
EECS 495: Combinatorial Optimization Lecture 1
Matching: König’s Theorem, Tutte-Berge Formula

Reading: Schrijver, Chapters 16 and 24

Logistics

• Website: linked to from my homepage

• Lectures: M/W 1.30-3, some F 1.30-3
[[Reschedule for 10.30-noon? ]]

• Readings: from Schrijver, Combinatorial
Optimization: Polyhedra and Efficiency

• Problem Sets: list of problems on web-
site; work through some fraction by end
of term

• Other Work: propose and solve a prob-
lem that would be appropriate for a
problem set, do a reading project plus
half-hour presentation

• Content: matchings, matroids, submod-
ularity. Based on course by Michel Goe-
mans.

Matching

Definitions

Def: A matching is a set of edges that share
no vertices.

Def: A vertex v is covered by a matching if
v is incident with an edge in the matching.

Def: A vertex is exposed by a matching if it
is not covered.

Def: A matching that covers every ver-
tex is a perfect matching or a 1-factor.[[

A d-factor of a graph is a d-regular span-
ning subgraph.

]]
Def: A vertex cover is a set of vertices C such
that every edge is incident with at least one
vertex in C.

Example:
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In figure,

• Matching: {(1, 6), (2, 7), (3, 8)}

• Covered: {1, 2, 3, 6, 7, 8}

• Exposed: {4, 5, 9, 10}

• Vertex cover: {1, 2, 3, 4, 5}
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König’s Theorem

Claim: If M is a matching and C is a vertex
cover, then |M | ≤ |C|. Proof: Counting
argument:

• at least one endpoint of each edge in M
must be in C since C covers all edges,

• edges don’t share vertices since M
matching, so |M | ≤ |C|.

Def: The cardinality of the maximum
matching is ν(G) = maxM |M |.
Def: The cardinality of the minimum vertex
cover is τ(G) = minC |C|.
Claim: For any graph G, ν(G) ≤ τ(G).
Proof: By above claim.

Theorem 0.1 (König’s Theorem): For bi-
partite graphs G, ν(G) = τ(G).

Example: Matching
{(1, 6), (2, 7), (3, 8), (5, 10)} is of maxi-
mum size since there is a vertex cover
{1, 2, 5, 8} of the same cardinality.

Proof: Constructive.

Def: An alternating path with respect to M
is a path that alternates between edges in M
and E −M .

Def: An augmenting path with respect to M
is an alternating path in which the first and
last vertices are exposed.

Example: Paths 4−8−3, 6−1−7−2, and
5− 7− 2− 6− 1− 9 are alternating, but only
last one is also augmenting.

Note: If there’s an augmenting path P that
contains k edges of M , then it contians k+ 1
edges not in M . Hence can increase cardinal-
ity of M by setting M ′ = (M−P )∪(P −M).

Claim: M is maximum if and only if
there are no augmenting paths with re-
spect to M (true for non-bipartite as well).
[[Proof is an exercise. ]]

Algorithm: Finding a maximum matching:

• Start with empty matching.

• Repeatedly augment current matching
along augmenting path if one exists.

Let A denote lhs, B denote rhs.

Algorithm: Finding an augmenting path:

• Direct an edge from A to B if not in M .

• Direct an edge from B to A if in M .

• Create vertex s and edges from s to each
exposed vertex in A.

• Do BFS from s to find exposed vertex in
B.

Example: Finds augmenting path 5 − 7 −
2− 6− 1− 9.

Analysis:

• runtime: at most ν(G) ≤ n/2 itera-
tions, each iteration at most m steps, so
O(nm).

• correctness: there’s an augmenting path
iff there’s a directed path between ex-
posed vertex in A and exposed vertex in
B.

Proof: (of König’s Theorem). Run alg.
When terminates,

• let L be set of vertices reachable from
exposed vertex in A (e.g., this is {3, 4, 8}
in example), and
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• let C be (A − L) ∪ (B ∩ L) (e.g., this is
{1, 2, 5, 8} in example).

Then C is a vertex cover and |C| = |M | where
M is matching returned by alg.

• C is a vertex cover: consider an edge
(a, b).

– if a 6∈ L, then covered by A− L.

– if a ∈ L and (a, b) not an edge in
matching b ∈ L too so covered by
B ∩ L.

– if a ∈ L and (a, b) an edge in match-
ing, then (a, b) only incoming edge
to a so must have b ∈ L and hence
covered by B ∩ L.

• |C| = |M |: we show |C| ≤ |M | since
reverse is always true.

– no vertex in A − L is exposed by
definition of L,

– no vertex in B ∩ L is exposed since
otherwise we’d have an augment-
ing path so alg wouldn’t have ter-
minated, and

– no matching edge between a ∈ A−
L and b ∈ B ∩ L since otherwise a
would be in L.

Hence every vertex in C is matched by a
distinct edge in M .

Tutte-Berge Formula

Example: Non-bipartite graphs may have
ν(G) < τ(G), e.g., 3-cycle.

For graph G and U ⊆ V ,

• let G−U be subgraph obtained by delet-
ing vertices in U , and

• o(G−U) be number of components of G
that contain an odd number of vertices.

Idea: Consider a matching M in G− U :

• It leaves at least one vertex of each odd
component unmatched.

• In G these perhaps can be matched to
vertices in U , but this can happen at
most |U | times.

• Hence matchings in G leave at least
o(G− U)− |U | vertices exposed.

Example: Let U be middle vertex in figure.

Theorem 0.2 (Tutte-Berge Formula): For
any graph G, ν(G) = minU⊆V (|V | + |U | −
o(G− U))/2.

Proof: Suppose G connected (formula’s ad-
ditive). Do induction on number of vertices.

Base case: one vertex, trivial.

Case 1: G contains vertex v covered by all
maximum matchings (e.g., middle vertex in
example).

3



• Then ν(G− {v}) = ν(G)− 1.

• By induction, Tutte-Berge Formula
holds in G− {v} for some set U ′.

• Let U = U ′ ∪ {v}. Then

ν(G) = ν(G− v) + 1
= (|V − v|+ |U − v| − o(G− v − (U − v)))/2 + 1
= (|V | − 1 + |U | − 1− o(G− U))/2 + 1
= (|V |+ |U | − o(G− U))/2.

Case 2: for every vertex v there is a maximum
matching M that does not cover v (e.g., 3-
cycles).

Claim: Each maximum matching leaves ex-
actly one vertex exposed.

Hence ν(G) = (|V | − 1)/2 and Tutte-Berge
Formula follows by choosing U = ∅.
Proof: (of claim): By contradiction: sup-
pose each maximum matching leaves two ver-
tices exposed.

Choose maximum matching M and two ex-
posed vertices u and v such that distance
d(u, v) ≥ 2 is minimized over all choices of
(M,u, v).[[

Distance is at least 2 since if it’s 1 we can
add an edge contradicting maximality of
M .

]]
Let t be intermediate vertex on shortest u−v
path and N a maximum matching that ex-
poses it whose symmetric difference with M
is minimal.

By minimality of (M,u, v), N must cover u
and v, so there is some other vertex x that it
does not cover which is covered by M .

Let y be vertex matched to x by M and note
y 6= t (otherwise could add to N).

Let z be vertex matched to y by N and note
z 6= x (since x unmatched by N).

Then N − yz+xy is a matching that exposes
t and has smaller symmetric difference with
M contradicting choice of N .
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Example: (for proof)
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Exposed by M

Exposed by M

Exposed by N

Exposed by N
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