Market Design: Lecture 1

NICOLE IMMORLICA, NORTHWESTERN UNIVERSITY

Outline

- 1. Introduction: two-sided matching markets in practice and impact of theory
- 2. Stable Matching Model: elementary definitions, fundamental existence result
- 3. Structure: combinatorial structure of the set of stable matchings, applications

Part 1: Introduction.

Market Design Goal

Develop simple theory,

... to deal with complexity in practice

Two-Sided Matching

1. agents partitioned into two disjoint sets (as opposed to commodities markets where an agent can be both a buyer and a seller)

Two-Sided Matching

2. bilateral nature of exchange

(vs. commodities markets where agent sells wheat and buy tractors although wheat-buyer doesn't sell tractors and tractor-seller doesn't buy wheat)

Practice:

National Residency Matching Program (NRMP): physicians look for residency programs at hospitals in the United States

Practice:

1950	1990	
decentralized, unraveling, inefficiencies	centralized clearinghouse, 95% voluntary participation	dropping participation sparks redesign to accommodate couples, system still in use

Theory:

Gale-Shapley stable marriage algorithm:
NRMP central clearinghouse algorithm
corresponds to GS algorithm, and so evolution
of market resulted in "correct" mechanism

Issues:

- Understanding agents' incentives
- Distribution of interns to rural hospitals
- Dealing with couples
- Preference formation

Practice:

Boston, New York City, etc: students submit preferences about different schools; matched based on "priorities" (e.g., test scores, geography, sibling matches)

Practice:

some mechanisms strategically complicated, result in unstable matches, many complaints in school boards

Theory:

theorists proposed alternate mechanisms including top-trading cycles and GS algorithm for stable marriage, schools adopt these

Issues:

- Fairness and affirmative action goals
- Respecting improvements in schools

Practice:

In 2005:

- 75,000 patients waiting for transplants
- 16,370 transplants performed (9,800 from deceased donors, 6,570 from living donors)
- 4,200 patients died while waiting

Practice:

Source and allocation of kidneys:

- cadaver kidneys: centralized matching mechanism based on priority queue
- living donors: patient must identify donor, needs to be compatible
- other: angel donors, black market sales

Theory:

living donor exchanges:

Theory:

living donor exchanges: adopted mechanism uses top-trading cycles, theory of maximum matching, results in improved welfare (many more transplants)

Issues:

- Larger cycles of exchanges
- Hospitals' incentives

Part 2: Stable Matching Model.

- men M = $\{m_1, ..., m_n\}$
- women $W = \{w_1, ..., w_p\}$
- preferences
 - $-a >_x b$ if x prefers a to b
 - $-a \ge b$ if x is likes a at least as well as b

- preference lists
 - P(m) ordered list of W U {m} P(m) = w_1 , w_2 , m, w_3 , ..., w_p (m prefers being single to marrying w_3 , ..., w_p)
 - P(w) ordered list of M U {w} P(w) = m_1 , [m_2 , m_3], m_4 , ..., m_n , w (w is indifferent between m_2 and m_3)

- preferences
 - strict if no indifferences
 (we assume strict unless otherwise stated)
 - rational by assumption
 (preferences transitive and form a total ordering)
- matchings μ
 - a correspondence μ from set M U W onto itself s.t. if $\mu(m) \neq m$ then $\mu(m)$ in W (and vice versa)

- matchings
 - $-\mu(m)$ is mate of m
 - $-\mu >_x v$ if $\mu(x) >_x v(x)$ (no externalities: m cares only about own mate)

- matching μ is stable if
 - individually rational, unblocked by individuals:

$$\mu(x) \ge_x x \text{ for all } x$$

(agents can choose to be single, so IR only if every agent is acceptable to mate)

– unblocked by pairs:

```
if y >_x \mu(x), then \mu(y) >_y x for all x,y
```

(no pairwise deviations from matching)

aside: stable iff in core (no subset deviations)

Example

$$P(m_1) = w_2, w_1, w_3$$
 $P(w_1) = m_1, m_3, m_2$
 $P(m_2) = w_1, w_3, w_2$ $P(w_2) = m_3, m_1, m_2$
 $P(m_3) = w_1, w_2, w_3$ $P(w_3) = m_1, m_3, m_2$

- all matchings are individually rational (since all pairs mutually acceptable)
- $\mu = \{(w_1, m_1), (w_2, m_2), (w_3, m_3)\}$ unstable (since blocked by (m_1, w_2))
- $v = \{(w_1, m_1), (w_2, m_3), (w_3, m_2)\}$ is stable

Prediction

"Only stable matchings will occur."

- complete information and easy access
 (else blocking pairs persist because agents don't
 know about each other or can't find each other)
- good idea when participation is voluntary
- many theorems require strict preferences (indifference unlikely because "knife-edge")

Non-Existence

One-sided (roommate problem):

- n single people to be matched in pairs
- each person ranks n-1 others
- matching stable if no blocking pairs
- example: people {a, b, c, d}
 P(a) = b, c, d
 P(c) = a, b, d
 P(b) = c, a, d
 P(d) = arbitrary
 no stable matching since person with d blocks

Other Non-existence

Three-sided (man-woman-child):

- Preferences over pairs of other agents
- (m, w, c) block μ if (w, c) >_m μ (m); (m, c) >_w μ (w); (m, w) >_c μ (c)

One-to-many (workers-firms):

- Firms have preferences over sets of workers
- Firm f and subset of workers C block μ if $C >_f \mu(f)$ and for all w in C, $f >_w \mu(w)$

Existence

First attempt: rejection chains

- start with arbitrary matching
- Repeat until no blocking pairs
 - take arbitrary blocking pair (m,w)
 - match m and w
 - declare mates of m and w to be single

Example: rejection chains

$$P(m_1) = w_2, w_1, w_3$$
 $P(w_1) = m_1, m_3, m_2$
 $P(m_2) = w_1, w_3, w_2$ $P(w_2) = m_3, m_1, m_2$
 $P(m_3) = w_1, w_2, w_3$ $P(w_3) = m_1, m_3, m_2$

- $\mu_1 = \{(m_1, w_1), (m_2, w_2), (m_3, w_3)\}$ blocked by (m_1, w_2)
- $\mu_2 = \{(m_1, w_2), (m_2, w_1), (m_3, w_3)\}$ blocked by (m_3, w_2)
- $\mu_3 = \{(m_1, w_3), (m_2, w_1), (m_3, w_2)\}$ blocked by (m_3, w_1)
- $\mu_4 = \{(m_1, w_3), (m_2, w_2), (m_3, w_1)\}$ blocked by (m_1, w_1)
- $\mu_1 = \{(m_1, w_1), (m_2, w_2), (m_3, w_3)\}$ blocked by (m_1, w_2)

Example: rejection chains

$$P(m_1) = w_2, w_1, w_3$$
 $P(w_1) = m_1, m_3, m_2$
 $P(m_2) = w_1, w_3, w_2$ $P(w_2) = m_3, m_1, m_2$
 $P(m_3) = w_1, w_2, w_3$ $P(w_3) = m_1, m_3, m_2$

Note:

- {(m₁, w₁), (m₂, w₂), (m₃, w₃)} also blocked by (m₃, w₂)
- {(m₁, w₁), (m₂, w₃), (m₃, w₂)} is stable

There are always chains that lead to stable matching!

Theorem [Roth-Vande Vate '90]. For any matching μ , there exists a finite sequence of matchings μ_1 , ..., μ_k such that

- $\mu = \mu_1$,
- μ_k is stable, and
- for each i = 1, ..., k-1, there is a blocking pair (m,w) for μ_i s.t. μ_{i+1} is obtained from μ_i by matching (m,w) and making their mates single

- Prf. Take arbitrary μ and subset S of agents s.t.
- S does not contain any blocking pairs for μ
- add arbitrary agent x to S
 - if x blocks μ with an agent in S, chain at (x,y)
 where y is most preferred mate of x among those in S that form a blocking pair with x
 - repeat until no agents in S block μ
- continue growing S until all agents in S

Prf. Take arbitrary μ and subset S of agents s.t.

- S does not contain any blocking pairs for μ
- add arbitrary agent x to S

deferred acceptance algorithm with respect to S (terminates with no blocking pairs in S, see next section)

continue growing S until all agents in S

Corollary. Random chains converge to stable matching with probability one.

Question. Rate of convergence?

Question. Same results in more general settings (e.g., many-to-many matchings)?

Existence: deferred acceptance

Initiate:

- Each man proposes to 1st choice.
- Each woman rejects all but most preferred acceptable proposal.

Repeat (until no more rejections):

- Any man rejected at previous step proposes to most preferred woman that has not yet rejected him (if such a woman exists).
- Each woman rejects all but most preferred acceptable proposal.

Existence: deferred acceptance

Theorem [Gale-Shapley '62]. A stable matching exists for any marriage market.

Prf. The deferred acceptance algorithm computes a stable matching.

Existence: deferred acceptance

Prf. (of men-proposing)

 Terminates: finite number of women, each man proposes to each woman at most once.

• Stable:

- suppose (m, w) not matched and w $>_m \mu(w)$
- then m proposed to w and was rejected
- w must have rejected m for a preferred m'
- as w's options improve, $\mu(w) \ge_w m' >_w m$
- so (m, w) not a blocking pair

Example: men-proposing

$$P(m_1) = w_2, w_1, w_3$$
 $P(w_1) = m_1, m_3, m_2$
 $P(m_2) = w_1, w_3, w_2$ $P(w_2) = m_3, m_1, m_2$
 $P(m_3) = w_1, w_2, w_3$ $P(w_3) = m_1, m_3, m_2$

- 1. Proposals: $\{(m_1, w_2), (m_2, w_1), (m_3, w_1)\}$ Intermediate μ : $\{(m_1, w_2), (m_2), (w_3), (m_3, w_1)\}$
- 2. Proposals: $\{(m_2, w_3)\}$ Final μ : $\{(m_1, w_2), (m_2, w_3), (m_3, w_1)\}$

Example: women-proposing

$$P(m_1) = w_2, w_1, w_3$$
 $P(w_1) = m_1, m_3, m_2$
 $P(m_2) = w_1, w_3, w_2$ $P(w_2) = m_3, m_1, m_2$
 $P(m_3) = w_1, w_2, w_3$ $P(w_3) = m_1, m_3, m_2$

- 1. Proposals: $\{(m_1, w_1), (m_3, w_2), (m_1, w_3)\}$ Intermediate μ : $\{(m_1, w_1), (m_3, w_2), (m_2), (w_3)\}$
- 2. Proposals: $\{(m_3, w_3)\}$ Intermediate μ : $\{(m_1, w_1), (m_3, w_2), (m_2), (w_3)\}$
- 3. Proposals: $\{(m_2, w_3)\}$ Final μ : $\{(m_1, w_1), (m_3, w_2), (m_2, w_3)\}$

Properties

$$\begin{split} P(m_1) &= w_2, \, w_1, \, w_3 & P(w_1) &= m_1, \, m_3, \, m_2 \\ P(m_2) &= w_1, \, w_3, \, w_2 & P(w_2) &= m_3, \, m_1, \, m_2 \\ P(m_3) &= w_1, \, w_2, \, w_3 & P(w_3) &= m_1, \, m_3, \, m_2 \\ \mu^M &= \{(m_1, \, w_2), \, (m_2, \, w_3), \, (m_3, \, w_1)\} \\ \mu^W &= \{(m_1, \, w_1), \, (m_2, \, w_3), \, (m_3, \, w_2)\} \end{split}$$

Each man prefers μ^M to μ^W ; each woman prefers μ^W to μ^M !

Why Not Disagree

$$P(m_1) = w_1, w_2, w_3$$
 $P(w_1) = m_1, m_2, m_3$
 $P(m_2) = w_1, w_3, w_2$ $P(w_2) = m_1, m_2, m_3$
 $P(m_3) = w_1, w_2, w_3$ $P(w_3) = m_1, m_3, m_2$

- Among all matchings, each man likes a different one best (i.e., one where he gets w₁)
- Two stable matchings:

$$-\mu = \{(m_1, w_1), (m_2, w_2), (m_3, w_3)\}$$
 stability eliminates
$$-\nu = \{(m_1, w_1), (m_2, w_2), (m_3, w_3)\}$$
 disagreement

- Define $\mu \ge_M v$ if
 - for all men m, μ (m) ≥_m v(m),
 - $-\mu >_{M} v$ if also for some m, $\mu(m) >_{m} v(m)$
 - note this is a partial order and transitive
- μ is M-optimal if, for all stable v, μ≥_M v
- Similarly, define μ≥_W v and W-optimal

Theorem [Gale-Shapley '62]. There is always a unique M-optimal stable matching. The matching μ^{M} produced by the men-proposing deferred acceptance algorithm is M-optimal (similarly for women).

Prf. Define m and w to be *achievable* for each other if matched in some stable matching.

Claim. No man is rejected by an achievable woman.

- By induction: assume until step k, no man is rejected by an achievable woman.
- At k+1, suppose m proposes to w and is rejected.
- If m is unacceptable to w (m >_m w), we are done.

Claim. No man is rejected by an achievable woman.

- Else w rejects m in favor of some m', so m' >_w m.
- Note m' prefers w to all women except those who previously rejected him (who are unachievable by inductive hypothesis).
- Suppose w achievable for m and let μ be stable matching that matches them.
- Then $\mu(m')$ achievable for m and $\mu(m') \neq w$.
- So w >_{m'} $\mu(m')$ and thus (m', w) block μ .

Opposing Interests

Men and women disagree.

Theorem [Knuth '76]. For stable matchings μ and v, $\mu >_M v$ if and only if $v >_W \mu$.

Corollary. M-optimal matching is worst stable matching for women (each woman gets least-preferred achievable mate) and vice versa.

Opposing Interests

Prf.

Suppose $\mu >_M v$ and for some w, $\mu(w) >_w v(w)$.

- Then $m = \mu(w)$ has a different mate v.
- Thus, by assumption, $w = \mu(m) >_m v(w)$.
- Thus, (m, w) block matching v, contradiction.

Part 3: Structure.

- Point to your most-preferred mate
 - two men may point to same woman
- Point to your most-preferred achievable mate
 - each man points to a different woman!
 - resulting matching is stable!
- What about pointing among mates in arbitrary stable matchings μ and ν ?
 - men point to different woman, matching stable

- Define $\lambda = \mu V_M v$ as
 - assign each man more-preferred mate: $\lambda(m) = \mu(m)$ if $\mu(m) >_m \nu(m)$; else $\lambda(m) = \nu(m)$.
 - assign each woman less-preferred mate: $\lambda(w) = \mu(w)$ if $\nu(w) >_w \mu(w)$; else $\lambda(w) = \nu(w)$.
- Is λ a stable matching?
 - if $\lambda(m) = \lambda(m')$, does m = m'?
 - if $\lambda(m) = w$, does $\lambda(w) = m$?
 - is λ stable?

Theorem [Conway]. If μ and ν are stable, then $\lambda = \mu \vee_M \nu$ is a stable matching (also $\mu \wedge_M \nu$).

Prf. First show λ is a matching, i.e., $\lambda(m) = w$ if and only if $\lambda(w) = m$.

- if $\lambda(m) = w$ then $w = \mu(m) >_m v(m)$, so stability of v requires $v(w) >_w \mu(w) = m$ implying $\lambda(w) = m$.
- if $\lambda(w) = m$, must worry about unmatched case...

Prf. Next show λ is stable.

- suppose (m, w) block λ
- then $w >_m \lambda(m)$, so $w >_m \mu(m)$ and $w >_m \nu(m)$
- furthermore, $m >_w \lambda(w)$, so
 - (m, w) block μ if $\lambda(w) = \mu(w)$
 - (m, w) block v if λ (w) = v(w)

Example

$$P(m_1) = w_1, w_2, w_3, w_4$$
 $P(w_1) = m_4, m_3, m_2, m_1$
 $P(m_2) = w_2, w_1, w_4, w_3$ $P(w_2) = m_3, m_4, m_1, m_2$
 $P(m_3) = w_3, w_4, w_1, w_2$ $P(w_3) = m_2, m_1, m_4, m_3$
 $P(m_4) = w_4, w_3, w_2, w_1$ $P(w_4) = m_1, m_2, m_3, m_4$

Ten stable matchings, e.g.,

- $\mu_1 = \{(m_1, w_1), (m_2, w_2), (m_3, w_3), (m_4, w_4)\}$
- $\mu_2 = \{(m_1, w_2), (m_2, w_1), (m_3, w_3), (m_4, w_4)\}$
- $\mu_3 = \{(m_1, w_1), (m_2, w_2), (m_3, w_4), (m_4, w_3)\}$
- $\mu_4 = \{(m_1, w_2), (m_2, w_1), (m_3, w_4), (m_4, w_3)\}$

Example

Lattice Structure

Defn. A lattice is a partially ordered set (poset) where every two elts have a least upper bound (join) and greatest lower bound (meet).

- ... complete if every subset has meet/join.
- ... distributive if meet/join have distributive law.

Lattice Structure

... lattice is poset where all pairs have meet/join

... complete if every subset has meet/join.

... distributive if meet/join have distributive law.

Eg. S is subset of integers ordered by divisibility:

S	lattice?	complete?	distributive?
{1, 2, 3}	X	×	X
{1, 2, 3,}	√	×	✓
{0, 1, 2, 3,}	√	✓	✓

Lattice Structure

• The set of stable matchings partially ordered by "pointing function" $V_{\rm M}$ is a complete distributive lattice, and

 Every finite complete distributive lattice equals the set of stable matchings for some preferences.

Computational Questions

- Generating all stable matchings
- The number of stable matchings
- Finding all achievable pairs

Idea:

- Compute μ^M
- walk through lattice.

$$P(m_{1}) = w_{2}, w_{1}, w_{3} \qquad P(w_{1}) = m_{1}, m_{3}, m_{2}$$

$$P(m_{2}) = w_{1}, w_{3}, w_{2} \qquad P(w_{2}) = m_{3}, m_{1}, m_{2}$$

$$P(m_{3}) = w_{1}, w_{2}, w_{3} \qquad P(w_{3}) = m_{1}, m_{3}, m_{2}$$

$$\mu^{M} = \{(m_{1}, w_{2}), (m_{2}, w_{3}), (m_{3}, w_{1})\}$$

$$\mu^{W} = \{(m_{1}, w_{1}), (m_{2}, w_{3}), (m_{3}, w_{2})\}$$

$$P(m_1) = w_2, w_1$$
 $P(w_1) = m_1, m_3$
 $P(m_2) = w_3$ $P(w_2) = m_3, m_1$
 $P(m_3) = w_1, w_2$ $P(w_3) = m_2$

- First element of P(.) is M-optimal mate
- Last element of P(.) is W-optimal mate
- Can rotate from μ^{M} to μ^{W}

$$P(m_1) = w_2, w_1$$
 $P(w_1) = m_1, m_3$
 $P(m_2) = w_3$ $P(w_2) = m_3, m_1$
 $P(m_3) = w_1, w_2$ $P(w_3) = m_2$

- First element of P(m) is M-optimal mate
- Last element of P(m) is W-optimal mate
- First element of P(w) is W-optimal mate
- Last element of P(w) is M-optimal mate

$$P(m_1) = w_2, w_1$$

 $P(m_2) = w_3$
 $P(m_3) = w_1, w_2$
 $P(w_1) = m_1, m_3$
 $P(w_2) = m_3, m_1$
 $P(w_3) = m_2$

- Can rotate from μ^{M} to μ^{W}
- Each man points to 2nd favorite woman
- Each woman points to last man
- Perform rotation along cycle

From point μ in lattice, to generate children:

- 1. Reduce preferences by eliminating women better than μ and worse than μ^W from men, men better than μ^W and worse than μ from women, and all unacceptable people
- 2. Generate graph according to 2^{nd} -best women for men and worst men $\mu(w)$ for women
- 3. Perform rotation along each cycle Polynomial in *number* of stable matchings.

- Let n = |M| = |W| and suppose |P(.)| = n.
- Number of matchings can be n!

Claim [Irving and Leather '86]. Number of *stable* matchings can be 2ⁿ⁻¹.

Double market

- -(M, W, P) with $M = \{m_1,...,m_n\}$ and $W = \{w_1,...,w_n\}$
- create (M',W',P') with M'= $\{m_{n+1},...,m_{n+n}\}$, W = $\{w_{n+1},...,w_{n+n}\}$, and P' (x_{n+i}) = P $(x_i)_{+n}$

Merge market

- $-m_i$ and m_{n+i} are partners, w_i and w_{n+i} are partners
- for men, append partner's preferences to own
- for women, prepend partner's preferences to own

- Given μ stable for (M, W, P) and μ' stable for (M', W', P'),
- set $v(m) = \mu(m)$ if m in M, $\mu'(m)$ if m in M'
- set $\lambda(w) = \mu(w)$ if w in W', $\mu'(w)$ if w in M.
- Then v and λ are stable
- so if (M, W, P) has g(n) stable matchings,
 then merged market has 2[g(n)]² and size 2n.

Claim [Irving and Leather '86]. Number of *stable* matchings can be 2ⁿ⁻¹.

Prf. Apply merging to market of size 1.

$$g(1) = 1$$
, $g(n) = 2[g(n/2)]^2$

Result follows by solving recurrence.

$$P(m_1) = w_1, w_2, w_3, w_4$$
 $P(w_1) = m_4, m_3, m_2, m_1$
 $P(m_2) = w_2, w_1, w_4, w_3$ $P(w_2) = m_3, m_4, m_1, m_2$
 $P(m_3) = w_3, w_4, w_1, w_2$ $P(w_3) = m_2, m_1, m_4, m_3$
 $P(m_4) = w_4, w_3, w_2, w_1$ $P(w_4) = m_1, m_2, m_3, m_4$

Finding All Achievable Pairs

Idea:

- Compute μ^M
- walk down lattice.

Finding All Achievable Pairs

- To walk down, rotate just one cycle
- Creates path $\mu^M = \mu^1$, ..., $\mu^k = \mu^W$ in lattice

Claim [Irving and Leather]. Any such path generates all achievable pairs.

Question. How deep is lattice?

Finding All Achievable Pairs

Claim [Irving and Leather]. Any such path generates all achievable pairs.

Prf.

- If $\mu_i(m) = w_i \neq w_{i+1} = \mu_{i+1}(m)$
- and there is achievable w with w_i >_m w >_m w_{i+1},
- then can find matching μ with $\mu_i >_M \mu >_M \mu_{i+1}$.

Finding All Achievable Mates

Given woman w,

- Run men-proposing deferred acceptance
- Find worst stable mate m of w
- Truncate w's list just before m (make m unacceptable)
- Iterate until w is single