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ABSTRACT

A central problem in personal communication systems is to
optimize bandwidth usage, while providing Quality of Ser-
vice (QoS) guarantees to mobile users. Network mobility
management, and in particular, location management, con-
sumes a significant portion of bandwidth, which is a nec-
essary overhead for supporting mobile users. We focus our
efforts on minimizing this overhead. Unlike previous works,
we concentrate on optimizing existing schemes, and so the
algorithms we present are easily incorporated into current
networks. We present the first polynomial time approxima-
tion algorithms for minimum bandwidth location manage-
ment. In planar graphs, our algorithm provably generates
a solution that uses no more than a constant factor more
bandwidth than the optimal solution. In general graphs,
our algorithm provably generates a solution that uses just
a factor O(logn) more bandwidth than optimal where n is
the number of base stations in the network. We show that,
in practice, our algorithm produces near-optimal results and
outperforms other schemes that are described in the litera-
ture. For the important case of the line graph, we present
a polynomial-time optimal algorithm. Finally, we illustrate
that our algorithm can also be used for optimizing the hand-
off mechanism.
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1. INTRODUCTION

Personal Communication Service (PCS) networks enable
people to communicate independently of their location and
while they are moving. To provide this capability, each PCS
network is equipped with a mobility management mecha-
nism that consists of two major components. The location
management component maps subscriber numbers to the
current locations of the corresponding users when calls ar-
rive. The handoff management component maintains ongo-
ing calls with ensured quality of service (QoS) while their
end-users change their attachment points. The current stan-
dards for location management in present PCS networks
such as GSM [1], IS-41 [2] and UMTS [3] use similar schemes
for mobility management. The basic idea for these schemes
is as follows. The coverage area of the system is divided into
location areas (LAs), where each LA consists of a group of
cells that forms a continuous geographic area. The cells of
one or few LAs are associated with a single mobile switching
center (MSC) that connects them to a fixed infrastructure.
The system keeps the LA identifier of the location for each
user. When a mobile user crosses an LA boundary, the user
updates the system with its new location. In this way, the
system is able to maintain the current location of each user.
When a call comes in for a particular user, the system si-
multaneously pages the mobile user in all the cells of the
user’s recorded current LA. The called user replies to this
paging message and the system establishes a connection be-
tween the originator of the call and the called user. In cur-
rent systems, LAs are determined in advance based on static
movement probabilities and, in general, remain unchanged.

In recent years, PCS networks have faced rapid increase in
the number of mobile users. The main solution for support-
ing the growing population is to reduce the cell sizes and
to increase bandwidth reuse [4, 5]. These changes cause the
number of call deliveries, location update operations, and
handoff operations to increase dramatically and result in
high loads on mobility management mechanisms. Moreover,
frequent handoff operations affect the user’s QoS percep-
tion, especially when moving from one MSC-area to another



where inter-MSC handoff operations are performed. This
motivates extensive research efforts for reducing the over-
head of the mobility management mechanisms from both
the network resources and wireless bandwidth perspectives.
These efforts have lead to the development of numerous new
mobility management schemes on one hand and new clus-
tering algorithms for optimizing the LA planning (LAP) on
the other hand.

1.1 Redated Work

There are a variety of new location management schemes
in the literature. Several proposals introduce incremental
improvements to the current LA approach. For instance,
overlapping LA systems were introduced to reduce the num-
ber of update operations that result from users moving near
the LA boundaries [6],[7]. Sequential paging methods were
suggested to reduce the amount of paging induced by an in-
coming call. In sequential paging, the system sequentially
pages subareas of the current LA of a called-user based on its
location probability [8],[9], [10]. Both updating and paging
costs can be reduced by using a system of moving LAs. This
approach can be useful in the case of tracking fast moving
users on highways [11].

Other work in this area consists of dynamic mobility man-
agement schemes that are based on users’ profile informa-
tion. Since the latter are customized for the individual mo-
bility patterns of each user, they are more efficient than
generalized schemes for all users. In this category we find
proposals like the personal LA approach, in which the LA
sizes are defined on a per-user basis for reducing the signal-
ing overhead of each individual user [12],[13], [14],[15]. In
[16], [17], [18],[19], the users are allowed to skip some update
operations when they cross the LAs’ boundaries. When a
call comes in, the system uses the user profile information
to estimate the probability for each LA that it is the current
LA of the user. The system then pages the LAs in order of
decreasing probability. In other schemes, there is no notion
of location areas, and the mobile users perform update op-
erations based on either the elapsed time [20], [21], number
of crossed cells [20], [22] or the traveled distance since the
previous update operation [20], [23]. The selected thresholds
for performing update operations are adapted to the individ-
ual mobile user mobility patterns and communication traf-
fic. Other schemes [24], [25], [26], [14], also consider the user
speed and the trajectory during its last update for predicting
its location when needed. Comprehensive surveys of loca-
tion management schemes can be found in [2],[27]. While
the new schemes, especially the profile-based methods, of-
fer better utilization of wireless network resources than the
standard LA-approach, they suffer from some inherent de-
ficiencies. They tend to add significant complexity to the
management of the networks. The network is required to
keep track of significantly more information per user and
each mobile user needs to keep track of its mobility pat-
terns. Moreover, they require modification of the current
standards and so require changes of the wireless network in-
frastructures as well as updating all the handsets. This com-
plicates the incorporation of recent schemes into the current
infrastructures.

Other research directions include developing new parti-
tioning algorithms that compute efficient LA plans. These
LA plans are evaluated by their total signaling costs, i.e., the

cost of all the induced paging and update operations in the
system. Since the paging cost depends on the number of
cells that are paged when calls come in, while the update
cost results from LA boundary crossings, there is a clear
trade-off between the two costs. By selecting large LAs, the
number of LA boundary crossings and hence the system up-
date cost is reduced, while selecting small LAs produces low
paging cost. The LA planning methods can be classified
into two categories. The papers in the first category [28],
[29], [30],[31] assume uniform user distribution and inter-
cell movement rate, and with these strong assumptions they
derive an optimal LA planning. However, these results are
not applicable to most practical cases where the network
usage is heterogeneous [30, 32]. In the second category,
the network is modeled as a graph where each node rep-
resents a cell, its weight specifies the cell population and
there is an edge between every pair of adjacent nodes that
defines the user movement rate between the corresponding
cells. The LA planning is mapped to a graph partitioning
problem. Since this partitioning problem is NP-hard, differ-
ent heuristics are proposed for obtaining efficient solutions.
Most of the proposed schemes limit the LA size in order to
bound the LA paging cost and seek heuristics for LA plan-
ning that minimize the system overall update cost. These
heuristics employ different algorithmic tools like genetic al-
gorithms [33],[34], taboo search [34] and simulated annealing
[34],[32], [35]. In [35] the authors provide a comprehensive
problem formulation that also consider size and connectivity
constraints, enabling network designers to represent some
practical constraints of a cellular network. Other papers
[36],[37], [38] address the LA planning problem from a graph
theoretic approach. In [36] the author presents an algorithm
that contains two phases. A merge phase in which the cells
are merged for constructing a collection of LAs, and an ex-
change phase in which cells are exchanged between the LAs
for reducing the update cost. The algorithm in [37] uses
planar graph bisection (partitioning into two equal parts),
and in [38] the partitioning algorithm is based on the con-
strained maximal spanning tree algorithm. In all the papers
mentioned, simulations constitute the main tool for evaluat-
ing the quality of the solutions produced by the algorithms,
and no worst-case guarantees are presented (e.g., as com-
pared to an optimal solution). In [39] the authors address
the one-dimensional LA planning problem for covering high-
ways and railroads. Since highways and railroads carry a
major portion of user traffic, an LA planning that efficiently
covers them can significantly reduce the signaling overhead
of the entire system. This work presents a heuristic which
constructs the optimal LA planning in the case of homoge-
neous traffic and user density, but yields suboptimal results
in general.

1.2 Our Results

We concentrate our efforts on optimizing existing mobility
management schemes and we present a novel algorithm for
location area planning (LAP). Such planning can be used
for both efficient location management as well as handoff
management. Since the second can be viewed as the special
case of the first, throughout the paper we mainly consider
efficient LAP for location management. Then, we present
a practical design for optimizing both the location and the
handoff mechanisms.

We cast the LAP problem in graph-theoretic terms and



then define several algorithms that attempt to minimize the
update and paging costs subject to a variety of system-
imposed constraints like maximum LA size. In the case of
one-dimensional networks such as highways and railroads,
we present a polynomial time algorithm that finds the op-
timal LA planning even for general traffic and user density
patterns. In general networks, we show that it is compu-
tationally difficult to find the LA planning with the lowest
update and paging costs. We formulate the problem in gen-
eral graphs as a linear program and use an optimal (frac-
tional) solution to this linear program as a lower bound on
the optimal (integral) solution to the LA planning problem.
Our approximation algorithms round an optimal fractional
solution to the linear program into an approximate integral
solution. Specifically, we provide a polynomial time algo-
rithm that computes an LA planning whose cost is no more
than O(logn) times the optimal cost (where n is the num-
ber of base stations). In the special case of planar networks
(i.e., networks in which users only move between adjacent
base stations), a highly practical instance, we can find in
polynomial time an LA planning with cost at most a con-
stant times the optimal cost. Unlike existing heuristic-based
schemes, our algorithms have the advantage that (i) they
provide a worst-case guarantee on the performance; (i) we
can use the optimal fractional solution to bound the actual
performance of the algorithms on any problem instance.

We use the results of the approximation algorithm as the
basis for a simple heuristic that further improves the LA
planning solution. When we run our algorithms on a realis-
tic network, we observe that their solutions cost just 6% to
71% more than the optimal fractional solution of the linear
program, a lower bound on the optimal integral solution.
Note that this lower bound may be significantly lower than
the actual optimal solution for the LA planning problem.
Consequently, we conclude that, in practice, our algorithm
finds solutions that are very close to the optimum. More-
over, by simulations we show that the proposed algorithm
outperforms other LAP schemes described in the literature.

This work is organized as follows. Section 2 presents the
network model and provides a formal definition of the LA
planning problem. Section 3 introduces a scheme for finding
the optimal LA planning for linear graphs, and Section 4
presents approximation algorithms for general graphs and
for planar graphs. Section 5 introduces an efficient heuristic
for improving the performance of the proposed approxima-
tion scheme, and we address the optimization of the hand-
off mechanism in Section 6. Section 7 evaluates the per-
formance of our algorithms by simulations and concluding
remarks are given in Section 8.

2. MODEL AND PROBLEM STATEMENT

In this section we present the network model and provide
a formal definition of the Location Area Planning (LAP)
problem. We also address the question whether a given in-
stance of the problem has a feasible solution at all and we
prove that finding an optimal one is NP-hard even when the
given graph topology is planar or a star.

2.1 Network Modd

We represent a cellular network by a graph G(V, E), where
|V| = n and |E| = m. Each cell in the cellular network is
represented by a node with a unique identification number
1 € [1..n] and a weight, w;, that reflects the cell user pop-

ulation'. The edges denote cell adjacency, and every edge
(i,j) € E has a weight f;; that specifies the user traffic
(flow) between its end-points (in both directions) during a
time unit. For completeness, let f;; = 0 for every pair of
nodes i,j € V such that (i,j) ¢ E.

2.2 TheProblem Statement

For location management, the nodes are clustered into
disjoint sets called locations areas (LAs), L = {S1,--- Sk},
which contain all the graph nodes. The LA containing node
i is denoted by LA(i). For each mobile user, the system
keeps a record of the current LA where it resides. Each time
a user crosses an LA boundary, it updates the system with
its new location. When an incoming call arrives, the system
simultaneously pages the user in all the cells of its current
LA. After receiving the user reply, the system establishes a
connection between the call originator and the called user.
Thus, the location management scheme produces two types
of signaling costs, where the costs are considered from both
the wireless and wired network perspective. An update cost
that reflects the cost of all the update operations performed
by the users during a time unit, and a paging cost that results
from all the paging operations during a time unit. To define
these costs, we use the following notation. Consider an LA
planning £ = {S1,---Sk}. Let X be a user incoming call
rate and C}, be the cost of paging a single cell. The paging
cost of a single LA, S € £, with |S] cells, is the product of
the incoming call rate A - ), wi, times the cost of paging
all the LA cells C) - |S|. Consequently, Page Cost(S) =
A-Cp-[S|- 32,5 wi, and the overall paging cost is,

Page Cost(L) =X-Cyp - Z |S] - Zwi

SeL i€S

Similarly, we define the update cost. Recall that a user
induces an update operation whenever it moves from a cell ¢
in one LA to a cell j in a another LA. The amount of traffic
per time unit between the two cells is f;;, so the update cost
caused by traffic between the cells ¢ and j is C,, - fi; where C,,
is the cost of a single update operation. In our calculations
we charge each of the nodes j and i for half of this update
cost. Therefore, the cost of update operations in the system
as a whole is simply the amount of traffic between the LAs
times C,. The total update cost is,

1
Update_Cost(L) = 3 Cy - Z Z fij-

i€V jZLA()

Since the efficiency of a given LA planning, £, is determined
by its overall signaling cost, an optimal LA planning, LopT,
is a graph partition with the minimal signaling cost among
all the feasible LA plans, i.e., ,

Cost(LopT) = mﬁin{Update_C’ost(l:) + Page_Cost(L)}.

We note that in actual cellular systems, not every LA
planning is feasible. Geographical considerations and net-
work infrastructure may impose certain size and connectiv-
ity constraints on the system. For instance, as all the cells
of an LA are connected to a single mobile switching center
(MSC), neither an LA size nor its total population should
exceed the MSC capacities. We enforce these size constraints

!Practically, the node’s weight represents the average user
population during the rush hours.



by introducing two bounds Kax and Wiax on the maximal
cell number and maximal population size of an LA, respec-
tively, i.e., for every S € £ we require that |S| < Kmax and
ZiGS w; < Wax. In fact, our schemes can easily deal with
more general constraints that bound, for each vertex ¢ € V,
the size and weight of the LA containing i, i.e., |LA(3)| < K;
and 35, ;40 wi < Wi, as we show later.

As a result of topological considerations, it is also possible
that certain cells must reside in the same LA or other cells
must reside in separate LAs. These connectivity constraints
are define by constants b;; for every pair of cells i,j € V,
such that

1 If 4 and j must be in different LAs.
bij = —1 1If 7 and j must be in the same LAs.
0 Otherwise.

These constants can be represented by a connectivity ma-
trix B = {b;;}. Any LA planning £ that satisfies both the
size and the connectivity constraints is called a feasible LA
planning and the LAP problem is defined as follows.

DEFINITION 1
Given a graph G(V, E) with weights w; and fij for every
node i € V and edge (i,j) € E, LA size bounds Kmax, Wmax
and connectivity matriz B, find an LA planning L such that,

1
Cost(L) = min 2 i€V JELA(i) JW
) { )"CP'ZSGL(‘S"ZieSwi)

subject to:
V51,52 € L S1NS2=10
VieV: 1<|LA(1)] < Kmax
vl S V H ZjELA(i) ’LU] S Wmax

LAGi) # LA()
LA(i) = LA(j)

Vi,j € Vb =1:
Vi,j € Vb = —1:

Note that the proposed problem seeks an LA planning
that simultaneously minimizes both the update and search
costs. Unlike standard partitioning problems, our minimiza-
tion objective does not include just the cost of the cut sep-
arating the LAs, but also includes a cost dependent on the
size and the weight of the components. Thus, our problem
is fundamentally different from standard partitioning prob-
lems, and requires new algorithms to solve it.

2.3 Hardness of the LAP Problem

THEOREM 1. The LAP Problem is NP-hard, even when
the given instance G(V, E) is a star.

Proor. We prove this theorem by presenting a polyno-
mial reduction from the partition problem [40] to the LAP
problem. Consider a set A of m > 2 elements where each
element a; € A has size s; € Z+, and let X = ZaieA si/2.
The partition problem looks for a subset A C A such that
ZaiGA’ S; = ZaieA—A' s; = X. Our reduction constructs
a star graph G(V, E) that contains the following nodes and
edges. A hub node h whose weight is w, = 0. For every
element a; € A, we define a node i adjacent to the hub
node that satisfies w; = s; and f;, = si. Let C, = 2mX
and let Cp - A = 1. We impose a constraint Wnax = X on

(LOCATION AREA PLANNING PROBLEM).

the maximal weight of an LA. Intuitively, due to the high
update cost, the optimal LA planning of this graph is ob-
tained when the LA that contains node h, LA(h), contains
as many other nodes as possible without violating the weight
constraints.

We claim that there is a subset A’ C A with ZaieA’ S; =
X if and only if there is an LA planning £ with cost less then
2mX (X +1). Recall that the paging cost of the system is at
most 2mX, which happens when all the nodes are included
in a single LA. Suppose that there is such a partition A’.
Then we construct an LA planning £ with two LAs. The
first LA, denoted by Si, contains node h and all the nodes
i, 1 € A', while the second LA, denoted by S> contains
all other nodes. Since Za,-EA' §; = ZaieA—A' s; = X, the
two LAs satisfy the weight constraints. The update cost of
this LA planning comes only from the separation of node
h from the nodes in S3. Thus, the update cost is 2mX -
ZaieA—A' s; = 2mX?2, and therefore the cost of this LA
planning is no more than 2mX (X + 1) as claimed.

We assume now that there is a feasible LA planning £
such that its cost is at most 2mX (X + 1). Since the update
cost must be an integer multiple of 2m X, the update cost of
L is at most 2mX?2. Thus, the total weight of all the nodes
that are not included in LA(h) is at most X. Since the total
weight of every LA is at most X, the total weight of all the
nodes in LA(h) must be X, yielding that the total size of
all the elements in the set A" = {a;]i € LA(h)} is X. This
completes the proof. [

Since the LAP problem is NP-hard, rather than finding
optimal solutions, we construct a polynomial-time approxi-
mation algorithm. Such an algorithm has an approximation
factor « if, for every instance of the LA problem, it finds a
solution whose cost is at most a time the cost of an optimal
solution.

3. OPTIMAL SOLUTION FOR A LINE

In the following, we present an efficient algorithm based
on dynamic programming for finding an optimal LA plan-
ning when the given LAP instance, G(V, E), is a line. This
algorithm can be used, for instance, in the LA planning of
highways. Since highways carry a large portion of the user
traffic, in some cases it is more economic to treat them sep-
arately. Cost-effective solutions for highway LA planning
reduce the overall LA planning cost. For clarity of presen-
tation, we first ignore connectivity and size constraints.

A line is formally defined as a graph where exactly two
nodes have degree 1 and the remaining nodes have degree
2. Cousider a line G(V, E), connectivity matrix B and size
bounds Kmax and Winax. We assume that the line nodes are
indexed adjacently in increasing order from 1 to n, i.e., for
every i,7, fi; > 0 and b;; # 0 only if |i — j| = 1. We denote
by Cost(i) the cost of the optimal LA planning on the line
graph G; induced by the first ¢ nodes, [1..i] € V, where
Cost(0) = 0 is the cost of the empty line.

We note that Cost(i) (and the actual LA planning itself)
can be computed recursively. Suppose the optimal LA plan-
ning in the graph G; is {S1,... , Sk} for some k. Let g be the
index of the left border node in Si (i.e., the node with the
lowest index in Si). Then the optimal plan for G,—; must
have the same cost as {Si,...,Sk—1} or else {Si,...,Sk}
would not be optimal for G;. Thus Cost(i) is the sum of
Cost(q — 1) and the cost incurred by Sj:



. ANCyli—g+1]-3 w;
= » 1
Cost(i) = mi { ¥ Cu-foory + Cost(q—1) (1)

where we take fo1r = 0. Using dynamic programming, we
can find the optimal LA planning for a line graph in time
O(n?) where n is the number of nodes in the line. We sim-
ply calculate Cost(i) for i from 1 to n and store the result
of each iteration in a table so it may be used in the next
iteration. As a technical detail, we must also store the sum
of weights to avoid an extra factor of n in the running time
(see Figure 1).

Finally, we address the connectivity and size constraints.
Connectivity constraints b;; = 1 split the line graph into
multiple line graphs, and we can solve the problem opti-
mally on each instance separately. In the presentation of
our algorithm we assume such preprocessing has been done
and b;; = 0 or —1 for all ¢,j. Counnectivity constraints of
type b;j = —1 are handled by the Line algorithm and any
node q that is associated with a constraint b,_1 , = —1is dis-
qualified to serve as a left border node. The size constraints
are easily accommodated as well. We will discuss only the
maximal LA size constraint, Kmax, as the weight constraint
Wmax is analogous. Let # = max{l,i — Kmax + 1}. Then
the size constraint forces the border node ¢ to be amongst
nodes z,... ,i, and so the minimization in Equation (1) is
just taken over this range.

A formal description of our dynamic programming scheme
is given in Figure 1. In this description, £ and C are two
arrays that store the optimal LA planning and its cost for
the segment [1..7], respectively. The variable W records
the total weight of the nodes g,... ,i. It is initialized by
Wra =32;_, w;, and it is decreased by w, before increasing

the border node index, q.

THEOREM 2. Given a line G(V, E), connectivity matriz
B and mazimal LA size Kumax, the Line algorithm returns
an optimal LA planning of G(V, E) and its cost.

PrOOF. We prove the correctness of the Line algorithm
by induction on the number of nodes in the considered line.
For an empty line without nodes there are no paging or
update costs and its total cost is Cost[0] = 0. Let us assume
that the theorem is valid for lines with ¢ — 1 nodes and
consider a line with ¢ nodes. The algorithm calculates the
cost of different solutions when checking each one of the
feasible border nodes q of LA(i) (the last max{1, i — Kmax +
1} nodes of the line), by using the equation,

ACp-(i—q+1) Wra+Cu- fg-1,4+Clg—1].

By inductive assumption, C[g], ¢ < i, is the cost of the
optimal LA planning for the line graph induced by nodes
[1..q]. Therefore, the algorithm finds the cost of the optimal
LA planning when a given node q is forced to be the border
node of LA(i). As it takes the minimum of these values
over all feasible border nodes ¢, the algorithm finds both
the optimal LA planning and its cost. [l

4. APPROXIMATION ALGORITHMS

In this section we present approximation algorithms for
LAP in both general graphs and planar graphs. We start
by providing an integer programming formulation. Then,

Algorithm Line(G(V, E), B, Kmax)
// Variable Initialization.

C[0] =0
£[o] =0
fon1 =0

/] Main loop from 1 to n.
for i =1 ton do
Cli] =
// Updating the maz weight of LA LA(i).
z =max{1l,i — Kmax + 1}
Wea =320,
/] Loop for checking all border nodes.
for g = x to i do
// Checking if q can be a border node.
if by_1,4 = 0 then
tmp=X-Cp-(i—q+1) Wra+
+Cu - fo-14+Clg — 1]
if tmp < C[i] then
/] A cheaper LA planning was found.

w;

C[i] = tmp
£l = £lg — 11 Ut{a-i}
end-if
end-if
Wra =Wrpa —w,
end-for
end-for
return C[n], L[n]
end

Figure 1: A formal description of the Line Algo-
rithm

we relax the integrality constraints and obtain a linear pro-
gram. We solve the linear program and obtain an optimal
fractional solution for the problem, i.e., a solution where
the variables can assume non-integral values. This solution
serves as our lower bound on the value of an optimal solu-
tion. Finally, we round the fractional solution and obtain a
near-optimal integral solution. We provide an upper bound
on the ratio between the value of the near-optimal integral
solution computed and the value of an optimal fractional
solution. This bound is our approzimation factor. For gen-
eral graphs, this bound turns out to be logarithmic and for
planar graphs it is a constant.

4.1 Thelnteger Program Formulation

Recall that LAP is defined as a clustering problem with
a non-linear objective function. In order to formulate LAP
as a linear integer problem, we take a different approach. A
pair (V,d), where V is a set and d is a non-negative function
d:V xV — R, is called a semi-metric [41] if and only
if d satisfies the following three conditions. (i) di; = dj;
for all 4,j € V (symmetry). (ii) di; = 0 for all 1 € V.
(iii) dij < dir + dji for all 4,5,k € V' (triangle inequality).
Counsider a partition of the graph into LAs. Define for every
pair of nodes i, j € V a variable d;; € {0,1} such that,

g = 1 If i and j belong to different LAs.
71 0 If i and j belong to the same LA.

We claim that the variables d;; induce a semi-metric. Condi-
tions (i) and (ii) above are obviously satisfied. The triangle



inequality is also satisfied, as can be seen by a simple case
analysis.

Cousider an assignment to the variables d;; that induces
a semi-metric. This assignment defines a partition of the
graph into LAs in a natural way. For every node i € V,
the LA containing it, LA(¢), is defined by, LA(:) = {j|j €
V Ad;; = 0}, ie., all nodes that are in zero distance from
node i. We refer to edges (i,j) € E for which d;j; = 1
as cut edges. Denote by L the partition into LAs induced
by variables d;;. Our integer program will have variables
dij € {0,1}, where d is required to be a semi-metric.

Recall the connectivity matrix B defined in Section 2. For
every pair ¢, j € V we add the constraints, b;; < d;; < b;;+1.
If nodes i, j should be in the same LA then b;; = —1, and the
non-negativity constraint on d;; yields that d;; = b;; +1 = 0.
Similarity, if nodes ¢, j are required to be in different LAs
then b;; = 1, and since d;; < 1, it follows that d;; = b;; = 1.
If nodes 4,j are not constrained then b;; = 0, and d;; €
{0,1}.

We now state the objective function, as well as the size and
connectivity constraints, in terms of the variables d;;. We
first address the paging cost. A node i pages whenever there
is an incoming call to a user belonging to its LA, LA(3), and
hence it performs A- 3. (1 —di;) - w; paging operations
in a time unit. Thus, the paging cost of the entire system is

Page Cost(L) =X C, - Z (1 —dij) - wy.
iJEV
The update cost is simply the cost of the cut edges times
the cost of a single update operation, yielding

Update_Cost(L) = % -Cy - Z dij - fij.

i,jEV

Hence, our objective function is,

1
min )\-CP~IZ (1_dij).wj+§.0u._z di]'fij.
i,JEV i,JEV

We now address the size constraints. Recall the bounds
Kmax and Wiay defined in Section 2. Since, for each node
i€V, LAG) = {jlj € VAdyy = 0}, [LAG) = ¥, ey (1—diy)
(number of nodes in LA(i)), and w(LA(i)) = 3,y (1—dij)-
w; (weight of nodes in LA(7)). Thus, we can enforce the size
constraints on each LA by adding for each node i € V the
constraints, |LA(7)] < Kmax and w(LA(1)) < Wax.

We are now ready to present the integer programming
formulation.

. 1
min /\~Cp~Z(l—d,—j)~w]-+§~Cu-Zdijfij
ijev ijev
subject to:

Vi,j,kEV: di]‘-i-dijdik

Vi,jeV: bij <dij <bi; +1
VieV: Yiop(1—dy) < Kmax
VieV: Yoy (1—dij)wi < Wiax

Vi,jeV: di; € {0,1}

LEMMA 1. An optimal solution to the above integer pro-
gram defines an optimal solution to LAP.

Proovr. It follows from the preceding discussion that a
partitioning into LAs defines a feasible assignment to the
variables d;; and vice versa. The discussion also shows that
size constraints are maintained by the constraints of the in-
teger program. [

Since solving integer programs is an NP-hard problem, we
relax the integrality constraints, i.e., we only require that
for all 4,5 € V, d;i; € [0,1]. The linear program we obtain
contains only O(n?) variables and O(n®) constraints, and
therefore an optimal fractional solution can be computed in
polynomial time. Clearly, the value of an optimal fractional
solution is a lower bound on the value of an optimal integral
solution.

4.2 Rounding Algorithm for General Graphs

In this section we present our rounding algorithm. We
assume that an optimal fractional solution to the above lin-
ear program has been computed. We now show how to
round the fractional solution to a near-optimal integral so-
lution, while ensuring an O(logn)-approximation factor in
the worst case. Furthermore, we observed that, in practice,
the fractional solution is very close to an integral solution.
In other words, most of the d;; parameters have values of
0 and 1 also in the fractional solution. Our rounding al-
gorithm preserves these integral values and guarantees that
every pair of nodes 4,5 € V such that d;; = 0 are assigned
to the same LA, while pairs with d;; = 1 are assigned to
two different LAs. This property enables us to find near op-
timal solution in most cases, as we illustrate by simulations
in Section 7.

4.2.1 TheAlgorithm

Our rounding algorithm uses a technique known as region
growing (or ball growing) [42]. We iteratively grow balls of
at most some fixed radius around nodes of the graph with
respect to the semi-metric defined by the variables d;;. The
balls are grown until all nodes are included in some ball,
and these balls define the LAs in the final solution. The
intuition is that large d;; values indicate that ¢ and j should
be in separate LAs, and small d;; values indicate that they
can be in the same LA. The importance of the fixed radius is:
(i) it guarantees that size bounds are “almost” satisfied; and
(ii) it yields an approximation factor bound on the paging
component of the objective function. The region growing
technique itself enforces an approximation factor bound on
the update component of the objective function.

First, we present some notation that we will need in order
to define the algorithm. A ballb(i, r) of radius r around node
i is the subgraph that consists of all nodes j such that d;; <
r, their connecting edges and the fraction (r—d;;)/(dix —dij)
of any edge (4, k) with only one endpoint, say j, belonging
to the ball, i.e., dj; < r (note that d;; is defined for all
nodes i,7). Thus, the ball b(i,0) around node i contains
node i and all the nodes j € V such that d;; = 0. The
cut of a ball b is the set of edges with precisely one end-
point in b and its weight, denoted by cutweight(b), is de-
fined to be Z‘{i,j}nb‘:l fi;. Finally, the volume of a ball
b(i,r), vol(b(i,r)), is defined to be the weighted distance of
the edges belonging to the ball. Each internal edge (j, k)
contributes f;i - djr to the ball volume and every cut edge
(j, k), with d;; < r, contributes fjk -d]'k - (T‘*di]‘)/(dik 7d1‘j)
to vol(b(i, r)). For technical reasons, we also include an ini-



Algorithm Round(G(V, E), {di; })
// Variable Initialization.
H«+ G
L+ 0
/] Main loop
while 3 a node 1 € H
S« 0
r<0
/] Grow ball
repeat
S+ Sub(i,r)
r<r+A4A
until cutweight(b(i, 7)) < ¢ln(n + 1) - vol(b(i,r))
L+ LUS
end

Figure 2: A formal description of the ball growing
algorithm

tial volume (seed) I to the volume of every ball (i.e. ball
b(7,0) has volume I).

We are now ready to present the algorithm for rounding
a fractional solution to an integral solution. The input to
the algorithm is a complete graph G(V, E), |V| = n, with
a fractional assignment to the variables d;; obtained from
the linear program. Suppose the volume of the entire graph
is F =42 ijev dij fij. Note that the update cost of the
fractional solution is C, F'. Let the initial volume of the balls
defined in the algorithm be F/n. The algorithm iteratively
grows balls around arbitrary nodes of the graph until it finds
a ball such that the weight of the cut defined by the ball is
at most cln(n + 1) times the volume of the ball. It then
creates a location area consisting of the nodes belonging to
this ball and removes these nodes from the graph. This
algorithm terminates when all nodes are removed from the
graph. The pseudo-code for this algorithm can be found
in Figure 2. Note that the order in which the algorithm
considers nodes is indeed arbitrary, and thus the following
analysis applies to any node selection heuristic.

4.2.2 The Approximation Factor Analysis

In this algorithm, ¢ is some constant which we will deter-
mine later, and A = min{(d;; —r) : j & b(i,r), (dij—r) > 0}
is the remaining distance to the nearest vertex (among those
with distance greater than zero) outside the current ball.
This algorithm clearly runs in polynomial time. We must
show it terminates with a solution £ that satisfies the con-
straints, and has a cost which is not much more than the
fractional volume F'.

Notice the region-growing procedure’s termination condi-
tion guarantees an O(logn) approximation to the update
compounent of the objective function. Let a = cln(n + 1).

1
Update_Cost(L) = =Cyu Z cutweight (b)

2 balls b
1
~Cya Y vol(b)

2 balls b

1 1 F
ECua (5 S odijfij+ > E)

i,jeEV balls b

IN

IN

1
ECqu(QF)
CyaF

ININ

where the second line follows from the fact that the balls
found by the algorithm are disjoint. Note that C, F' is pre-
cisely the update cost of the fractional solution.

The rest of our analysis hinges on the fact that the balls
returned by this algorithm have radius at most 1/c. This
fact follows from the following known lemma [43, 42].

LEMMA 2. For any vertex i and family of balls b(i,r),
the condition cutweight(b(i,r)) < cln(n + 1) - vol(b(i,r)) is
achieved for some r < 1/c.

PRrROOF. We proceed by contradiction. Set @ = ¢ln(n+1).
Consider growing the ball continuously from r = 0 to r =
1/c and suppose throughout this process, cutweight(b(é, r)) >
a - vol(b(i,7)). Notice that due to this assumption, the in-
cremental change in the volume is

d(vol(b(i,r))) = d( Y fixdjr +

j.k€b

D fik die (r = dig)/(dix — dij))
JEbkZb

= Y d(fik dix (r —diy)/(dix — dij))
JEbkZDb

> d(fik di r/(di — dij))
JjEbkZb

Z fjk dT
JEbkZb
cutweight(b(i,r)) dr
avol(b(i,r)) dr

The step d(vol(b(i,7))) > > cp gy firdr results from the
fact that d;i > (dir —dij) and therefore, d;i /(d;x —dij) > 1.
The initial volume of a ball is, by definition, F/n, and the
final volume is at most F'+ F/n if the ball covers the entire
graph. Therefore

\Y%

Vol

F+F/n 1 1/c
—————d(vol(b(i,T))) > / adr
/p/n vol(b(i, 7)) 0
andso In(n+1) > la=In(n+1). O
We now bound the paging cost of our rounding.

Page Cost(L) = AC, Z Zw]-

balls bi,jeb

Cf2 AC Y (- 2/e)w;

balls bi,j€Eb

Note that ACp 3°, 37, ¢, (1 — 2/c)w; is a lower bound on
the paging cost of the fzractional solution. This is true since
the radius of the balls is at most 1/c and therefore by the
triangle inequality 1 — d;; > 1 — 2/c for any nodes i and j
that belong to the same ball. This implies that our solution
gives a —“;-approximation to the paging cost.

The final approximation factor of our algorithm is the
maximum between the approximation factors of the two

components. Thus,

THEOREM 3. The approzimation factor of our algorithm
is max(cln(n + 1), %5) = O(log n).



We note that the integral solution that our approximation
algorithm computes preserves all the integral components
of the fractional solution. Consider a variable d;; with an
integral value in the fractional solution. Suppose that d;; =
1. Since the diameter of a ball is at most 2/c¢ < 1, the
two nodes belong to separate LAs in the integral solution.
Now, suppose that d;; = 0. From the triangle inequality it
follows that d;x = dji for every node k € V. Thus, every
ball b(k,r), either contains both nodes i and j, or none of
them.

4.2.3 Satisfying Connectivity and Size Constraints

We turn to prove that the algorithm returns a solution
which satisfies the constraints. It easy to see that the round-
ing algorithm fulfills the connectivity constraints. For the
case when a connectivity constraint b;; = 1 is given, the
fractional solution enforces d;; = 1 (distance between i and
j). Since the diameter of a ball is at most 2/c < 1, the
two nodes are in two separate LAs. When connectivity con-
straint b;; = —1 is given, the fractional solution enforces
dij = 0. As described above, the rounding algorithm keeps
nodes with zero distance in the same ball and consequently
in the same LA. We now handle the size constraints. Ac-
tually, we will prove something slightly weaker. We will
show our algorithm is a pseudo-approximation algorithm. A
pseudo-approximation algorithm gives an approximate so-
lution to a problem with slightly different parameters. In
our case, we must perturb the size bound parameters, Kmax
and Whax, slightly. Specifically, our algorithm finds a set
of LAs such that each LA has size at most —“5 Kmax and
weight at most CfIWmax. We prove the first of these state-
ments. The proof of the second is similar. We know that
VieV: Zjev(l — dij) € Kmax. Fix i. Since the maxi-
mal radius of a ball r < %, follows that distance d;; < %
Therefore, for each i,

Kmax Z Z(]- - dl])

JEV
> > (1—dy)

JELA()

1

> _ -
> ¥ (1-9)

JELAG)

c—1 c—1

— > — LA(i)

JELA(D)

Thus, the maximal LA size is at most ﬁKmax. We note
that ¢ is an arbitrary constant. The larger we take c, the
closer our solution will be to the true size bounds. However,
our approximation factor grows like cln(n + 1), and so our
overall costs may get worse. This parameter is a tradeoff
that the user can specify. We also note that if the bounds
Kpax and Whax are not specified (i.e. can be arbitrarily
large), then the algorithms we present are exact approxima-
tion algorithms in the standard sense of the term.

Finally, we show that our scheme can actually deal with
more general constraints on the size and weight of LAs. For
example, we can adjust our scheme to accommodate a con-
straint for each vertex i € V on the size and weight of the
LA containing i, i.e., [LA(i)| < Ki and 35,/ 4 wj < Wi
without increasing the total number of constraints. The lat-
ter is obtained by replacing the two size constraints of each

node i € V' with the following constraints, » ;. (1 —di;) <

K; and Z]‘ev(l —dij)w; < W;. However, as a result of this
modification, it can be shown that the LA size or weight

may be as high as %5 times the required size, K;, or weight
W;.

4.3 Rounding Algorithm for Planar Graphs

In this section we prove that for planar graphs we can
change the region growing algorithm and obtain a constant
factor approximation. We use the following technique de-
veloped by Klein, Plotkin, and Rao [44] (see also [45]). The
weak diameter of a subset S of nodes is r if every pair of
nodes in S is at distance at most r in the original graph
(and not necessarily in the graph induced by S).

THEOREM 4 (KPR). Given a planar graph with capac-
ities u on its edges and parameter p, one can find, in polyno-
mial time, an edge separator of total capacity O(U/p) whose
removal yields components of weak diameter at most O(p)
where U is the sum of all capacities.

We will use this theorem to find an LA design with com-
ponents of radius at most 1/c¢ and with update cost just a
constant factor more than the optimal fractional solution.
The other results required, i.e. the constant factor approx-
imation for the paging cost and the constraint-satisfaction
argument, follow from the 1/c radius guarantee.

The next Corollary follows from Theorem 4 by creating
from G another planar graph G’, mapping edge (i, j) to a
chain of length [Bd; ;], where each link in the chain is an
edge of weight f;;, for some appropriate large B. We can
then find the required cut by applying Theorem 4 to G’ and
scaling down the result.

COROLLARY 1. Given a planar graph G with distances d;;
and weights fi; on its edges, one can find, in polynomial
time, a cut of weight O(vol(G)/p) which yields components
of radius at most O(p), where vol(G) = 3=, ; dij fi;.

Given an optimal fractional solution, we can use Corol-
lary 1 with an appropriate setting of constants to obtain an
LA design £, where components have radius at most 1/c for
any constant ¢ (note p will be constant too). As the update
cost of the fractional solution is vol(G) and the update cost
of L is the cost of the cut, Corollary 1 gives a constant-factor
approximation guarantee for £. We note that this constant
may be very large. Due to the 1/c radius guarantee, all
previous results in the discussion on general graphs follow,
yielding a constant factor approximation for the LA design
problem in planar graphs.

5. HEURISTICS

The region growing algorithm presented in Section 4.2
provides an LA planning with bounded cost and LA sizes.
Specifically, for any LAP instance and maximal region ra-
dius 1/c, for a given ¢ > 2, the algorithm guarantees a solu-
tion such that its update cost is at most ¢-In(n+1)-OPT and
its paging cost is at most = - OPT, where OPT is the cost
of the optimal solution. Thus, for ¢ = 3 the scheme ensures
(3-In(n+1),3/2)-approximation factor. In other words, the
calculated solution will be within a factor of 3-In(n-+1) from
the optimal solution and the sizes and weights of its LAs are
at most 1.5Kmax and 1.5Whax, respectively. These bounds
are ensured by prudently balancing between the update and
the paging costs with respect to the fractional solution.



Algorithm Exchange(L)
madeChange = true
while(madeChange)
madeChange = false
foreach LA S € L
foreach cut edge (u,v) s.t. u € S,v € S’
if (size(S') + 1 < Kmaz and
weight(S") + weight(u) < Winax)
oldCost = cost(S) + cost(S")
newCost = cost (S’ Uu) + cost(S \ u)
if (newCost < oldCost)
madeChange = true

S=5\u
S =SUu
end-if
end-if

end-foreach
end-foreach
end-while

Figure 3: A formal description of the cell exchanging
heuristic

We develop a simple heuristic that improves the overall
cost of the LAP solution produced by the region growing
algorithm. The heuristic uses a greedy strategy, and is also
an extension of the scheme presented in [36]. The pseudo-
code for the heuristic is shown in Figure 3. The Ezchange
heuristic takes the initial LA planning solution produced by
the region growing algorithm and tries to improve the cost
by exchanging cells between neighboring LAs. The idea of
the heuristic is to move nodes between neighboring LAs,
where the move results in a decrease in overall cost without
causing any constraint violation. We continue this process
until there is no more cost improvements. It is clear that
the process will terminate because a local minima will be
reached after which the exchange process will give no further
improvement in cost.

Depending on how tight the size and weight constraints
are for the PCS network, a violation of these constraints
may not be acceptable. We have two proposals to fix this
problem. The first is to set the constraints in the LP for-
mulation so that the real constraints are not violated in the
final solution. The second is to do a cell exchange similar
to the exchange heuristic above. For each LA S which is in
violation of the size or weight constraints, look at its neigh-
boring LAs and see which neighbor S’ can take a cell from
S without violating the constraints and causing the minimal
increase in overall cost. The process is repeated until S is
no longer in violation of the size and/or weight constraints.
The first heuristic guarantees a feasible solution, while the
second one may give better results in practice, but does not
guarantee feasibility.

6. HANDOFF MANAGEMENT

So far we have addressed location management. How-
ever, our algorithms can also be used for the planning of
MSC-domains for constructing efficient handoff mechanisms.
Handoffs that occur between cells in different MSCs tend
to cause degradation in the quality of the provided service,
in the forms of higher delays, increased data lost and con-

nection drop-offs;, while the handoffs are happening. Thus,
to improve the quality of service provided to the users, we
would like to partition the network cells into disjoint MSC-
domains that reduce the number of inter-MSC handoff oper-
ations. It is clear that inter-MSC handoffs are eliminated if
all the cells are associated with a single MSC. However, due
to physical and performance constraints, each MSC can be
connected only to a limited number of base stations (cells)
and it can support a bounded number of connections simul-
taneously. Consequently, we define an efficient MSC-domain
planning to be a partition of the networks cells into a small
number of clusters, so called MSC-domains, that minimize
the total number of inter-MSC handoffs, while the size and
the user population of each MSC-domain are bounded by
Kinax and Whax, respectively. Recall that MSC-domain
planning can be viewed as a special case of the LA-planning
problem, described in Definition 1, where the cost of a single
paging operation C), = 0 and the cost of an update opera-
tion C, = 1. This implies that our LA-planning algorithm
can be used for the determining MSC-domains.

We now describe a combined approach for planning both
the MSC-domains for efficient handoff management and the
LAs for cost-effective location management. Qur approach
is based on the following two observations; Since, each LA
and each MSC-domain is associated with a single MSC, it
follows that both LAs and MSC-domains have to satisfy the
same size constraints. Moreover, as LA-planning consid-
ers also the paging cost, LAs are in general smaller than the
MSC-domains. Consequently, we view the LA-planning as a
refinement of the MSC-domain partition. We start with cal-
culating an efficient MSC-domain planning. Then, we fur-
ther divide each MSC-domains to several LAs, by employing
LA-planning. This approach optimizes the two components
of the mobility management mechanism.

7. SIMULATION RESULTS

In this section we present the results of our experiments
to evaluate how well our algorithm works in practice. We
start by describing the experimental set up.

7.1 Methodology

The region growing algorithm described in Section 4.2
grows regions continuously around an initial node (seed). To
implement the algorithm, we grow regions in discrete steps.
The discrete algorithm is based on the process described
in [42]. The O(logn) approximation bound also holds for
this method. The discrete algorithm builds shortest path
trees from the seeds and grows regions by adding nodes in
increasing distance from the seeds. At each iteration, nodes
with the same distance from the current seed are added to-
gether.

For our simulations we use data that was collected from
a big wireless service provider in the United States. The
data covers several MSCs and is for a region in New Jersey.
We had two sets of data to work with. One set is a hand-
off matrix giving the number of handoffs between cells for
a particular day. The other set of data gives a measure of
the number of incoming calls for each cell during the busy
period. The data we worked with is not complete in that it
does not have information for all the cells of the MSCs rep-
resented, and the set of cells covered by the handoff matrix
does not intersect fully with the set of data containing the
measure of the number of incoming calls.



The number of cells for which we have both handoff in-
formation and incoming call data is only 39, and we present
simulation results for this set of cells. However, this is quite
small and may not be representative of a full network. Since
we use the handoff data to determine cell connectivity, we
wanted to use the cells for which we have handoff informa-
tion. For the cells in this set that we had incoming call data
for, we use that data. To generate incoming call data for
the rest of cells of this set, we used non-parametric bootstrap
re-sampling [46]. This is a standard statistical technique for
filling in missing data and gives good results in practice. Us-
ing this method, we generate two other networks, one with
76 cells and the other with 128 cells.

Since paging and update costs are not typically measured
in comparable units, having an objective function that sums
these two costs can be problematic. The standard solution
used in location area planning research is to make an as-
sumption on the relative cost of the these units. For exam-
ple, in [31] the authors use a 17:1 ratio for update to paging
cost. For our experiments we make a similar assumption,
but we present a range of values for this ratio. We use a
range from 10:1 to 30:1 in increments of 5. The other pa-
rameters we need to consider for our experiments are size
and weight restrictions. In the following we only present re-
sults where there are size constraints. For our experiments
we use a size constraint of about 20% of the total number
of cells in the network.

To show the effectiveness of our region growing algorithm
(RG), we compare our results to the optimal fractional so-
lution of the LP formulation of the problem as well as other
methods described in the literature. As summarized in Sec-
tion 1.1, there is a large body of work on the issue of LA-
planning. In this body, some papers [28], [29], [30],[31]
assume uniform user distribution and inter-cell movement
rate, and with these strong assumptions they derive opti-
mal LA plans. However, these results are not applicable
to practical cases where the network usage is heterogeneous
and therefore they are not suitable for comparison with our
method. Other papers utilize sophisticated variants of ex-
haustive search and employ different algorithmic tools such
as genetic algorithms [33],[34], taboo search [34] and sim-
ulated annealing [34],[32], [35]. These algorithms do not
have polynomial running time and the quality of the found
solutions depend on the duration of the execution. For our
comparisons, we would like to consider only algorithms with
polynomial running time. However, in the literature, only a
few polynomial time LAP algorithms are presented. Most of
them consider relaxed versions of the LAP where the number
of LAs is fixed [37] or the cost of the paging is ignored [38],
[36]. Thus, to the best of our knowledge, there is not any
polynomial time algorithm that considers the comprehensive
LAP problem that we address in this work. Moreover, none
of the above papers compared its results with the optimal
solutions.

Consequently, we compare our region growing algorithm
(RG) to the optimal fractional solution, denoted by LP, as
well as to two polynomial time greedy heuristics, described
in the literature. The first heuristic, greedy! (Grl), is a sim-
ple an intuitive greedy algorithms similar to the one used
in [35] as a benchmark, while the second heuristic, greedy?2
(Gr2), is based on the scheme proposed in [36]. Both greedy
heuristics first perform a merge-phase and then an exchange-
phase. The exchange-phase for both algorithms is the same
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Figure 4: 39 cells: Cost comparisons of region grow-
ing to other methods.

as described in Section 5, but the algorithms differ in the ini-
tial merge-phase. In the first algorithm, greedyl!, the merge-
phase of this scheme is done as follows:

Initially, each cell induces a separate LA. The
algorithm considers every pair of LAs and cal-
culates the cost reduction obtained by merging
them, then it selects the pair that yields the max-
imal cost reduction without violating the size or
weight constrains and merges them. The process
continues as long as there are pairs of LAs where
merger reduces the system cost.

The second greedy algorithm, greedy2, employs the following
merge-phase:

Each cell is initially a separate LA. A profit met-
ric is defined based on the update and paging
costs of cells in the system. In each round of the
merge-phase, each pair of LAs is tested to see
which pair maximizes the profit metric and does
not violate the size or weight constraints. This
pair is merged, and then the process is repeated.
The process continues until no more merges can
be made.

7.2 Results

The results of our simulations are presented in the his-
tograms and tables below. The histograms and tables show
the overall system cost when the networks are partitioned
using the different algorithms. The tables also show the
relative costs of the different methods.

For the 39 cells case (Figure 4 and Table 1) the RG al-
gorithm was on average 63% from the optimal fractional
solution, whereas the greedy methods were more than twice
as bad as the LP solution on average. For this case, the
RG algorithm was on average better than Grl and Gr2 by
31% and 34% respectively. For the 76 cells network(Figure 5
and Table 2) all the algorithms were closer to the optimal
solution than for the 39 cells network. However, the RG
algorithm was much closer that the greedy methods. On
average our method was 20% from the optimal solution, and
for the case where the update to paging ratio was 25, it was



[Ratio [LP [RG [ Grl [ Gr2 | RG/LP [ Gr1/LP [ Gr2/LP | Gr1/RG [ Gr2/RG ]
10 39029 | 59975 76831 79187 1.54 1.97 2.03 1.28 1.32
15 52353 | 85173 109137 | 111247 | 1.63 2.08 2.12 1.28 1.31
20 65259 | 109905 | 141253 | 143307 | 1.68 2.16 2.20 1.28 1.30
25 78022 | 126923 | 173363 | 175367 | 1.63 2.22 2.25 1.37 1.38
30 90665 | 150493 | 205473 | 207427 | 1.66 2.27 2.29 1.37 1.38
Table 1: Results: 39 cells with maximum LA size 8
[ Ratio [ LP [RG  [Gr1 [ Gr2 |[RG/LP ] Gr1/LP | Gr2/LP | Gr1/RG | Gr2/RG ]
10 123069 | 141309 | 190925 | 190925 | 1.15 1.55 1.55 1.35 1.35
15 155151 | 185357 | 250875 | 250875 | 1.19 1.62 1.62 1.35 1.35
20 183738 | 232607 | 319168 | 310825 | 1.27 1.73 1.69 1.37 1.34
25 210705 | 222392 | 395536 | 370775 | 1.06 1.88 1.76 1.78 1.67
30 237001 | 315870 | 460326 | 430725 | 1.33 1.94 1.81 1.46 1.36

Table 2: Results: 76 cells with maximum LA size 16
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Figure 5: 76 cells: Cost comparisons of region grow-
ing to other methods.

only 6% from the optimal fractional solution. For this net-
work the Region Growing algorithm was on average 46% and
41% better than Grl and Gr2 respectively. Finally, for the
128 cells network (Figure 6 and Table 3) the performance
of the RG growing algorithm was on average 51% from the
LP solution, and better that Grl and Gr2 by 42% and 31%
respectively.

Over all our experiments, the RG algorithm came as close
as 6% to the optimal fractional solution of the LAP problem,
and was never more than 71% from this optimal solution.
The RG algorithm was also consistently and significantly
better than both greedy heuristics. Our experiments demon-
strates that our method gives very good results, which in
practice are much better than the O(lg n) worst-case bound.

8. CONCLUDING REMARKS

In this work, we described new clustering algorithms for
LA planning that minimize both the update and paging
costs from the wireless and wired network perspective. We
presented a polynomial-time algorithm that finds an optimal
LA planning for one-dimensional networks such as highways
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Figure 6: 128 cells: Cost comparisons of region
growing to other methods.

and railroads. In general networks, we have formulated the
problem as an integer program. Our formulation is very
flexible and it allows the incorporation of constraints that
can capture a variety of system-imposed constraints, such
as maximum LA size. Due to the NP-hardness of the prob-
lem, we resorted to polynomial time approximation algo-
rithms that compute an LA planning whose cost is no more
than O(log n) times the optimal cost (for planar graphs the
algorithm achieves a constant approximation factor). We
also simulated the rounding algorithm and coupled it with
a heuristic. The results of our experiments on a realistic
network indicate that our algorithms give results that are
close to the the optimal solution and superior to the exist-
ing greedy heuristics to which we compare them. We also
described how our algorithms can be used for MSC-domain
planning, which is essential for improving the user perceived
QoS.

The main theoretical contribution of this work  a method
to balance between some property of the clusters and the
weight of the cut is applicable in other settings as well.
Recent work [47, 48, 49] uses similar techniques to give an



| Ratio | LP |RG [ Grl | Gr2 | RG/LP [ Gr1/LP [ Gr2/LP | Gr1/RG | Gr2/RG ]
10 240868 | 357439 | 402660 | 432341 [ 1.48 1.67 1.79 1.13 1.21
15 302595 | 382487 | 536027 | 577102 [ 1.26 1.77 1.91 1.40 151
20 357798 | 525951 [ 818519 | 710212 [ 1.47 2.29 1.98 1.56 1.35
25 409998 | 676806 | 1019530 | 843322 | 1.65 2.49 2.06 1.51 1.25
30 460908 | 787941 | 1196650 | 976432 | 1.71 2.60 2.12 1.52 1.24

Table 3: Results: 128 cells with maximum LA size 26

O(log n) approximation for another clustering problem, cor-
relation clustering [50]. It is conceivable that there are other
problems with similar LP formulations that can benefit from
our techniques, and applying our techniques to these prob-
lems is an interesting extension of this work.

Another remaining open question is the existence of a bet-
ter, say constant-factor, approximation algorithm for the
LAP problem in general graphs. In fact, due to the appar-
ent similarity of the LAP problem and known hard problems
such as minimum multicut [42], we believe it is unlikely that
a o(log n) approximation algorithm exists. However, we do
not know of a reduction or an Q(logn) LP-gap to support
this claim. In a similar vein, it would be interesting to find
examples for which the existing greedy heuristics perform
poorly, returning a solution that is w(log n) more costly than
the optimal one.
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