EECS 495: Combinatorial Optimization
Matroid Representation, Matroid Optimization

Lecture 7

Reading: Schrijver, Chapters 39 and 40

Matroids

Recap

Def: A matroid M = (S,7) is a finite ground
set S together with a collection of indepen-
dent sets Z C 2° satisfying:

e downward closed: if ] € 7 and J C I,
then J € Z, and

e exchange property: if I, J € Z and |J| >
|I|, then there exists an element z € J\ I
st. Tu{z} €T

Def: A basis is a maximal independent set.
The cardinality of a basis is the rank of the
matroid.

Def: Uniform matroids U* are given by |S| =
n,Z={ICS:|I <k}

Def: Linear matroids: Let F be a field, A €
Fm™™an mxn matrix over F', S = {1,...,n}
be index set of columns of A. Then I C S is
independent if the corresponding columns are
linearly independent.

Note: WLOG any linear matroids can be
written as A = [[,,|B] where m is rank of
matroid and B is an (n—m) X m matrix over

F.
Def: Graphic matroids: Let G = (V, E) be a

graph and S = E. A set F C FE is indepen-
dent if it is acyclic.

Food for thought: can two non-isomorphic
graphs give isomorphic matroid structure?

Representation

Def: For a field F, a matroid M is repre-
sentable over F if it is isomorphic to a linear
matroid with matrix A and linear indepen-
dence taken over F.

Example: Is uniform matroid U binary?

Need: matrix A with entries in {0,1} s.t. no
column is the zero vector, no two rows sum
to zero over GF(2), any three rows sum to

GF(2).

e if so, can assume A is 2 x 4 with columns
1/2 being (0, 1) and (1,0) and remaining
two vectors with entries in 0, 1 neither all
zZero.

e only three such non-zero vectors, so can’t
have all pairs indep.

Question: representation  of
(1,0),(0,1), (1,—1),(1,1) in R.

Def: A binary matroid is a matroid repre-
sentable over GF'(2).

Def: A regular matroid is representable over
any field.

U2?

Example: Graphic matroids are regular.



Proof: Take A to be vertex/edge incidence
matrix with +1/ — 1 in each column in any
order.

e Minimally dependent sets sum to zero
perhaps with multiplying by —1.

e Works over any field with +1 as multi-
plicative identity and —1 additive inverse
of +1.

Note: Have graphic C binary C regular C
linear.

Note: There are matroids that are not linear
(MacLane, 1936; Lazarson, 1958).

Matroid Operations

Def: (from last lecture): The dual M* of ma-
troid M = (S5,7) is the matroid with ground
set S whose independent sets I are such that
S\ I contains a basis of M.

Def: The deletion M \ Z of matroid M =
(S,Z) and subset Z C S is the matroid with
ground set S\ Z and independent sets {I C
S\ Z:1eT}.

Example: Take graph, delete edges, take
acyclic subsets of remaining edges.

Def: The contraction M/Z of ... is ... (M*\
Z)*.

of M, I independent in M/Z if I U X
dependent in M.

Def: If a matroid M’ arises from M by a
series of deletions and contractions, then M’
is a minor of M.

Claim: (Tutte, 1958) A matroid is binary if

and only if it has no U7 minor.

troids as those that exclude the so-called
Fano matroid and its dual as a minor.

[SO for X C Z mazimal independent ‘s‘et”

Similar characterization of ternary ma—”

Conjecture (Rota, 1971): Matroids repre-

sentable over a finite field can be character-

ized by a finite list of excluded minors.
Much like planar graphs are those with no
Ks 3 or K5 as a minor.

Matroid Optimization

Given: Matroid M = (S,Z) and weights c :
S—R

Find: max-weight (or min-weight) basis
Recall Kruskal’s Alg for min spanning
tree: select edges in increasing order 0]‘”

weight
Algorithm: Greedy

e Set J = (.
e Order Ss.t.ci > ... > ¢,.

e Fori =1 ton, if JU{i} is independent,
J = Ju{i}

If weights are non-neg, this is max-weight
mdep set; otherwise stop selecting elts
when ¢; becomes negative for max-weight
indep set.

Claim: Greedy finds maximal-weight basis.

J]

Proof: Clearly a basis. Suppose not max-
weight, i.e., for greedy set J and opt J',
c(J) <c(J).

[[First rephrase second aziom.

o Let J = {e1,...,e} be greedy set la-
beled according to chosen order so c., >
R

o Let J' = {q,...,q} be max-weight ba-
sis labeled s.t. ¢;, > ... > ¢, .

e Let ¢ be smallest index s.t. ¢, > ¢, (if
no such index, must have £ > [ so let
i=1+1).

2



I
:%}

e Consider independent sets
{e1,...,ei1}and I' ={q, ...

e since |I'| > |I| exchange property says
dz € I' s.t. I + z independent

e but each elt in I’ has greater weight than
I and z was available to greedy at step ¢
by above, so greedy can’t have chosen e;
over z.

[[In fact, matroids are precisely set systems
on which greedy works, see book.

[ What about running time? Depends on]
matroid representation to test if [+ z in-
dependent. Want poly in |S| given indep
set oracle, or sometimes given sucinct
representation of M like in graphs (note
listing all indep sets is exponential in
|S]). Question, is there a matroid with
a sucinct rep in which checking indepen-

L Ldence is hard? i

Matroid Polytopes
Variables: x4 for each s € S Constraints:
rg > 0,Vs e S
ZIS <r(U),YUCS
seU

Claim: Greedy is optimal.
Claim: Matroid polytope integral.

Proof: Consider  primal
max » .o w(s)xrg. Dual is:

min Z r(U)yu

Ucs

objective

s.t. Z yu > w(s),Vs € S

U:seU
yo = 0,VU C S

Let Op,Op be primal/dual value. To prove
TDI need for any w € Z" exists opt dual soln
that’s integral.
Recall TDI means for integral cost vector
¢ s.t. primal soln finite, there exists in-
tegral opt dual. Furthermore if polytope
1s T'DI and b is integral, then polytope is
integral.

e WLOG w non-negative (else discard neg
elts and note dual constraint satisfied
since y > 0.

Let J be independent set found by
greedy.

Note w(J) < maxerw(l) < Op = Op.

Find integral y s.t. dual value equals
w(J) hence proving both claims. Label
elts in decreasing order of weight and let
Ui={s1,...,8}

yu, = w(si) — w(sis1)

Yu, = w(sn)

yu = 0, otherwise

— feasible: for any s; € 9,
ZU:S,-EU Yu - Z?:Z Yu;
=320 (w(si) +w(si)) +w(s,) =
w(s;).
— optimal:
S U = 3 (U w(s) — wisiin))
Ucs i=1
+r(Uy)w(sy)
= w(si)r(Ul)
+ > w(si)(r(Us) —r(Ui-1))



