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Outline

1. Introduction: two-sided matching markets in
practice and impact of theory

2. Stable Matching Model: elementary
definitions, fundamental existence result

3. Structure: combinatorial structure of the set
of stable matchings, applications



Part 1: Introduction.



Market Desigh Goal

Develop simple theory,

... to deal with complexity in practice



Two-Sided Matching

workers

firms

1. agents partitioned into two disjoint sets

(as opposed to commodities markets where an
agent can be both a buyer and a seller)



Two-Sided Matching

workers

firms

bilateral nature of exchange

(vs. commodities markets where agent sells wheat
and buy tractors although wheat-buyer doesn’t sell
tractors and tractor-seller doesn’t buy wheat)



Example: entry-level labor markets

Practice:

National Residency Matching Program (NRMP):
physicians look for residency programs at
hospitals in the United States



Example: entry-level labor markets

Practice:
1950 1990
decentralized, centralized dropping participation

unraveling,
inefficiencies

clearinghouse,
95% voluntary
participation

sparks redesign to
accommodate couples,
system still in use



Example: entry-level labor markets

Theory:

Gale-Shapley stable marriage algorithm:
NRMP central clearinghouse algorithm
corresponds to GS algorithm, and so evolution
of market resulted in “correct” mechanism



Example: entry-level labor markets

Issues:

 Understanding agents’ incentives

* Distribution of interns to rural hospitals
* Dealing with couples

* Preference formation



Example: school choice

Practice:

Boston, New York City, etc:
students submit preferences about different

schools; matched based on “priorities” (e.g.,
test scores, geography, sibling matches)



Example: school choice

Practice:

some mechanisms strategically complicated,
result in unstable matches, many complaints in
school boards



Example: school choice

Theory:

theorists proposed alternate mechanisms
including top-trading cycles and GS algorithm
for stable marriage, schools adopt these



Example: school choice

Issues:

* Fairness and affirmative action goals
 Respecting improvements in schools



Example: kidney exchange

Practice:

In 2005:

e 75,000 patients waiting for transplants

16,370 transplants performed (9,800 from
deceased donors, 6,570 from living donors)

* 4,200 patients died while waiting



Example: kidney exchange

Practice:

Source and allocation of kidneys:

* cadaver kidneys: centralized matching
mechanism based on priority queue

* living donors: patient must identify donor,
needs to be compatible

e other: angel donors, black market sales



Example: kidney exchange

Theory:

living donor exchanges:

patient 1 donor 1

patient 2 donor 2



Example: kidney exchange

Theory:

living donor exchanges:

adopted mechanism uses top-trading cycles,
theory of maximum matching, results in

improved welfare (many more transplants)



Example: kidney exchange

Issues:

e Larger cycles of exchanges
* Hospitals’ incentives



Part 2: Stable Matching Model.



Stable Matching Model

* menM={m, .. m_}
* women W = {w,, ..., W}
e preferences

—a> bifxprefersatob
—a 2 bifxislikes a at least as well as b



Stable Matching Model

e preference lists
— P(m) ordered list of W U {m}
P(m)=w,, w,, m, w,, ..., W,
(m prefers being single to marrying ws, ..., W)
— P(w) ordered list of M U {w}
P(w) =m,, [m,, m;], m,, ..., m_, w
(w is indifferent between m, and m,)



Stable Matching Model

e preferences

— strict if no indifferences
(we assume strict unless otherwise stated)

— rational by assumption
(preferences transitive and form a total ordering)

* matchings u

— a correspondence u from set M U W onto itself
s.t. if u(m) # m then p(m) in W (and vice versa)



Stable Matching Model

* matchings
— u(m) is mate of m
— > vif p(x) >, vix)
(no externalities: m cares only about own mate)



Stable Matching Model

* matching u is stable if

— individually rational, unblocked by individuals:
i(x) =, x for all x
(agents can choose to be single, so IR only if every
agent is acceptable to mate)

— unblocked by pairs:
ify >, u(x), then u(y) >, x for all x,y
(no pairwise deviations from matching)

e aside: stable iff in core (no subset deviations)



Example

P(m,) =w,, w;, w, P(w;) = m;, my, m,
P(m,) =w,, w;, w, P(w,) =m;, m;, m,
P(m3) =w,, w,, w, P(w3) =mg, m;, m,

* all matchings are individually rational
(since all pairs mutually acceptable)

* u={(wy, my), (w, m,), (w;, my)} unstable
(since blocked by (m,, w,))

* v={(w;, my), (w,, ms), (Wy, m,)}is stable



Prediction

“Only stable matchings will occur.”

 complete information and easy access

(else blocking pairs persist because agents don’t
know about each other or can’t find each other)

e good idea when participation is voluntary

* many theorems require strict preferences
(indifference unlikely because “knife-edge”)



Non-Existence

One-sided (roommate problem):

* nsingle people to be matched in pairs
* each person ranks n-1 others

* matching stable if no blocking pairs

 example: people {a, b, c, d}
P(a)=b, c, d P(c)=a, b, d
P(b)=c, a, d P(d) = arbitrary
no stable matching since person with d blocks



Other Non-existence

Three-sided (man-woman-child):
* Preferences over pairs of other agents
* (m, w, c) block u if
(w, ¢) >, u(m); (m, c) >, p(w); (m, w) > p(c)
One-to-many (workers-firms):
* Firms have preferences over sets of workers

* Firm f and subset of workers C block p if
C > u(f) and forallwin C, f > u(w)



Existence

First attempt: rejection chains

e start with arbitrary matching

* Repeat until no blocking pairs
— take arbitrary blocking pair (m,w)

— match m and w

— declare mates of m and w to be single



Example: rejection chains

P(m,) =w,, w;, w,
P(m,) =w,, w;, w,

P(m3) =w,, w,, w,

* K= {(mli Wl)l (m21 Wz)z (m3; W3)} b

M, = {(m1z Wz): (mzz W1): (m3r Wg)} 0
M3 = {(mli W3)/ (mzz W1): (m3r Wz)} 0
My = {(m1z W3)/ (m21 Wz); (m3; W1)} 0
My = {(mll W1)z (mzz Wz)z (m3; W3)} b

OC
OC
OC
OC
OC

P(w;) = m;, my, m,
P(w,) =m;, m;, m,

P(w3) =mg, m;, m,

ked by (my, w,)
ked by (m;, w,)
ked by (m3, w,)
ked by (m,, w,)

ked by (m,, w,)



Example: rejection chains

P(m,) =w,, w;, w, P(w;) = m;, my, m,

P(m,) =w,, w;, w, P(w,) =m;, m;, m,

P(m3) =w,, w,, w, P(w3) =mg, m;, m,
Note:

* {{m,, w,), (m,, w,), (M, w,)} also blocked by (m,, w.,)
° {(mll W]_)) (m2/ W3), (m3, WZ)} |S Stable

There are always chains that lead to stable matching!



Rejection chains

Theorem [Roth-Vande Vate ‘90]. For any
matching y, there exists a finite sequence of
matchings W, ..., 1, such that

* U= Hy,
* W, isstable, and

e foreachi=1, ..., k-1, there is a blocking pair
(m,w) for W s.t. p.,, is obtained from . by
matching (m,w) and making their mates single



Rejection chains

Prf. Take arbitrary p and subset S of agents s.t.
* S does not contain any blocking pairs for p

e add arbitrary agentxto S

— if x blocks p with an agent in S, chain at (x,y)
where y is most preferred mate of x among those

in S that form a blocking pair with x
— repeat until no agents in S block

* continue growing S until all agents in S



Rejection chains

Prf. Take arbitrary n and subset S of agents s.t.
* S does not contain any blocking pairs for p

e add arbitrary agentxto S

* continue growing S until all agentsin S



Rejection chains

Corollary. Random chains converge to stable
matching with probability one.

Question. Rate of convergence?

Question. Same results in more general settings
(e.g., many-to-many matchings)?



Existence: deferred acceptance

Initiate:
* Each man proposes to 15t choice.

 Each woman rejects all but most preferred
acceptable proposal.

Repeat (until no more rejections):

 Any man rejected at previous step proposes to
most preferred woman that has not yet rejected
him (if such a woman exists).

 Each woman rejects all but most preferred
acceptable proposal.



Existence: deferred acceptance

Theorem [Gale-Shapley ‘62]. A stable matching
exists for any marriage market.

Prf. The deferred acceptance algorithm
computes a stable matching.



Existence: deferred acceptance

Prf. (of men-proposing)

 Terminates: finite number of women, each
man proposes to each woman at most once.

e Stable:
— suppose (m, w) not matched and w >_ p(w)
— then m proposed to w and was rejected
— w must have rejected m for a preferred m’
— as wW’s options improve, pu(w) 2, m’ >, m
— so (m, w) not a blocking pair



Example: men-proposing

P(m,) =w,, w;, w, P(w;) = m;, my, m,
P(m,) =w,, w;, w, P(w,) =m;, m;, m,
P(m3) =w,, w,, w, P(w3) =mg, m;, m,

. Proposals: {{my, w,), (m,, w,), (m3, w,)}
Intermediate p: {(m,, w,), (m,), (w3), (M3, w,)}
. Proposals: {(m,, w,)}

Final p: {(m,, w,), (m,, ws), (ms, w, )}



Example: women-proposing

P(m,) =w,, w;, w, P(w;) = m;, my, m,
P(m,) =w,, w;, w, P(w,) =m;, m;, m,
P(m3) =w,, w,, w, P(w3) =mg, m;, m,

. Proposals: {{my, w,), (m3, w,), (m,, ws)}
Intermediate p: {(m,, wy), (M3, w,), (M,), (w,)}
. Proposals: {(m;, w;)}

Intermediate p: {(m,, wy), (m3, w,), (m,), (w;)}
. Proposals: {(m,, w,)}

Final p: {(my, wy), (ms, wy), (M, ws)}



Properties

P(m,) =w,, w;, w, P(w;) = m;, my, m,
P(m,) =w,, w;, w, P(w,) =m;, m;, m,
P(m3) =w,, w,, w, P(w3) =mg, m;, m,

U-M = {(ml, Wz)r (mzr W3), (m3' Wl)}
pW = {(ml, W1)r (mzr W3), (m3' WZ)}

Each man prefers uM to p\;
each woman prefers p" to pM!



Why Not Disagree

D(rnl) = W11 Wz; W3

D(rnZ) = W11 W3; W2

3(m3) = W11 Wz; W3

D(Wl) = ml) mz; m3
D(WZ) = ml) mz; m3

3(W3) = ml) m3; m2

* Among all matchings, each man likes a
different one best (i.e., one where he gets w,)

 Two stable matchings:

\

_ ll = {(m]_lW]_)l (mZIWZ)I (m31W3)} >Stab|l|ty eliminates
—v ={(m,w,), (M,,w,), (My,w,)} disagreement

-~



Common Interests

* Definep =, vif
— for all men m, p(m) = v(m),
— W >, v if also for some m, u(m) > _ v(m)
— note this is a partial order and transitive

* Wis M-optimal if, for all stablev, p2,,v
* Similarly, define . >, vand W-optimal



Common Interests

Theorem [Gale-Shapley '62]. There is always a
unique M-optimal stable matching. The
matching UM produced by the men-proposing

deferred acceptance algorithm is M-optimal
(similarly for women).



Common Interests

Prf. Define m and w to be achievable for each other
if matched in some stable matching.

Claim. No man is rejected by an achievable woman.

* By induction: assume until step k, no manis
rejected by an achievable woman.

At k+1, suppose m proposes to w and is rejected.
* If mis unacceptable tow (m >_ w), we are done.



Common Interests

Claim. No man is rejected by an achievable woman.

Else w rejects m in favor of some m’, som’ > m.

Note m’ prefers w to all women except those
who previously rejected him (who are
unachievable by inductive hypothesis).

Suppose w achievable for m and let u be stable
matching that matches them.

Then p(m’) achievable for m and p(m’) # w.
Sow >, u(m’) and thus (m’, w) block p.



Opposing Interests

Men and women disagree.

Theorem [Knuth ‘76]. For stable matchings u
andv, u>, vifandonlyifv>, L.

Corollary. M-optimal matching is worst stable
matching for women (each woman gets least-
preferred achievable mate) and vice versa.



Opposing Interests

Prf.

Suppose | >,, v and for some w, p(w) > v(w).
* Then m = pu(w) has a different mate v.

* Thus, by assumption, w = pu(m) > v(w).

* Thus, (m, w) block matching v, contradiction.




Part 3: Structure.



Pointing Phenomenon

* Point to your most-preferred mate
— two men may point to same woman

* Point to your most-preferred achievable mate
— each man points to a different woman!
— resulting matching is stable!

* What about pointing among mates in arbitrary

stable matchings p and v?
— men point to different woman, matching stable



Pointing Phenomenon

* DefineA=p V, vas

— assign each man more-preferred mate:
A(m) = p(m) if p(m) > v(m); else A(m) = v(m).

— assign each woman less-preferred mate:
Aw) = p(w) if v(w) >, pu(w); else A(w) = v(w).
* |s A astable matching?
— if A(m) =A(m’), doesm=m’?
— if A(m) = w, does A(w) = m?
— is A stable?



Pointing Phenomenon

Theorem [Conway]. If uand v are stable, then
A=u V,,visastable matching (also u Ay, v).

Prf. First show A is a matching, i.e., A(m) = w if and
only if A(w) =m.

* if A(m)=w then w = p(m)>_v(m), so stability of v
requires v(w) > pu(w) = m implying A(w) = m.

e if A(w)=m, must worry about unmatched case...



Pointing Phenomenon

Prf. Next show A is stable.
e suppose (m, w) block A
* thenw>_A(m),sow >_p(m)andw >_v(m)
* furthermore, m > _A(w), so
— (m, w) block p if A(w) = p(w)
— (m, w) block v if A(w) = v(w)



Example

P(My) = wy, Wy, Wy, W,
P(mM,) =Wy, Wy, Wy, Ws

P(M3) = W3, Wy, Wy, W,

P(My) = Wy, W3, Wy, Wy

Ten stable matchings, e.g.,

P(Wy) =my,
P(w,) =mj,
P(ws3) =m,,
P(W,) =my,

ms;, m,,
my,, my,
my, My,
m,, My,

* K= {(m1z W1): (mzz Wz): (m3r W3)1 (m4; W4)}
* W= {(mli Wz)z (mzz W1): (m3r W3)/ (m4; W4)}
* U3 = {(m1z Wl)/ (m21 Wz); (m3; W4), (m41 W3)}
* My = {(mll Wz)z (mzz W1)z (m3; W4): (m4; W3)}



men
improve

Example

can’t
compare

women
improve




Lattice Structure

Defn. A lattice is a partially ordered set (poset)
where every two elts have a least upper bound
(join) and greatest lower bound (meet).

.. complete if every subset has meet/join.
.. distributive if meet/join have distributive law.



Lattice

Structure

... lattice is poset where all pairs have meet/join

... complete if every su

... distributive if meet/j

oset has meet/join.

oin have distributive law.

Eg. Sis subset of integers ordered by divisibility:

S lattice? complete? | distributive?
{1, 2, 3} X X X
{1, 2,3, ..} v X v
{0,1,2,3,..} v v v




Lattice Structure

* The set of stable matchings partially ordered
by “pointing function” V , is a complete
distributive lattice, and

* Every finite complete distributive lattice

equals the set of stable matchings for some
preferences.



Computational Questions

* Generating all stable matchings
* The number of stable matchings
* Finding all achievable pairs



Generating All Matchings

|dea:

 Compute pM
* walk through
lattice.




Generating All Matchings

Pmy) =(WWy)we  P(wy) =(my)(,) s,
P(m,) = way, (V3 )we P(W,) =(my)([ny) e,
P(my) =(uy)fwy)ws  P(ws) = my, w0

UM = {(my, wy), (My, W), (M3, wy)}
HW = {(mll W1)/ (mzr WS)' (m3' WZ)}



Generating All Matchings

P(m,) =w,, w, P(w;) =m,, m,
P(m,) = w, P(w,) = m;, m,
P(m;) =w,, w, P(w;) = m,

* First element of P(.) is M-optimal mate
e Last element of P(.) is W-optimal mate
* Canrotate from pM to pW



Generating All Matchings

P(m,) =w,, w, P(w;) =m,, m,
P(m,) = w, P(w,) = m;, m,
P(m;) =w,, w, P(w;) = m,

First element of P(m) is M-optimal mate
Last element of P(m) is W-optimal mate
First element of P(w) is W-optimal mate
Last element of P(w) is M-optimal mate




Generating All Matchings

P(m,) =w,, w, P(w;) =m,, m,
P(m,) = w, ® P(w,) = m;, m,
P(m3) =w,, w, ® P(ws3) =m,

* Can rotate from puMto pW

e Each man points to 2" favorite woman
* Each woman points to last man
 Perform rotation along cycle



Generating All Matchings

From point u in lattice, to generate children:

1. Reduce preferences by eliminating women
better than p and worse than p from men,
men better than p% and worse than p from
women, and all unacceptable people

2. Generate graph according to 2"d-best women
for men and worst men p(w) for women

3. Perform rotation along each cycle
Polynomial in number of stable matchings.



Number of Matchings

e Letn=|M| =|W| and suppose |P(.)| =n.
* Number of matchings can be n!

Claim [Irving and Leather ‘86]. Number of stable
matchings can be 2",



Number of Matchings

* Double market
— (M, W, P) with M ={m,,...m_}and W ={w,,...,w,_}
— create (M’,W’,P’) with M’={m_,,,....m .},

W={w,q,....W,,.}, and P’(x.,:) = P(x),,

* Merge market
—m,and m_,. are partners, w, and w,,. are partners
— for men, append partner’s preferences to own
— for women, prepend partner’s preferences to own



Number of Matchings

Given u stable for (M, W, P) and U’ stable for
(M, W, P’),

set v(m) = pu(m) if min M, W' (m) if min M’
set A(w) = p(w) if win W/, 1'(w) if win M.

Then v and A are stable

so if (M, W, P) has g(n) stable matchings,
then merged market has 2[g(n)]? and size 2n.



Number of Matchings

Claim [Irving and Leather ‘86]. Number of stable
matchings can be 2",

Prf. Apply merging to market of size 1.

g(1) =1, g(n) = 2[g(n/2)]?
Result follows by solving recurrence.



Number of Matchings

P(My) = wy, Wy, Wy, W,
P(mM,) = Wy, Wy, Wy, Wi

P(M3) = W3, Wy, Wy, W,

P(My) = Wy, W3, Wy, Wy

P(Wy) =my,
P(w,) =mj,
P(ws3) =m,,
P(W,) =my,

m,, My
m,, M,
My, Ms
M3, My



Finding All Achievable Pairs

|dea:

 Compute pM
e walk down
lattice.




Finding All Achievable Pairs

* To walk down, rotate just one cycle
* Creates path pM =l ..., uk = pWin lattice

Claim [Irving and Leather]. Any such path
generates all achievable pairs.

Question. How deep is lattice?



Finding All Achievable Pairs

Claim [Irving and Leather]. Any such path
generates all achievable pairs.

Prf.

o If pi(m) =w; #w,,, = l,,(m)

* and there is achievable w withw, > _w>_w.,,
* then can find matching p with p. >, it >, Wi, -



Finding All Achievable Mates

Given woman w,
* Run men-proposing deferred acceptance
* Find worst stable mate m of w

* Truncate w’s list just before m (make m
unacceptable)

* |terate until wis single



