has size at most �1Kmax andweight at most �1Wmax. We prove the �rst of these state-ments. The proof of the seond is similar. We know that8i 2 V : Pj2V (1 � dij) � Kmax. Fix i. Sine the maxi-mal radius of a ball r � 1 , follows that distane dij � 1 .Therefore, for eah i,Kmax � Xj2V (1� dij)� Xj2LA(i)(1� dij)� Xj2LA(i)�1� 1�= � 1 Xj2LA(i) 1 = � 1 LA(i)Thus, the maximal LA size is at most �1Kmax. We notethat  is an arbitrary onstant. The larger we take , theloser our solution will be to the true size bounds. However,our approximation fator grows like  ln(n+ 1), and so ouroverall osts may get worse. This parameter is a tradeo�that the user an speify. We also note that if the boundsKmax and Wmax are not spei�ed (i.e. an be arbitrarilylarge), then the algorithms we present are exat approxima-tion algorithms in the standard sense of the term.Finally, we show that our sheme an atually deal withmore general onstraints on the size and weight of LAs. Forexample, we an adjust our sheme to aommodate a on-straint for eah vertex i 2 V on the size and weight of theLA ontaining i, i.e., jLA(i)j � Ki and Pj2LA(i) wj � Wi.without inreasing the total number of onstraints. The lat-ter is obtained by replaing the two size onstraints of eahnode i 2 V with the following onstraints, Pj2V (1� dij) �

Ki andPj2V (1� dij)wi �Wi. However, as a result of thismodi�ation, it an be shown that the LA size or weightmay be as high as �2 times the required size, Ki, or weightWi.
4.3 Rounding Algorithm for Planar GraphsIn this setion we prove that for planar graphs we anhange the region growing algorithm and obtain a onstantfator approximation. We use the following tehnique de-veloped by Klein, Plotkin, and Rao [44℄ (see also [45℄). Theweak diameter of a subset S of nodes is r if every pair ofnodes in S is at distane at most r in the original graph(and not neessarily in the graph indued by S).Theorem 4 (KPR). Given a planar graph with apa-ities u on its edges and parameter p, one an �nd, in polyno-mial time, an edge separator of total apaity O(U=p) whoseremoval yields omponents of weak diameter at most O(p)where U is the sum of all apaities.We will use this theorem to �nd an LA design with om-ponents of radius at most 1= and with update ost just aonstant fator more than the optimal frational solution.The other results required, i.e. the onstant fator approx-imation for the paging ost and the onstraint-satisfationargument, follow from the 1= radius guarantee.The next Corollary follows from Theorem 4 by reatingfrom G another planar graph G0, mapping edge (i; j) to ahain of length dBdi;je, where eah link in the hain is anedge of weight fij , for some appropriate large B. We anthen �nd the required ut by applying Theorem 4 to G0 andsaling down the result.Corollary 1. Given a planar graph G with distanes dijand weights fij on its edges, one an �nd, in polynomialtime, a ut of weight O(vol(G)=p) whih yields omponentsof radius at most O(p), where vol(G) =Pi;j dijfij .Given an optimal frational solution, we an use Corol-lary 1 with an appropriate setting of onstants to obtain anLA design L, where omponents have radius at most 1= forany onstant  (note p will be onstant too). As the updateost of the frational solution is vol(G) and the update ostof L is the ost of the ut, Corollary 1 gives a onstant-fatorapproximation guarantee for L. We note that this onstantmay be very large. Due to the 1= radius guarantee, allprevious results in the disussion on general graphs follow,yielding a onstant fator approximation for the LA designproblem in planar graphs.
5. HEURISTICSThe region growing algorithm presented in Setion 4.2provides an LA planning with bounded ost and LA sizes.Spei�ally, for any LAP instane and maximal region ra-dius 1=, for a given  > 2, the algorithm guarantees a solu-tion suh that its update ost is at most �ln(n+1)�OPT andits paging ost is at most �2 �OPT , where OPT is the ostof the optimal solution. Thus, for  = 3 the sheme ensures(3 � ln(n+1); 3=2)-approximation fator. In other words, thealulated solution will be within a fator of 3�ln(n+1) fromthe optimal solution and the sizes and weights of its LAs areat most 1:5Kmax and 1:5Wmax, respetively. These boundsare ensured by prudently balaning between the update andthe paging osts with respet to the frational solution.



Algorithm Exhange(L)madeChange = truewhile(madeChange)madeChange = falseforeah LA S 2 Lforeah ut edge (u; v) s.t. u 2 S; v 2 S0if (size(S0) + 1 � Kmax andweight(S0) + weight(u) �Wmax)oldCost = ost(S) + ost(S0)newCost = ost(S0 [ u) + ost(S n u)if (newCost < oldCost)madeChange = trueS = S n uS0 = S0 [ uend-ifend-ifend-foreahend-foreahend-whileFigure 3: A formal desription of the ell exhangingheuristiWe develop a simple heuristi that improves the overallost of the LAP solution produed by the region growingalgorithm. The heuristi uses a greedy strategy, and is alsoan extension of the sheme presented in [36℄. The pseudo-ode for the heuristi is shown in Figure 3. The Exhangeheuristi takes the initial LA planning solution produed bythe region growing algorithm and tries to improve the ostby exhanging ells between neighboring LAs. The idea ofthe heuristi is to move nodes between neighboring LAs,where the move results in a derease in overall ost withoutausing any onstraint violation. We ontinue this proessuntil there is no more ost improvements. It is lear thatthe proess will terminate beause a loal minima will bereahed after whih the exhange proess will give no furtherimprovement in ost.Depending on how tight the size and weight onstraintsare for the PCS network, a violation of these onstraintsmay not be aeptable. We have two proposals to �x thisproblem. The �rst is to set the onstraints in the LP for-mulation so that the real onstraints are not violated in the�nal solution. The seond is to do a ell exhange similarto the exhange heuristi above. For eah LA S whih is inviolation of the size or weight onstraints, look at its neigh-boring LAs and see whih neighbor S0 an take a ell fromS without violating the onstraints and ausing the minimalinrease in overall ost. The proess is repeated until S isno longer in violation of the size and/or weight onstraints.The �rst heuristi guarantees a feasible solution, while theseond one may give better results in pratie, but does notguarantee feasibility.
6. HANDOFF MANAGEMENTSo far we have addressed loation management. How-ever, our algorithms an also be used for the planning ofMSC-domains for onstruting eÆient hando� mehanisms.Hando�s that our between ells in di�erent MSCs tendto ause degradation in the quality of the provided servie,in the forms of higher delays, inreased data lost and on-

netion drop-o�s, while the hando�s are happening. Thus,to improve the quality of servie provided to the users, wewould like to partition the network ells into disjoint MSC-domains that redue the number of inter-MSC hando� oper-ations. It is lear that inter-MSC hando�s are eliminated ifall the ells are assoiated with a single MSC. However, dueto physial and performane onstraints, eah MSC an beonneted only to a limited number of base stations (ells)and it an support a bounded number of onnetions simul-taneously. Consequently, we de�ne an eÆientMSC-domainplanning to be a partition of the networks ells into a smallnumber of lusters, so alled MSC-domains, that minimizethe total number of inter-MSC hando�s, while the size andthe user population of eah MSC-domain are bounded byKmax and Wmax, respetively. Reall that MSC-domainplanning an be viewed as a speial ase of the LA-planningproblem, desribed in De�nition 1, where the ost of a singlepaging operation Cp = 0 and the ost of an update opera-tion Cu = 1. This implies that our LA-planning algorithman be used for the determining MSC-domains.We now desribe a ombined approah for planning boththe MSC-domains for eÆient hando� management and theLAs for ost-e�etive loation management. Our approahis based on the following two observations; Sine, eah LAand eah MSC-domain is assoiated with a single MSC, itfollows that both LAs and MSC-domains have to satisfy thesame size onstraints. Moreover, as LA-planning onsid-ers also the paging ost, LAs are in general smaller than theMSC-domains. Consequently, we view the LA-planning as are�nement of the MSC-domain partition. We start with al-ulating an eÆient MSC-domain planning. Then, we fur-ther divide eah MSC-domains to several LAs, by employingLA-planning. This approah optimizes the two omponentsof the mobility management mehanism.
7. SIMULATION RESULTSIn this setion we present the results of our experimentsto evaluate how well our algorithm works in pratie. Westart by desribing the experimental set up.
7.1 MethodologyThe region growing algorithm desribed in Setion 4.2grows regions ontinuously around an initial node (seed). Toimplement the algorithm, we grow regions in disrete steps.The disrete algorithm is based on the proess desribedin [42℄. The O(log n) approximation bound also holds forthis method. The disrete algorithm builds shortest pathtrees from the seeds and grows regions by adding nodes ininreasing distane from the seeds. At eah iteration, nodeswith the same distane from the urrent seed are added to-gether.For our simulations we use data that was olleted froma big wireless servie provider in the United States. Thedata overs several MSCs and is for a region in New Jersey.We had two sets of data to work with. One set is a hand-o� matrix giving the number of hando�s between ells fora partiular day. The other set of data gives a measure ofthe number of inoming alls for eah ell during the busyperiod. The data we worked with is not omplete in that itdoes not have information for all the ells of the MSCs rep-resented, and the set of ells overed by the hando� matrixdoes not interset fully with the set of data ontaining themeasure of the number of inoming alls.



The number of ells for whih we have both hando� in-formation and inoming all data is only 39, and we presentsimulation results for this set of ells. However, this is quitesmall and may not be representative of a full network. Sinewe use the hando� data to determine ell onnetivity, wewanted to use the ells for whih we have hando� informa-tion. For the ells in this set that we had inoming all datafor, we use that data. To generate inoming all data forthe rest of ells of this set, we used non-parametri bootstrapre-sampling [46℄. This is a standard statistial tehnique for�lling in missing data and gives good results in pratie. Us-ing this method, we generate two other networks, one with76 ells and the other with 128 ells.Sine paging and update osts are not typially measuredin omparable units, having an objetive funtion that sumsthese two osts an be problemati. The standard solutionused in loation area planning researh is to make an as-sumption on the relative ost of the these units. For exam-ple, in [31℄ the authors use a 17:1 ratio for update to pagingost. For our experiments we make a similar assumption,but we present a range of values for this ratio. We use arange from 10:1 to 30:1 in inrements of 5. The other pa-rameters we need to onsider for our experiments are sizeand weight restritions. In the following we only present re-sults where there are size onstraints. For our experimentswe use a size onstraint of about 20% of the total numberof ells in the network.To show the e�etiveness of our region growing algorithm(RG), we ompare our results to the optimal frational so-lution of the LP formulation of the problem as well as othermethods desribed in the literature. As summarized in Se-tion 1.1, there is a large body of work on the issue of LA-planning. In this body, some papers [28℄, [29℄, [30℄,[31℄assume uniform user distribution and inter-ell movementrate, and with these strong assumptions they derive opti-mal LA plans. However, these results are not appliableto pratial ases where the network usage is heterogeneousand therefore they are not suitable for omparison with ourmethod. Other papers utilize sophistiated variants of ex-haustive searh and employ di�erent algorithmi tools suhas geneti algorithms [33℄,[34℄, taboo searh [34℄ and sim-ulated annealing [34℄,[32℄, [35℄. These algorithms do nothave polynomial running time and the quality of the foundsolutions depend on the duration of the exeution. For ouromparisons, we would like to onsider only algorithms withpolynomial running time. However, in the literature, only afew polynomial time LAP algorithms are presented. Most ofthem onsider relaxed versions of the LAP where the numberof LAs is �xed [37℄ or the ost of the paging is ignored [38℄,[36℄. Thus, to the best of our knowledge, there is not anypolynomial time algorithm that onsiders the omprehensiveLAP problem that we address in this work. Moreover, noneof the above papers ompared its results with the optimalsolutions.Consequently, we ompare our region growing algorithm(RG) to the optimal frational solution, denoted by LP, aswell as to two polynomial time greedy heuristis, desribedin the literature. The �rst heuristi, greedy1 (Gr1), is a sim-ple an intuitive greedy algorithms similar to the one usedin [35℄ as a benhmark, while the seond heuristi, greedy2(Gr2), is based on the sheme proposed in [36℄. Both greedyheuristis �rst perform a merge-phase and then an exhange-phase. The exhange-phase for both algorithms is the same

Figure 4: 39 ells: Cost omparisons of region grow-ing to other methods.as desribed in Setion 5, but the algorithms di�er in the ini-tial merge-phase. In the �rst algorithm, greedy1, the merge-phase of this sheme is done as follows:Initially, eah ell indues a separate LA. Thealgorithm onsiders every pair of LAs and al-ulates the ost redution obtained by mergingthem, then it selets the pair that yields the max-imal ost redution without violating the size orweight onstrains and merges them. The proessontinues as long as there are pairs of LAs wheremerger redues the system ost.The seond greedy algorithm, greedy2 , employs the followingmerge-phase:Eah ell is initially a separate LA. A pro�t met-ri is de�ned based on the update and pagingosts of ells in the system. In eah round of themerge-phase, eah pair of LAs is tested to seewhih pair maximizes the pro�t metri and doesnot violate the size or weight onstraints. Thispair is merged, and then the proess is repeated.The proess ontinues until no more merges anbe made.
7.2 ResultsThe results of our simulations are presented in the his-tograms and tables below. The histograms and tables showthe overall system ost when the networks are partitionedusing the di�erent algorithms. The tables also show therelative osts of the di�erent methods.For the 39 ells ase (Figure 4 and Table 1) the RG al-gorithm was on average 63% from the optimal frationalsolution, whereas the greedy methods were more than twieas bad as the LP solution on average. For this ase, theRG algorithm was on average better than Gr1 and Gr2 by31% and 34% respetively. For the 76 ells network(Figure 5and Table 2) all the algorithms were loser to the optimalsolution than for the 39 ells network. However, the RGalgorithm was muh loser that the greedy methods. Onaverage our method was 20% from the optimal solution, andfor the ase where the update to paging ratio was 25, it was



Ratio LP RG Gr1 Gr2 RG/LP Gr1/LP Gr2/LP Gr1/RG Gr2/RG10 39029 59975 76831 79187 1.54 1.97 2.03 1.28 1.3215 52353 85173 109137 111247 1.63 2.08 2.12 1.28 1.3120 65259 109905 141253 143307 1.68 2.16 2.20 1.28 1.3025 78022 126923 173363 175367 1.63 2.22 2.25 1.37 1.3830 90665 150493 205473 207427 1.66 2.27 2.29 1.37 1.38Table 1: Results: 39 ells with maximum LA size 8Ratio LP RG Gr1 Gr2 RG/LP Gr1/LP Gr2/LP Gr1/RG Gr2/RG10 123069 141309 190925 190925 1.15 1.55 1.55 1.35 1.3515 155151 185357 250875 250875 1.19 1.62 1.62 1.35 1.3520 183738 232607 319168 310825 1.27 1.73 1.69 1.37 1.3425 210705 222392 395536 370775 1.06 1.88 1.76 1.78 1.6730 237001 315870 460326 430725 1.33 1.94 1.81 1.46 1.36Table 2: Results: 76 ells with maximum LA size 16

Figure 5: 76 ells: Cost omparisons of region grow-ing to other methods.only 6% from the optimal frational solution. For this net-work the Region Growing algorithm was on average 46% and41% better than Gr1 and Gr2 respetively. Finally, for the128 ells network (Figure 6 and Table 3) the performaneof the RG growing algorithm was on average 51% from theLP solution, and better that Gr1 and Gr2 by 42% and 31%respetively.Over all our experiments, the RG algorithm ame as loseas 6% to the optimal frational solution of the LAP problem,and was never more than 71% from this optimal solution.The RG algorithm was also onsistently and signi�antlybetter than both greedy heuristis. Our experiments demon-strates that our method gives very good results, whih inpratie are muh better than the O(lg n) worst-ase bound.
8. CONCLUDING REMARKSIn this work, we desribed new lustering algorithms forLA planning that minimize both the update and pagingosts from the wireless and wired network perspetive. Wepresented a polynomial-time algorithm that �nds an optimalLA planning for one-dimensional networks suh as highways

Figure 6: 128 ells: Cost omparisons of regiongrowing to other methods.and railroads. In general networks, we have formulated theproblem as an integer program. Our formulation is veryexible and it allows the inorporation of onstraints thatan apture a variety of system-imposed onstraints, suhas maximum LA size. Due to the NP-hardness of the prob-lem, we resorted to polynomial time approximation algo-rithms that ompute an LA planning whose ost is no morethan O(log n) times the optimal ost (for planar graphs thealgorithm ahieves a onstant approximation fator). Wealso simulated the rounding algorithm and oupled it witha heuristi. The results of our experiments on a realistinetwork indiate that our algorithms give results that arelose to the the optimal solution and superior to the exist-ing greedy heuristis to whih we ompare them. We alsodesribed how our algorithms an be used for MSC-domainplanning, whih is essential for improving the user pereivedQoS.The main theoretial ontribution of this work| a methodto balane between some property of the lusters and theweight of the ut | is appliable in other settings as well.Reent work [47, 48, 49℄ uses similar tehniques to give an



Ratio LP RG Gr1 Gr2 RG/LP Gr1/LP Gr2/LP Gr1/RG Gr2/RG10 240868 357439 402660 432341 1.48 1.67 1.79 1.13 1.2115 302595 382487 536027 577102 1.26 1.77 1.91 1.40 1.5120 357798 525951 818519 710212 1.47 2.29 1.98 1.56 1.3525 409998 676806 1019530 843322 1.65 2.49 2.06 1.51 1.2530 460908 787941 1196650 976432 1.71 2.60 2.12 1.52 1.24Table 3: Results: 128 ells with maximum LA size 26O(log n) approximation for another lustering problem, or-relation lustering [50℄. It is oneivable that there are otherproblems with similar LP formulations that an bene�t fromour tehniques, and applying our tehniques to these prob-lems is an interesting extension of this work.Another remaining open question is the existene of a bet-ter, say onstant-fator, approximation algorithm for theLAP problem in general graphs. In fat, due to the appar-ent similarity of the LAP problem and known hard problemssuh as minimum multiut [42℄, we believe it is unlikely thata o(log n) approximation algorithm exists. However, we donot know of a redution or an 
(log n) LP-gap to supportthis laim. In a similar vein, it would be interesting to �ndexamples for whih the existing greedy heuristis performpoorly, returning a solution that is !(log n) more ostly thanthe optimal one.
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